Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 122-139.DOI: 10.13745/j.esf.sf.2025.4.66
Previous Articles Next Articles
KONG Chunfang1,2,3,4(), TIAN Qian1, LIU Jian5, CAI Guorong1,5, ZHAO Jie1, XU Kai1,2,3,4,*(
)
Received:
2025-05-12
Revised:
2025-05-20
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
KONG Chunfang, TIAN Qian, LIU Jian, CAI Guorong, ZHAO Jie, XU Kai. Metallogenic prediction based on ensemble learning models and Bayesian Optimization Algorithm[J]. Earth Science Frontiers, 2025, 32(4): 122-139.
步骤 | 步骤描述 |
---|---|
1 | 标准化、归一化数据集,并按照7∶2∶1的比例分配训练集、测试集和验证集 |
2 | 为每一个样本赋予同样的权重,训练出第一个决策树DT1,让DT1对样本xi进行分类得到预测值G1(xi),并依据公式 |
3 | 利用误差率e1进行轮次迭代,依据公式αk= |
4 | 不断重复步骤3,共构造15个弱分类器和15个分类器权重αk。然后使用累加投票法(公式(3))组合成强分类器 |
Table 1 The steps of AdaBoost algorithm
步骤 | 步骤描述 |
---|---|
1 | 标准化、归一化数据集,并按照7∶2∶1的比例分配训练集、测试集和验证集 |
2 | 为每一个样本赋予同样的权重,训练出第一个决策树DT1,让DT1对样本xi进行分类得到预测值G1(xi),并依据公式 |
3 | 利用误差率e1进行轮次迭代,依据公式αk= |
4 | 不断重复步骤3,共构造15个弱分类器和15个分类器权重αk。然后使用累加投票法(公式(3))组合成强分类器 |
序号 | 精度 | max_depth | max_features | min_samples_split | n_estimators |
---|---|---|---|---|---|
1 | 0.882 | 9 | 0.754 | 8 | 137 |
2 | 0.893 | 17 | 0.890 | 19 | 174 |
3 | 0.899 | 12 | 0.920 | 10 | 120 |
4 | 0.893 | 16 | 0.254 | 16 | 109 |
5 | 0.892 | 16 | 0.493 | 15 | 182 |
6 | 0.898 | 15 | 0.944 | 5 | 162 |
7 | 0.894 | 13 | 0.797 | 18 | 123 |
8 | 0.889 | 11 | 0.927 | 17 | 72 |
9 | 0.885 | 19 | 0.729 | 9 | 82 |
10 | 0.755 | 1 | 0.835 | 7 | 20 |
11 | 0.896 | 20 | 0.100 | 20 | 10 |
12 | 0.895 | 7 | 0.120 | 10 | 149 |
13 | 0.895 | 14 | 0.100 | 20 | 10 |
14 | 0.897 | 9 | 0.100 | 2 | 119 |
15 | 0.894 | 8 | 0.990 | 20 | 49 |
16 | 0.894 | 20 | 0.100 | 2 | 200 |
Best | 0.899 | 12 | 0.920 | 10 | 120 |
Table 2 Hyperparameters optimization process and result of BO-RF model
序号 | 精度 | max_depth | max_features | min_samples_split | n_estimators |
---|---|---|---|---|---|
1 | 0.882 | 9 | 0.754 | 8 | 137 |
2 | 0.893 | 17 | 0.890 | 19 | 174 |
3 | 0.899 | 12 | 0.920 | 10 | 120 |
4 | 0.893 | 16 | 0.254 | 16 | 109 |
5 | 0.892 | 16 | 0.493 | 15 | 182 |
6 | 0.898 | 15 | 0.944 | 5 | 162 |
7 | 0.894 | 13 | 0.797 | 18 | 123 |
8 | 0.889 | 11 | 0.927 | 17 | 72 |
9 | 0.885 | 19 | 0.729 | 9 | 82 |
10 | 0.755 | 1 | 0.835 | 7 | 20 |
11 | 0.896 | 20 | 0.100 | 20 | 10 |
12 | 0.895 | 7 | 0.120 | 10 | 149 |
13 | 0.895 | 14 | 0.100 | 20 | 10 |
14 | 0.897 | 9 | 0.100 | 2 | 119 |
15 | 0.894 | 8 | 0.990 | 20 | 49 |
16 | 0.894 | 20 | 0.100 | 2 | 200 |
Best | 0.899 | 12 | 0.920 | 10 | 120 |
序号 | 精度 | max_depth | learning_rate | min_samples_split | min_samples_leaf | n_estimators |
---|---|---|---|---|---|---|
1 | 0.911 | 5 | 0.322 | 19 | 15 | 137 |
2 | 0.903 | 9 | 0.951 | 7 | 18 | 174 |
3 | 0.908 | 5 | 0.87 | 4 | 18 | 146 |
4 | 0.911 | 8 | 0.804 | 13 | 4 | 109 |
5 | 0.914 | 8 | 0.718 | 11 | 9 | 182 |
6 | 0.891 | 8 | 0.196 | 5 | 19 | 162 |
7 | 0.916 | 7 | 0.875 | 8 | 2 | 123 |
8 | 0.907 | 6 | 0.839 | 11 | 18 | 72 |
