Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 93-105.DOI: 10.13745/j.esf.sf.2023.5.3
Previous Articles Next Articles
HONG Tao1,2(), ZHAI Mingguo3,4,5,*(
), WANG Yuejun1,2, LIU Xingcheng5,6, XU Xingwang3,4,5, GAO Jun3,4,5, HU Mingxi1,2, MA Jing1,2
Received:
2022-12-15
Revised:
2023-01-31
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
HONG Tao, ZHAI Mingguo, WANG Yuejun, LIU Xingcheng, XU Xingwang, GAO Jun, HU Mingxi, MA Jing. Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study[J]. Earth Science Frontiers, 2023, 30(5): 93-105.
产地 | 主矿物 | 子晶矿物组合 | Be和Li2O的质量分数/10-6 | 文献来源 |
---|---|---|---|---|
Beauvoir, France | 花岗岩全岩 | 303±58(Be) | Charoy[ | |
实验室合成 | 无堇青石花岗岩 | 130(Be) | London和Evensen[ | |
Ehrenfriedersdorf, Germany | 熔体包裹体 | 9 600(Be) | Webster等[ | |
Zinnwald, Germany | 熔体包裹体 | 670(Be) | Webster等[ | |
Mt. Malosa | 伟晶状石英中 熔体包裹体 | 570±150(Be) | Zajacz等[ | |
Ehrenfriedersdorf, Erzgebirge, Germany | 伟晶状石英中 熔体包裹体 | 锂磷铝石+磷铍钙石+ 磷酸钠铍石+硼铍石 | 1 450(Be) | Thomas等[ |
富Ta(Ta质量分数为2 000×10-6~ 4 000×10-6)细晶岩 | 实验熔体 | 10 000(Li2O ) | Linnen[ |
Table 1 Summary of published data on granites and melt inclusions in pegmatite deposits
产地 | 主矿物 | 子晶矿物组合 | Be和Li2O的质量分数/10-6 | 文献来源 |
---|---|---|---|---|
Beauvoir, France | 花岗岩全岩 | 303±58(Be) | Charoy[ | |
实验室合成 | 无堇青石花岗岩 | 130(Be) | London和Evensen[ | |
Ehrenfriedersdorf, Germany | 熔体包裹体 | 9 600(Be) | Webster等[ | |
Zinnwald, Germany | 熔体包裹体 | 670(Be) | Webster等[ | |
Mt. Malosa | 伟晶状石英中 熔体包裹体 | 570±150(Be) | Zajacz等[ | |
Ehrenfriedersdorf, Erzgebirge, Germany | 伟晶状石英中 熔体包裹体 | 锂磷铝石+磷铍钙石+ 磷酸钠铍石+硼铍石 | 1 450(Be) | Thomas等[ |
富Ta(Ta质量分数为2 000×10-6~ 4 000×10-6)细晶岩 | 实验熔体 | 10 000(Li2O ) | Linnen[ |
铍质量的变化 | 锂质量的变化 | |||||
---|---|---|---|---|---|---|
控制沉淀时 的pH值 | 制备K3BeF4溶液,换算出其中Be质量。 m1(Be)/mg | 沉淀物以Be(OH)3为主,换算出其中Be质量。 m2(Be)/mg | 控制沉淀时 的pH值 | 制备LiF溶液,换算 出其中Li质量。 m1(Li)/mg | 沉淀物以Li2CO3为主,换算出其中Li质量。 m2(Li)/mg | |
7 | 69 | 0 | 7 | 80 | 0 | |
8 | 69 | 2.5 | 8 | 80 | 1.22 | |
9 | 69 | 3.95 | 9 | 80 | 2.35 | |
10 | 69 | 30.23 | 10 | 80 | 2.47 | |
12 | 69 | 63.56 | 12 | 80 | 2.53 |
Table 2 Variation of Li/Be precipitation under different experimental conditions
铍质量的变化 | 锂质量的变化 | |||||
---|---|---|---|---|---|---|
控制沉淀时 的pH值 | 制备K3BeF4溶液,换算出其中Be质量。 m1(Be)/mg | 沉淀物以Be(OH)3为主,换算出其中Be质量。 m2(Be)/mg | 控制沉淀时 的pH值 | 制备LiF溶液,换算 出其中Li质量。 m1(Li)/mg | 沉淀物以Li2CO3为主,换算出其中Li质量。 m2(Li)/mg | |
7 | 69 | 0 | 7 | 80 | 0 | |
8 | 69 | 2.5 | 8 | 80 | 1.22 | |
9 | 69 | 3.95 | 9 | 80 | 2.35 | |
10 | 69 | 30.23 | 10 | 80 | 2.47 | |
12 | 69 | 63.56 | 12 | 80 | 2.53 |
铍质量的变化 | 锂质量的变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
