Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 388-400.DOI: 10.13745/j.esf.sf.2024.2.23
Previous Articles Next Articles
HUANG Yu1,2,3,4(), ZHONG Shihua1,2,3,4,*(
), LI Sanzhong1,2,3,4, ZHAO Hong5, XUE Zimeng1,2,3,4, GUO Guanghui1,2,3,4, LIU Jiaqing1,2,3,4, NIU Jinghui1,2,3,4
Received:
2023-12-13
Revised:
2024-01-31
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
HUANG Yu, ZHONG Shihua, LI Sanzhong, ZHAO Hong, XUE Zimeng, GUO Guanghui, LIU Jiaqing, NIU Jinghui. Effects of accessory mineral inclusions and signal acquisition time on zircon U-Pb dating and trace element analysis results[J]. Earth Science Frontiers, 2025, 32(1): 388-400.
Fig.1 Zircons with mineral-rich inclusions from the Yemaquan monzonite granite porphyry (a) and the corresponding zircon signal processing interface in the ICPMSDataCal software (b)
Fig.6 When analyzing apatite in the digital signal acquisition window of the ICPMSDataCal software, the curves of certain elements exhibit a bulging rise.
Fig.7 Weighted average age diagrams (a-d) and U-Pb isotope concordia diagrams (e-h) of zircon from the Yemaquan monzonitic granite porphyry under different signal acquisition times.
Fig.8 REE Distribution patterns of zircon from the Yemaquan monzonitic granite porphyry under different signal acquisition times, standardized to chondrite (normalization values based on [30])
Fig.11 Temperature-log f O 2 diagrams (a-d) and temperature-ΔFMQ diagrams (e-h) of zircons from the Yemaquan monzonitic granite porphyry under different signal acquisition times.
[1] | 王岳军, 范蔚茗, 郭锋, 等. 湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J]. 中国科学D辑: 地球科学, 2001, 31(9): 745-751. |
[2] |
王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6): 381-401.
DOI |
[3] | 杨红章, 陈家富, 刘俊来, 等. 兴安地块东南缘晚石炭世侵入岩的锆石U-Pb年代学、地球化学特征及构造意义[J]. 地质学报, 2019, 93(9): 2226-2244. |
[4] | MUKHERJEE P K, JAIN A K, SINGHAL S, et al. U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications[J]. Gondwana Research, 2019, 75: 282-297. |
[5] | CROW M, ZAW K, THU K, et al. A review of new detrital zircon U-Pb ages from the Mogok area of Myanmar: implications for the stratigraphy and early tectonic evolution of the Mogok metamorphic belt (MMB)[J]. Earth-Science Reviews, 2023, 242: 104441. |
[6] | 简平, 程裕淇, 刘敦一. 变质锆石成因的岩相学研究: 高级变质岩U-Pb年龄解释的基本依据[J]. 地学前缘, 2001, 8(3): 183-191. |
[7] | LIANG X R, LI X H, SUN M, et al. Simultaneously in-situ analysis of trace elements and U-Pb and Pb-Pb ages for single zircons by laser ablation microprobe-inductively coupled plasma mass spectrometry[J]. Chemistry Letters, 1999, 28(7): 639-640. |
[8] | LI X H, LIANG X R, SUN M, et al. Geochronology and geochemistry of single-grain zircons: simultaneous in situ analysis of U-Pb age and trace elements by LAM-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5): 1015-1024. |
[9] | 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286. |
[10] | SMYTHE D J, BRENAN J M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium[J]. Earth and Planetary Science Letters, 2016, 453: 260-266. |
[11] | 瞿泓滢, 毛景文, 周淑敏, 等. 粤北大宝山志留纪次英安斑岩年代学、地球化学特征及其地质意义[J]. 矿床地质, 2019, 38(2): 331-354. |
[12] | DE SOUZA PEREIRA G, DE ASSIS JANASI V, ANDRADE S, et al. Sources, evolution and ages of A-type granites from the post-orogenic itu batholith, SE Brazil: inferences from zircon U-Pb dating, Lu-Hf isotope ratios and trace-element geochemistry[J]. Journal of South American Earth Sciences, 2023, 131: 104619. |
[13] |
钏茂山, 胡乐, 蔺如喜, 等. 扬子板块西缘早中生代“绿豆岩” 成因及构造启示: 锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223.
DOI |
[14] |
朱紫怡, 周飞, 王瑀, 等. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5): 464-475.
