Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 106-114.DOI: 10.13745/j.esf.sf.2023.5.6
Previous Articles Next Articles
RAO Can(), WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu
Received:
2022-11-29
Revised:
2022-12-13
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites[J]. Earth Science Frontiers, 2023, 30(5): 106-114.
矿物种类 | 矿物名 | 晶体化学式 | 岩浆 ![]() |
---|---|---|---|
铌钽钨氧化物 | 铌铁矿 | FeNb2O6 | ![]() |
铌锰矿 | MnNb2O6 | ![]() | |
钽铁矿 | FeTa2O6 | ![]() | |
钽锰矿 | MnTa2O6 | ![]() | |
重钽铁矿 | FeTa2O6 | ![]() | |
铌钨矿物 | (Fe,Mn,Nb,W,Ta)2O4 | ![]() | |
黑钨矿 | FeWO4 | ![]() | |
白钨矿 | CaWO4 | ![]() | |
细晶石 | (Ca,Na)2(Ta,Nb)2O6(O,OH,F) | ![]() | |
铈矿物 | 独居石 | CePO4 | ![]() |
氟铈矿 | CeF3 | ![]() | |
氟碳铈矿 | CeCO3F | ![]() | |
直氟碳钙铈矿 | CaCe(CO3)2F | ![]() | |
铈易解石 | Ce(Ti,Nb)2O6 | ![]() | |
钇矿物 | 磷钇矿 | YPO4 | ![]() |
褐钇铌矿 | YNbO4 | ![]() | |
黑稀金矿 | (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)2O6 | ![]() | |
钇易解石 | Y(Ti,Nb)2O6 | ![]() | |
铍矿物 | 绿柱石 | Be3Al2(SiO3)6 | ![]() |
整柱石 | Ca2K(Be2Al)Si12O30(H2O) | ![]() | |
钛矿物 | 金红石 | TiO2 | ![]() |
钛铁矿 | FeTiO3 | ![]() | |
钍石-锆石 | 钍石 | ThSiO4 | ![]() |
锆石 | ZrSiO4 | ![]() |
Table 1 Rare minerals in NYF pegmatites and their crystallization stages
矿物种类 | 矿物名 | 晶体化学式 | 岩浆 ![]() |
---|---|---|---|
铌钽钨氧化物 | 铌铁矿 | FeNb2O6 | ![]() |
铌锰矿 | MnNb2O6 | ![]() | |
钽铁矿 | FeTa2O6 | ![]() | |
钽锰矿 | MnTa2O6 | ![]() | |
重钽铁矿 | FeTa2O6 | ![]() | |
铌钨矿物 | (Fe,Mn,Nb,W,Ta)2O4 | ![]() | |
黑钨矿 | FeWO4 | ![]() | |
白钨矿 | CaWO4 | ![]() | |
细晶石 | (Ca,Na)2(Ta,Nb)2O6(O,OH,F) | ![]() | |
铈矿物 | 独居石 | CePO4 | ![]() |
氟铈矿 | CeF3 | ![]() | |
氟碳铈矿 | CeCO3F | ![]() | |
直氟碳钙铈矿 | CaCe(CO3)2F | ![]() | |
铈易解石 | Ce(Ti,Nb)2O6 | ![]() | |
钇矿物 | 磷钇矿 | YPO4 | ![]() |
褐钇铌矿 | YNbO4 | ![]() | |
黑稀金矿 | (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)2O6 | ![]() | |
钇易解石 | Y(Ti,Nb)2O6 | ![]() | |
铍矿物 | 绿柱石 | Be3Al2(SiO3)6 | ![]() |
整柱石 | Ca2K(Be2Al)Si12O30(H2O) | ![]() | |
钛矿物 | 金红石 | TiO2 | ![]() |
钛铁矿 | FeTiO3 | ![]() | |
钍石-锆石 | 钍石 | ThSiO4 | ![]() |
锆石 | ZrSiO4 | ![]() |
[1] |
ČERNÝ P. Distribution, affiliation and derivation of rare-element granitic pegmatites in the Canadian Shield[J]. Geologische Rundschau, 1990, 79(2): 183-226.
DOI URL |
[2] |
ČERNÝ P. Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991, 51(1/2/3/4): 429-468.
DOI URL |
[3] | LONDON D. Geochemical features of peraluminous granites, pegmatites, and rhyolites as sources of lithophile metal deposits[C]//THOMPSON J F H. Magmas, fluids, and ore deposits. Mineral Association Canada Short Course, 1995, 23: 175-202. |
[4] |
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026.