9 | 0.903 | 10 | 0.421 | 18 | 14 | 82 |
10 | 0.904 | 1 | 0.262 | 15 | 17 | 120 |
11 | 0.912 | 1 | 0.378 | 3 | 1 | 113 |
12 | 0.903 | 2 | 0.496 | 12 | 6 | 21 |
13 | 0.928 | 7 | 0.516 | 3 | 2 | 196 |
14 | 0.900 | 6 | 0.318 | 13 | 20 | 10 |
15 | 0.908 | 2 | 0.312 | 17 | 20 | 200 |
16 | 0.907 | 2 | 0.572 | 13 | 2 | 14 |
Best | 0.928 | 7 | 0.516 | 3 | 2 | 196 |
Table 3 Hyperparameters optimization process and result of BO-AdaBoost model
序号 | 精度 | max_depth | learning_rate | min_samples_split | min_samples_leaf | n_estimators |
---|---|---|---|---|---|---|
1 | 0.911 | 5 | 0.322 | 19 | 15 | 137 |
2 | 0.903 | 9 | 0.951 | 7 | 18 | 174 |
3 | 0.908 | 5 | 0.87 | 4 | 18 | 146 |
4 | 0.911 | 8 | 0.804 | 13 | 4 | 109 |
5 | 0.914 | 8 | 0.718 | 11 | 9 | 182 |
6 | 0.891 | 8 | 0.196 | 5 | 19 | 162 |
7 | 0.916 | 7 | 0.875 | 8 | 2 | 123 |
8 | 0.907 | 6 | 0.839 | 11 | 18 | 72 |
9 | 0.903 | 10 | 0.421 | 18 | 14 | 82 |
10 | 0.904 | 1 | 0.262 | 15 | 17 | 120 |
11 | 0.912 | 1 | 0.378 | 3 | 1 | 113 |
12 | 0.903 | 2 | 0.496 | 12 | 6 | 21 |
13 | 0.928 | 7 | 0.516 | 3 | 2 | 196 |
14 | 0.900 | 6 | 0.318 | 13 | 20 | 10 |
15 | 0.908 | 2 | 0.312 | 17 | 20 | 200 |
16 | 0.907 | 2 | 0.572 | 13 | 2 | 14 |
Best | 0.928 | 7 | 0.516 | 3 | 2 | 196 |
模型 | 精度 | 准确率 | 召回率 | F1分数 | kappa | AUC |
---|---|---|---|---|---|---|
RF | 0.888 | 0.900 | 0.883 | 0.885 | 0.773 | 0.883 2 |
BO-RF | 0.899 | 0.907 | 0.897 | 0.896 | 0.805 | 0.891 6 |
AdaBoost | 0.912 | 0.920 | 0.906 | 0.910 | 0.821 | 0.906 8 |
BO-AdaBoost | 0.928 | 0.940 | 0.923 | 0.926 | 0.854 | 0.962 1 |
Table 4 Comparison of performance for the four models
模型 | 精度 | 准确率 | 召回率 | F1分数 | kappa | AUC |
---|---|---|---|---|---|---|
RF | 0.888 | 0.900 | 0.883 | 0.885 | 0.773 | 0.883 2 |
BO-RF | 0.899 | 0.907 | 0.897 | 0.896 | 0.805 | 0.891 6 |
AdaBoost | 0.912 | 0.920 | 0.906 | 0.910 | 0.821 | 0.906 8 |
BO-AdaBoost | 0.928 | 0.940 | 0.923 | 0.926 | 0.854 | 0.962 1 |
模型 | 各区域面积占比/% | ||||
---|---|---|---|---|---|
极低区域 | 低区域 | 中等区域 | 高区域 | 极高区域 | |
RF | 62.13 | 21.47 | 6.77 | 4.88 | 4.75 |
BO-RF | 63.99 | 19.16 | 8.13 | 4.62 | 4.10 |
AdaBoost | 69.03 | 18.47 | 5.19 | 4.39 | 2.93 |
BO-AdaBoost | 72.75 | 15.26 | 5.37 | 4.33 | 2.29 |
Table 5 The percentage of the total area for the four models predictions results
模型 | 各区域面积占比/% | ||||
---|---|---|---|---|---|
极低区域 | 低区域 | 中等区域 | 高区域 | 极高区域 | |
RF | 62.13 | 21.47 | 6.77 | 4.88 | 4.75 |
BO-RF | 63.99 | 19.16 | 8.13 | 4.62 | 4.10 |
AdaBoost | 69.03 | 18.47 | 5.19 | 4.39 | 2.93 |
BO-AdaBoost | 72.75 | 15.26 | 5.37 | 4.33 | 2.29 |
[1] | ZHOU Q, WU C L, HU X Y, et al. A new metallogenic model for the giant manganese deposits in northeastern Guizhou, China[J]. Ore Geology Reviews, 2022, 149: 105070. |
[2] | 吴冲龙, 周琦, 徐凯, 等. 用于大数据预测的大塘坡式锰矿找矿过程复盘研究[J]. 贵州地质, 2022, 39(3): 189-204. |
[3] |
周琦, 吴冲龙. 基于大数据的智慧探矿模式实验研究与进展[J]. 地学前缘, 2024, 31(6): 350-367.
DOI |
[4] | 吴冲龙, 刘刚. 大数据与地质学的未来发展[J]. 地质通报, 2019, 38(7): 1081-1088. |