DOI |
[15] | 刘嘉情, 钟世华, 李三忠, 等. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩-矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 2023, 56(6): 41-56. |
[16] | 郭广慧, 钟世华, 李三忠, 等. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 2023, 56(6): 57-70. |
[17] | ZHAO J F, ZENG X, TIAN J X, et al. Provenance and paleogeography of the Jurassic northwestern Qaidam Basin (NW China): evidence from sedimentary records and detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 2020, 190: 104060. |
[18] | QIU X F, TONG X R, JIANG T, et al. Reworking of Hadean continental crust in the Dabie Orogen: evidence from the muzidian granitic gneisses[J]. Gondwana Research, 2021, 89: 119-130. |
[19] |
支倩, 任蕊, 段丰浩, 等. 西准噶尔南部晚石炭世中-酸性火山岩成因机制及其对准噶尔洋闭合时限的约束[J]. 地学前缘, 2024, 31(3): 40-58.
DOI |
[20] | ZHONG S H, FENG C Y, SELTMANN R, et al. Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition[J]. Lithos, 2018, 314: 646-657. |
[21] | ZHONG S H, LI S Z, FENG C Y, et al. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: a zircon perspective[J]. Ore Geology Reviews, 2021, 139: 104560. |
[22] | 丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665-678. |
[23] | 丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(4): 10-17. |
[24] | 徐国端. 青海祁漫塔格多金属成矿带典型矿床地质地球化学研究[D]. 昆明: 昆明理工大学, 2010. |
[25] | 刘光莲, 刘宇宏, 朱传宝, 等. 青海东昆仑西段野马泉铁多金属矿床成矿模式及找矿模型[J]. 矿产勘查, 2019, 10(9): 2162-2170. |
[26] | LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. |
[27] | 胡彩霞, 袁万明. 不同成因类型的锆石特征及年代学意义[J]. 中国矿业, 2021, 30(增刊1): 204-207. |
[28] | LUDWIG K. User’s manual for isoplot 3.00: a geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronological Center Special Publication, 2012: 1-75. |
[29] | GEHRELS G E, VALENCIA V A, RUIZ J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. |
[30] | SUN S S, MACDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[31] |
赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124-135.
DOI |
[32] | 雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(4): 273-284. |
[33] | HOSKIN P W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2004, 69(3): 637-648. |
[34] | 陈润生. 福建建瓯上房花岗岩热液锆石U-Pb年龄及地质学意义[J]. 福建地质, 2015, 34(2): 87-102. |
[35] | 张望, 王根宝, 张凯, 等. 陕西镇安棋盘沟钨矿床印支期成矿: 来自热液锆石U-Pb年龄证据[J]. 中国地质, 2020, 47(2): 552-554. |
[36] | MURAKAMI T, CHAKOUMAKOS B C, EWING R C, et al. Alpha-decay event damage in zircon[J]. American Mineralogist, 1991, 76(9/10): 1510-1532. |
[37] | CAVOSIE A J, VALLEY J W, WILDE S A. Correlated microanalysis of zircon: trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900Ma detrital grains[J]. Geochimica et Cosmochimica Acta, 2006, 70(22): 5601-5616. |
[38] | CLAESSON S, VETRIN V, BAYANOVA T, et al. U-Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, Russia: a record of geological evolution from the archaean to the palaeozoic[J]. Lithos, 2000, 51(1/2): 95-108. |
[39] | 宋忠宝, 张雨莲, 贾群子, 等. 青海祁漫塔格地区野马泉花岗闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(12): 2006-2013. |
[40] | WHITEHOUSE M J, KAMBER B S. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation[J]. Earth and Planetary Science Letters, 2002, 204(3/4): 333-346. |
[41] | XU B, HOU Z Q, ZHENG Y C, et al. In situ elemental and isotopic study of diorite intrusions: implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet[J]. Ore Geology Reviews, 2017, 90: 1063-1077. |
[42] | WANG R, ZHU D C, WANG Q, et al. Porphyry mineralization in the Tethyan Orogen[J]. Science China: Earth Sciences, 2020, 63(12): 2042-2067. |
[43] | ZHENG Y L, ZHANG C Q, JIA F D, et al. Apatite and zircon geochemistry in Yao’an alkali-rich porphyry gold deposit, Southwest China: implications for petrogenesis and mineralization[J]. Minerals, 2021, 11(11): 1293. |
[44] | 付小锦, 李其在, 刘欢, 等. 北衙地区贫矿和富矿斑岩对比研究: 对斑岩成矿的指示意义[J]. 矿床地质, 2022, 41(4): 751-769. |
[45] | 杨东杰, 彭惠娟, 王天瑞, 等. 云南中甸红牛—红山斑岩—矽卡岩型铜矿床花岗斑岩岩石学特征及成因意义[J]. 矿物岩石, 2023, 43(4): 60-77. |
[46] |
勾宗洋, 于皓丞, 邱昆峰, 等. 西秦岭太阳山斑岩铜-钼矿床岩体氧逸度及成矿意义[J]. 地学前缘, 2019, 26(5): 243-254.