DOI URL |
[5] | 袁忠信, 白鸽. 中国碱性侵入岩的空间分布及有关金属矿床[J]. 地质与勘探, 1997, 33(1): 42-48. |
[6] | 王德滋, 周新民. 中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M]. 北京: 科学出版社, 2002. |
[7] | 邢光福, 陈荣, 杨祝良, 等. 东南沿海晚白垩世火山岩浆活动特征及其构造背景[J]. 岩石学报, 2009, 25 (1): 77-91. |
[8] | LONDON D. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. Canadian Mineralogist, 1992, 30(3): 499-540. |
[9] | ČERNÝ P. Rare-element granitic pegmatites, part I: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canadian, 1991, 18: 49-67. |
[10] |
SIMMONS W B S, WEBBER K L. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438.
DOI URL |
[11] |
SMEDS S A. Zoning and fractionation trends of a peraluminous NYF granitic pegmatite field at Falun, south-central Sweden[J]. GFF, 1994, 116(3): 175-184.
DOI URL |
[12] |
FÖRSTER H J, TISCHENDORF G, RHEDE D, et al. Cs-rich lithium micas and Mn-rich lithian siderophyllite in miarolitic NYF pegmatites of the konigshain granite, Lausitz, Germany[J]. Neues Jahrbuch für Mineralogie - Abhandlungen, 2005, 182(1): 81-93.
DOI URL |
[13] |
PRŠEK J, MAJKA J, UHER P, et al. Niobium-tantalum minerals in the Skoddefjellet NYF granitic pegmatite, Svalbard Archipelago, Norway: primary versus secondary assemblage[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2010, 187(3): 235-248.
DOI URL |
[14] | COLOMBO F, SIMMONS W B, FALSTER A U, et al. Occurrence, crystal chemistry and alteration of thorite from the NYF-type miarolitic pegmatites of the El Portezuelo granite, Papachacra (Catamarca, NW Argentina)[C]// International symposium on granitic pegmatites. Buenos Aires: Asociation Geological Argentina, 2011: 65-67. |
[15] |
NOVAK M, SKODA R, FILIP J, et al. Compositional trends in tourmaline from intragranitic NYF pegmatites of the Trebic pluton, Czech Republic: an electron microprobe, Mossbauer and LA-ICP-MS study[J]. The Canadian Mineralogist, 2011, 49(1): 359-380.
DOI URL |
[16] |
MARTIN R F, DE VITO C, PEZZOTTA F. Why is amazonitic K-feldspar an earmark of NYF-type granitic pegmatites? Clues from hybrid pegmatites in Madagascar[J]. American Mineralogist, 2008, 93(2/3): 263-269.
DOI URL |
[17] |
ČOPJAKOVÁ R, ŠKODA R, GALIOVÁ M V, et al. Sc- and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF+LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic)[J]. American Mineralogist, 2015, 100(7): 1434-1451.
DOI URL |
[18] |
GOODENOUGH K M, SHAW R A, SMITH M, et al. Economic mineralization in pegmatites: comparing and contrasting NYF and LCT examples[J]. The Canadian Mineralogist, 2019, 57(5): 753-755.
DOI URL |
[19] | SIMMONS W B, WEBBER K L, FALSTER A U. NYF pegmatites of the South Platte district, Colorado[J]. The Canadian Mineralogist, 1999, 37(37): 836-838. |
[20] |
ČERNÝ P, BLEVIN P L, CUNEY M,et al. Granite-related ore deposits[J]. Economic Geology, 2005, 107(2): 383-384.
DOI URL |
[21] |
王吴梦雨, 饶灿, 董传万, 等. 浙江临安石室寺NYF型伟晶岩中稀有稀土金属的矿物学行为与成矿过程[J]. 高校地质学报, 2019, 25(6):914-931.
DOI |
[22] |
WILSON M R, FALLICK A E, HAMILTON P J, et al. Magma sources for some mid-Proterozoic granitoids in SE Sweden: geochemical and isotopic constraints[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1986, 108(1): 79-91.
DOI URL |
[23] | MARTIN R F. Metasomatic “ground preparation” and the origin of anorogenic granites[C]// Symposium on Precambrian granitoids. Helsinki: Geologian Tutkimuskeskus, 1989: 87. |
[24] | WHITE A J R. Source of granite magmas[J]. Geological Society of America Bulletin, 1979(11): 539. |
[25] |
COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200.
DOI URL |
[26] |
WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.
DOI URL |
[27] | BUCK H M, ČERNÝ P, HAWTHORNE F C. The Shatford Lake pegmatite group, southeastern Manitoba: NYF or not? In the Eugene E. Foord Memorial Symposium on NYF-type Pegmatites (Denver)[J]. The Canadian Mineralogist, 1999, 37: 830-831. |
[28] | ANDERSSON U B, WIKSTRÖM A. Mafic-felsic plutonic interaction in the Transscandinavian Igneous Belt, southern Sweden[C]// Precambrian granitoids symposium. Helsinki: Geologian Tutkimuskeskus, 1989: 7-8. |
[29] |
JACKSON N J, WALSH J N, PEGRAM E. Geology, geochemistry and petrogenesis of late Precambrian granitoids in the central hijaz region of the Arabian shield[J]. Contributions to Mineralogy and Petrology, 1984, 87(3): 205-219.