[5] | 曹亚琴, 王永志, 卢鹏羽. 基于机器学习的成矿背景异常分解关键参数的自动计算[J]. 地球物理学进展, 2021, 36(3): 1226-1235. |
[6] | PARSA M, CARRANZA E J M. Modulatingthe impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivity[J]. Natural Resources Research, 2021, 30(5): 3081-3097. |
[7] | XU K, ZHAO S, WU C, et al. Manganese mineral prospectivity based on deep convolutional neural networks in Songtao of northeastern Guizhou[J]. Earth Science Informatics, 2024, 17(2): 1681-1697. |
[8] | 陈国雄, 张越鹏, 罗磊, 等. 数据驱动斑岩型矿床时空预测模型[J]. 地学前缘, 2025, 32(4): 46-59. |
[9] | XIAO F, CHEN W, WANG J, et al. A hybrid logistic regression: gene expression programming model and its application to mineral prospectivity mapping[J]. Natural Resources Research, 2022, 31(4): 2041-2064. |
[10] | LIU Y, ZHOU K, XIA Q. A MaxEnt model for mineral prospectivity mapping[J]. Natural Resources Research, 2018, 27(3): 299-313. |
[11] | ZUO R, CARRANZA E J M. Support vector machine: a tool for mapping mineral prospectivity[J]. Computers & Geosciences, 2011, 37(12): 1967-1975. |
[12] | MAEPA F, SMITH R S, TESSEMA A. Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada[J]. Ore Geology Reviews, 2021, 130: 103968. |
[13] | SUN T, CHEN F, ZHONG L X, et al. GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China[J]. Ore Geology Reviews, 2019, 109: 26-49. |
[14] | RODRIGUEZ-GALIANO V, SANCHEZ-CASTILLO M, CHICA-OLMO M, et al. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 2015, 71: 804-818. |
[15] | CARRANZA E J M, LABORTE A G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm[J]. Ore Geology Reviews, 2015, 71: 777-787. |
[16] | CHEN M, XIAO F. Projection pursuit random forest for mineral prospectivity mapping[J]. Mathematical Geosciences, 2023, 55(7): 963-987. |
[17] | YANG N, ZHANG Z, YANG J, et al. Mineral prospectivity prediction by integration of convolutional autoencoder network and random forest[J]. Natural Resources Research, 2022, 31(3): 1103-1119. |
[18] | YANG F, WANG Z, ZUO R, et al. Quantification of uncertainty associated with evidence layers in mineral prospectivity mapping using direct sampling and convolutional neural network[J]. Natural Resources Research, 2023, 32(1): 79-98. |
[19] | LI C, XIAO K, SUN L, et al. CNN-Transformers for mineral prospectivity mapping in the Maodeng-Baiyinchagan area, southern Great Xing’an Range[J]. Ore Geology Reviews, 2024, 167: 106007. |
[20] | LIU Z, YU S, DENG H, et al. 3D mineral prospectivity modeling in the Sanshandao goldfield, China using the convolutional neural network with attention mechanism[J]. Ore Geology Reviews, 2024, 164: 105861. |
[21] | LI T, ZUO R, ZHAO X, et al. Mapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented data[J]. Ore Geology Reviews, 2022, 142: 104693. |
[22] | WU Y, LIU B, GAO Y, et al. Mineral prospecting mapping with conditional generative adversarial network augmented data[J]. Ore Geology Reviews, 2023, 163: 105787. |