DOI |
[47] | 肖路毅, 杨晓志. 锆石Ce氧逸度计和早期地球的氧化还原状态[J]. 高校地质学报, 2022, 28(4): 484-492. |
[48] | ZHONG S H, SELTMANN R, QU H Y, et al. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method[J]. Mineralogy and Petrology, 2019, 113(6): 755-763. |
[49] | LOUCKS R R, FIORENTINI M L, HENRÍQUEZ G J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 61(3): egaa034. |
[50] |
杨亚楠, 李秋立, 刘宇, 等. 离子探针锆石U-Pb定年[J]. 地学前缘, 2014, 21(2): 81-92.
DOI |
[1] | LIU Xiaohui, LIU Yimin, DING Lin, GUO Xiaoyu, HUANG Xingfu, LI Huilin, GAO Rui. Crustal thickness evolution of the Central Lhasa Terrane inferred from trace elements in zircon of Tangra Yumco [J]. Earth Science Frontiers, 2025, 32(1): 343-366. |
[2] | LI Fanglan, LIU Xuelong, ZHOU Yunman, ZHAO Chengfeng, LI Shoukui, WANG Jiyuan, LU Bode, LI Qingrui, ZHANG Weiwen, WANG Hai, CAO Zhenliang, ZHOU Jiehu. Geochronology and geochemical characteristics of the Douya iron-copper polymetallic deposit in the Baoshan block, western Yunnan [J]. Earth Science Frontiers, 2024, 31(3): 113-132. |
[3] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[4] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[5] | CHUAN Maoshan, HU Le, LIN Ruxi, MAO Chongzhen, LI Shizhong, LI Suoming, YUAN Yongsheng. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U-Pb age, trace element and Hf isotope constraints [J]. Earth Science Frontiers, 2024, 31(2): 204-223. |
[6] | ZHOU Yuxi, SHI Yu, HUANG Chunwen, LIU Xijun, LAN Yuanchun, TANG Yuanyuan, WENG Boyin. Petrogenesis and tectonic significance of Caledonian I-Type granitoids in the Gulong and Liandong plutons in southeastern Guangxi [J]. Earth Science Frontiers, 2024, 31(2): 224-248. |
[7] | YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review [J]. Earth Science Frontiers, 2023, 30(5): 151-170. |
[8] | SUN Wenbo, LI Huan. Research progress on zircon from pegmatites and insights into rare-metal mineralization—a review [J]. Earth Science Frontiers, 2023, 30(5): 171-184. |
[9] | CHEN Lei, NIE Xiao, LIU Kai, PANG Xuyong, ZHANG Yingli. Mineralogical and chronological characteristics of the Huoyangou pegmatite Sn(Nb-Ta) deposit in Guanpo, eastern Qinling [J]. Earth Science Frontiers, 2023, 30(5): 40-58. |
[10] | XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes [J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[11] | HE Chencheng, CHEN Honghan, XIAO Xuewei, LIU Xiuyan, SU Ao. Differential shale gas generation in the Lower Cambrian Qiongzhusi stage in the Middle-Upper Yangtze region [J]. Earth Science Frontiers, 2023, 30(3): 44-65. |
[12] | ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance [J]. Earth Science Frontiers, 2023, 30(2): 163-182. |
[13] | WANG Lulin, LIU Xiaohong, ZHANG Zhiguang. Discovery of volcanic rocks in the Pingchau Formation in Tungpingchau, Hong Kong UNESCO Global Geopark: Zircon U-Pb geochronology, geochemistry and geological implications [J]. Earth Science Frontiers, 2023, 30(2): 239-258. |
[14] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[15] | ZHANG Liang, ZHANG Heng, GONG Chengqiang, DING Xiaozhong, ZHANG Chuanheng, LIU Yong, GAO Linzhi, LIU Yanxue. Geological characteristics and tectonic background of the Mesoproterozoic ophiolite mélange in central and southern Yunnan [J]. Earth Science Frontiers, 2022, 29(2): 180-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||