DOI URL |
[30] |
ÖHLANDER B, ZUBER J. Genesis of the Fellingsbro-type granites: evidence from gravity measurements and geochemistry[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1988, 110(1): 39-54.
DOI URL |
[31] | MARTIN R F. Petrogenetic considerations: A-type granites, NYF granitic pegmatites, and beyond In the Eugene E. Foord Memorial Symposium on NYF-type Pegmatites (Denver)[J]. The Canadian Mineralogist, 1999, 37: 804-805. |
[32] | BURNHAM C W, NEKVASIL H. Equilibrium properties of granite pegmatite magmas[J]. American Mineralogist, 1986, 71(3): 239-263. |
[33] | JAHNS R H. Internal evolution of pegmatite bodies[M]//CERNY P. Granitic pegmatites in science and industry. Ottawa: Mineralogical Association of Canada, 1982: 293-327. |
[34] |
JAHNS R H, BURNHAM C W. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8): 843-864.
DOI URL |
[35] |
LONDON D, HERVIG R L, MORGAN G B VI. Melt-vapor solubilities and element partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99: 360-373.
DOI URL |
[36] |
LONDON D, MORGAN G B, HERVIG R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1): 1-17.
DOI URL |
[37] | LONDON D. Internal differentiation of rare-element pegmatites: a synthesis of recent research[M]// STEINH J, HANNAHJ L. Ore-bearing granite systems:petrogenesis and mineralizing processes. Boulder: Geological Society of America, 1990: 35-50. |
[38] |
ALFONSO ABELLA P, MELGAREJO I DRAPER J C, CORBELLA I CORDOMI M. Nb-Ta-minerals from the cap de creus pegmatite field, eastern Pyrenees: distribution and geochemical trends[J]. Mineralogy and Petrology, 1995, 55(1/2/3): 53-69.
DOI URL |
[39] | 张爱铖, 王汝成, 胡欢, 等. 阿尔泰可可托海3号伟晶岩脉中铌铁矿族矿物环带构造及其岩石学意义[J]. 地质学报, 2004, 78(2): 181-189. |
[40] |
MANNING D A C. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb[J]. Contributions to Mineralogy and Petrology, 1981, 76(2): 206-215.
DOI URL |
[41] | 熊小林, 饶冰, 朱金初, 等. 黑鳞云母花岗质岩浆的结晶分异及钠长花岗质岩浆的形成[J]. 岩石学报, 2002, 18(2):223-230. |
[42] |
JOHAN Z, JOHAN V. Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution[J]. Mineralogy and Petrology, 2005, 83(1/2): 113-150.
DOI URL |
[43] |
SELWAY J B. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/2/3/4): 1-30.
DOI URL |
[44] | 赵劲松, 赵斌, 饶冰. Ta, Nb, W在钠长花岗岩岩浆结晶分异过程中于各相间分配行为的实验研究[J]. 科学通报, 1996, 41(15): 1413-1417. |
[45] |
BORODULIN G P, CHEVYCHELOV V Y, ZARAYSKY G P. Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts[J]. Doklady Earth Sciences, 2009, 427(1): 868-873.
DOI URL |
[46] |
LONDON D. Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 403-420.
DOI URL |
[47] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8): 871-880. |
[48] |
KEPPLER H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy and Petrology, 1993, 114(4): 479-488.
DOI URL |
[49] | 赵友东, 吴俊奇, 凌洪飞, 等. 赣南富城岩体黑云母及其蚀变产物绿泥石的矿物化学研究: 对铀成矿的指示意义[J]. 矿床地质, 2016, 35(1): 153-168. |
[50] |
STYLES M T, YOUNG B R. Fluocerite and its alteration products from the Afu Hills, Nigeria[J]. Mineralogical Magazine, 1983, 47(342): 41-46.
DOI URL |
[51] |
WOOD S A, RICKETTS A. Allanite-(ce) from the Eocene Casto granite, Idaho: response to hydrothermal alteration[J]. The Canadian Mineralogist, 2000, 38(1): 81-100.