[23] | CHEN Q, CUI Z, LIU G, et al. Deep convolutional generative adversarial networks for modeling complex hydrological structures in Monte-Carlo simulation[J]. Journal of Hydrology, 2022, 610: 127970. |
[24] | CAI Y, LI X, ZHANG M, et al. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SARdata[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102164. |
[25] | YIN J, LI N. Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping[J]. Ore Geology Reviews, 2022, 145: 104916. |
[26] | SAGI O, ROKACH L. Ensemble learning: a survey[J]. Wiley Interdisciplinary Reviews: Data Miningand Knowledge Discovery, 2018, 8(4): e1249. |
[27] | ROKACH L. Ensemble learning: pattern classification using ensemble methods[M]. Singapore: World Scientific, 2019. |
[28] | SHAN W, LI D, LIU S, et al. A random feature mapping method based on the AdaBoost algorithm and results fusion for enhancing classification performance[J]. Expert Systems with Application, 2024, 256: 124902. |
[29] | RAO C, LI M, HUANG T, et al. Stroke risk assessment decision-making using a machine learning model: logistic-AdaBoost[J]. Computer Modeling in Engineering & Sciences, 2024, 139(4): 699-724. |
[30] | CHANDRAN D, CHITHRA N R. Predictive performance of ensemble learning boosting techniques in daily streamflow simulation[J]. Water Resources Management, 2025, 39(3): 1235-1259. |
[31] | ZHAO J, CHI H, SHAO Y, et al. Application of AdaBoost Algorithms in Fe mineral prospectivity prediction: a case study in Hongyuntan-Chilongfeng Mineral district, Xinjiang Province, China[J]. Natural Resources Research, 2022, 31(4): 2001-2022. |
[32] | BREIMAN L. Random forests[J]. Machine Learn, 2001, 45(1): 5-32. |
[33] | LI Q, CHEN G, WANG D. Mineral prospectivity mapping using semi-supervised machine learning[J]. Mathematical Geosciences, 2025, 57(2): 275-305. |
[34] | HARRIS J R, STRONG J, THURSTON P, et al. Mineral prospectivity mapping and differential metal endowment between two greenstone belts in the Canadian superior craton[J]. Natural Resources Research, 2025, 34(1): 97-120. |
[35] | REMIDI S, BOUTALEB A, TACHI S E, et al. Ensemble machine learning model for exploration and targeting of Pb-Zn deposits in algeria[J]. Earth Science Informatics, 2025, 18(2): 1-26. |
[36] | CHEN Y L, SUI Y H. Dictionary learning for integration of evidential layers for mineral prospectivity modeling[J]. Ore Geology Reviews, 2022, 41: 1-12. |
[37] | SHAHRIARI B, SWERSKY K, WANG Z, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2015, 104(1): 148-175. |
[38] | 周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177-188. |
[39] | YOUSEFI M, KREUZER O P, NYKäNEN V, et al. Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting[J]. Ore Geology Reviews, 2019, 111: 103005. |
[40] | ZHANG J M, ZENG Z F, WU Y G, et al. Balanced morphological filters for horizontal boundaries enhancement of the potential field sources[J]. Applied Geophysics, 2024, 21(1): 147-156. |