DOI URL |
[52] | ALEKSEEV V I, GEMBITSKAYA I M, MARIN Y B. Wolframoixiolite and niobian ferberite from zinnwaldite granitic rocks of the Chukchi Peninsula[J]. Geology of Ore Deposits, 2011, 53(7): 639-648. |
BREITER K, VAŇKOVÁ M, GALIOVÁ M V, et al. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS[J]. Mineralogical Magazine, 2017, 81(1): 15-33. | |
[54] |
HUANG F F, WANG R C, XIE L, et al. Differentiated rare-element mineralization in an ongonite-topazite composite dike at the Xianghualing tin district, southern China: an electron-microprobe study on the evolution from niobium-tantalum-oxides to cassiterite[J]. Ore Geology Reviews, 2015, 65: 761-778.
DOI URL |
[55] |
NOVÁK M, JOHAN Z, KODA R, et al. Primary oxide minerals in the system WO3-Nb2O5-TiO2-Fe2O3-FeO and their breakdown products from the pegmatite No. 3 at Dolni Bory-Hate, Czech Republic[J]. European Journal of Mineralogy, 2008, 20(4): 487-499.
DOI URL |
[56] | 华仁民, 陈培荣, 张文兰, 等. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 2005, 24(2):99-107. |
[57] |
O’NEILL H St C, BERRY A J, EGGINS S M. The solubility and oxidation state of tungsten in silicate melts: implications for the comparative chemistry of W and Mo in planetary differentiation processes[J]. Chemical Geology, 2008, 255(3/4): 346-359.
DOI URL |
[58] |
HIGGINS N C. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions[J]. Canadian Journal of Earth Sciences, 1980, 17(7): 823-830.
DOI URL |
[59] |
PEZZOTTA F. Scandium silicates from the Baveno and Cuasso al Monte NYF-granites, southern Alps (Italy): mineralogy and genetic inferences[J]. American Mineralogist, 2005, 90(8/9): 1442-1452.
DOI URL |
[60] |
NOVÁK M, CÍCHA J, ČOPJAKOVÁ R, et al. Milarite-group minerals from the NYF pegmatite Velká skála, Písek district, Czech Republic: sole carriers of Be from the magmatic to hydrothermal stage[J]. European Journal of Mineralogy, 2017, 29(4): 755-766.
DOI URL |
[61] |
ŠKODA R, NOVÁK M, ČOPJAKOVÁ R, et al. Bismuth minerals from the intragranitic La Elsa NYF pegmatite, Potrerillos granite, Argentina: monitors of fluid evolution from magmatic to hydrothermal stage[J]. The Canadian Mineralogist, 2020, 58(6): 717-732.
DOI URL |
[62] | 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566. |
[63] | 刘琰, 陈超, 舒小超, 等. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式: 以大陆槽REE矿床为例[J]. 岩石学报, 2017, 33(7):1978-2000. |
[64] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. |
[1] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
[2] | LIU Ye, HAN Yubo, ZHU Wenrui. Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies [J]. Earth Science Frontiers, 2024, 31(4): 95-111. |
[3] | WAN Chengzhou, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral image recognition based on progressive deep learning across different granularity levels [J]. Earth Science Frontiers, 2024, 31(4): 112-118. |
[4] | WANG Lin, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral identification based on data augmentation and ensemble learning [J]. Earth Science Frontiers, 2024, 31(4): 87-94. |
[5] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
[6] | LI Fanglan, LIU Xuelong, ZHOU Yunman, ZHAO Chengfeng, LI Shoukui, WANG Jiyuan, LU Bode, LI Qingrui, ZHANG Weiwen, WANG Hai, CAO Zhenliang, ZHOU Jiehu. Geochronology and geochemical characteristics of the Douya iron-copper polymetallic deposit in the Baoshan block, western Yunnan [J]. Earth Science Frontiers, 2024, 31(3): 113-132. |
[7] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[8] | CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase [J]. Earth Science Frontiers, 2024, 31(3): 199-217. |
[9] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
[10] | WU Kunyan, LIU Biao, WU Qianhong, LI Huan. Oxygen isotope composition of scheelite in magmatic-hydrothermal W deposits: Tracing fluid source and evolution process [J]. Earth Science Frontiers, 2024, 31(2): 299-312. |
[11] | DONG Hailiang, ZENG Qiang, LIU Deng, SHENG Yizhi, LIU Xiaolei, LIU Yuan, HU Jinglong, LI Yang, XIA Qingyin, LI Runjie, HU Dafu, ZHANG Donglei, ZHANG Wenhui, GUO Dongyi, ZHANG Xiaowen. Interactions between clay minerals and microbes: Mechanisms and applications in environmental remediation [J]. Earth Science Frontiers, 2024, 31(1): 467-485. |
[12] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[13] | NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China [J]. Earth Science Frontiers, 2023, 30(5): 115-133. |
[14] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[15] | YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review [J]. Earth Science Frontiers, 2023, 30(5): 151-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||