[41] | CHENG Q, AGTERBERG F P. Singularity analysis of ore-mineral and toxic trace elements in stream sediments[J]. Computers & Geosciences, 2009, 35(2): 234-244. |
[42] | 徐凯, 袁良军, 杨炳南, 等. 黔东北伴生-次生矿物遥感数据组合式挖掘与隐伏锰矿信息提取[J]. 地质科技通报, 2020, 39(4): 37-43. |
[43] | YOUSEFI M, CARRANZA E J M, KREUZER O P, et al. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: state-of-the-art and outlook[J]. Journal of Geochemical Exploration, 2021, 229: 106839. |
[44] | FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874. |
[45] | CHEN G, HUANG N, Wu G, et al. Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province[J]. Ore Geology Reviews, 2022, 143: 104765. |
[46] | LIN N, CHEN Y, LIU H, et al. A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity[J]. Minerals, 2021, 11(2): 1-31. |
[47] | LEE K, JEONG H O, LEES, et al. CPEM: accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network[J]. Scientific Reports, 2019, 9(1): 1-9. |
[48] | CHEN J, LI K. Parallel Adaboost with optimized decision trees for high-dimensional data classification[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(6): 1312-1325. |
[49] | CARRANZA E J M, HALE M, FAASSEN C. Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping[J]. Ore Geology Reviews, 2008, 33: 536-558. |
[50] | LISITSIN V. Spatial data analysis of mineral deposit point patterns: applications to exploration targeting[J]. Ore Geology Reviews, 2015, 71: 861-881. |
[51] | WANG J, ZUO R, XIONG Y. Mapping mineral prospectivity via semi-supervised random forest[J]. Natural Resources Research, 2020, 29: 189-202. |
[52] |
AHNEMAN D T, ESTRADA J G, LIN S, et al. Predicting reaction performance in C-N cross-coupling using machine learning[J]. Science, 2018, 360(6385): 186-190.
DOI PMID |
[1] | WANG Lin, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral identification based on data augmentation and ensemble learning [J]. Earth Science Frontiers, 2024, 31(4): 87-94. |
[2] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[3] | JIA Ran, WANG Haoran, WANG Gongwen, WANG Hao, XU Rongda, FENG Zhankui, SONG Yaowu, WANG Xiaoling, PANG Zong. Three-dimensional geological modeling and deep prospectivity of the Xigou Pb-Zn-Ag-Au deposit, Henan Province [J]. Earth Science Frontiers, 2021, 28(3): 156-169. |
[4] | DONG Shu-Xi, GU Xue-Xiang, YANG Yong-Jiang, DI Yu-Sheng, ZHANG Yong-Mei, XIANG Zhong-Lin, LIU Li, HU Gui-Ceng, LI Zhong-Beng. Application of comprehensive geologicalgeophysicalgeochemical methods on metallogenic prediction of crisis mines—A case study in Yinan gold deposit. [J]. Earth Science Frontiers, 2010, 17(2): 198-208. |
[5] | XIANG Zhong-Lin GU Xue-Xiang DONG Shu-Xi WANG Yan. Application of prognostication from comprehensive information based on GIS to ores prospecting in crisis mines—A case from Yinan gold mine. [J]. Earth Science Frontiers, 2009, 16(4): 326-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||