制备K3BeF4溶液,换算出其中Be质量。 m1(Be)/mg | 加入不同量的CaCl2,换算出其中Ca质量。 m1(Ca)/mg | 沉淀时的pH值 | 从K3BeF4及不同量的CaCl2混合溶液中沉淀物以Be(OH)2为主,换算出其中Be质量。 m2(Be)/mg | 从上列混合溶液中,沉淀出CaF2,换算出其中Ca质量。 m2(Ca)/mg | 制备1 mol (锂辉石) LiAl(SiO3)2/ Li2O·Al2O3·4SiO2,换算出其中Li 质量。 m1(Li)/mg | 加入不同量的CaCO3,换算出其中Ca质量。 m3(Ca)/mg | 沉淀时的pH值 | 从锂辉石及不同量的CaCO3混合溶液中沉淀物以铝酸锂(LiAlO2) 和硅酸钙为主,换算出其中Li 质量。 m2(Li)/mg | 从上列混合溶液中,沉淀出硅酸钙,换算出其中Ca质量。 m4(Ca)/mg | ||||||
69 | 35.7 | 7 | 2.7 | 31.23 | 20.8 | 32 | 7 | 11.1 | 30.2 | ||||||
69 | 71.4 | 7 | 4.68 | 64.01 | 20.8 | 73.2 | 7 | 13.5 | 60.1 | ||||||
69 | 107.1 | 7 | 7.92 | 102.24 | 20.8 | 103.2 | 7 | 28.2 | 100.2 | ||||||
69 | 142.8 | 7 | 9.9 | 136.02 | 20.8 | 144.2 | 7 | 37.9 | 116.2 | ||||||
69 | 178 | 7 | 14.78 | 170.8 | 20.8 | 166.5 | 7 | 44.3 | 144.2 |
Table 3 Li/Be precipitation with the addition of calcium under constant pH
铍质量的变化 | 锂质量的变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
制备K3BeF4溶液,换算出其中Be质量。 m1(Be)/mg | 加入不同量的CaCl2,换算出其中Ca质量。 m1(Ca)/mg | 沉淀时的pH值 | 从K3BeF4及不同量的CaCl2混合溶液中沉淀物以Be(OH)2为主,换算出其中Be质量。 m2(Be)/mg | 从上列混合溶液中,沉淀出CaF2,换算出其中Ca质量。 m2(Ca)/mg | 制备1 mol (锂辉石) LiAl(SiO3)2/ Li2O·Al2O3·4SiO2,换算出其中Li 质量。 m1(Li)/mg | 加入不同量的CaCO3,换算出其中Ca质量。 m3(Ca)/mg | 沉淀时的pH值 | 从锂辉石及不同量的CaCO3混合溶液中沉淀物以铝酸锂(LiAlO2) 和硅酸钙为主,换算出其中Li 质量。 m2(Li)/mg | 从上列混合溶液中,沉淀出硅酸钙,换算出其中Ca质量。 m4(Ca)/mg | ||||||
69 | 35.7 | 7 | 2.7 | 31.23 | 20.8 | 32 | 7 | 11.1 | 30.2 | ||||||
69 | 71.4 | 7 | 4.68 | 64.01 | 20.8 | 73.2 | 7 | 13.5 | 60.1 | ||||||
69 | 107.1 | 7 | 7.92 | 102.24 | 20.8 | 103.2 | 7 | 28.2 | 100.2 | ||||||
69 | 142.8 | 7 | 9.9 | 136.02 | 20.8 | 144.2 | 7 | 37.9 | 116.2 | ||||||
69 | 178 | 7 | 14.78 | 170.8 | 20.8 | 166.5 | 7 | 44.3 | 144.2 |
铍质量的变化 | 锂质量的变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
制备K3BeF4溶液,换算出其中Be质量。 m1(Be)/mg | 加入不同量的AlCl3,换算出其中Al质量。 m1(Al)/mg | 沉淀时的pH值 | 从K3BeF4及不同量的AlCl3混合溶液中沉淀物以Be(OH)2为主,换算出其中Be质量。 m2(Be)/mg | 从上列混合溶液中,沉淀出Al(OH)3,换算出其中Al质量。 m2(Al)/mg | 制备1 mol (锂辉石) LiAl(SiO3)2/ Li2O·Al2O3·4SiO2,换算出其中Li 质量。 m1(Li)/mg | 加入不同量的AlCl3,换算出其中Al质量。 m3(Al)/mg | 沉淀时的pH值(同量的碳酸 钙) | 从锂辉石及不同量的CaCO3混合溶液中沉淀物以铝酸锂(LiAlO2) 和硅酸钙为主, 换算出其中Li 质量。 m2(Li)/mg | 从上列混合溶液中,沉淀出铝酸锂(LiAlO2),换算出其中Al质量。 m4(Al)/mg | ||||||
69 | 33.1 | 7 | 2 | 9.4 | 20.8 | 40.1 | 7 | 12.3 | 11.1 | ||||||
69 | 66.2 | 7 | 3.1 | 12 | 20.8 | 50.2 | 7 | 9.5 | 12.3 | ||||||
69 | 99.3 | 7 | — | — | 20.8 | 70.3 | 7 | 8.6 | 9.4 | ||||||
69 | 132.4 | 7 | 6.05 | 39.5 | 20.8 | 80.6 | 7 | 6.37 | 19.5 | ||||||
69 | 165.5 | 7 | 13.55 | 85.53 | 20.8 | 133.2 | 7 | 3.22 | 25.3 |
Table 4 Li/Be precipitation with the addition of aluminum under constant pH
铍质量的变化 | 锂质量的变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
制备K3BeF4溶液,换算出其中Be质量。 m1(Be)/mg | 加入不同量的AlCl3,换算出其中Al质量。 m1(Al)/mg | 沉淀时的pH值 | 从K3BeF4及不同量的AlCl3混合溶液中沉淀物以Be(OH)2为主,换算出其中Be质量。 m2(Be)/mg | 从上列混合溶液中,沉淀出Al(OH)3,换算出其中Al质量。 m2(Al)/mg | 制备1 mol (锂辉石) LiAl(SiO3)2/ Li2O·Al2O3·4SiO2,换算出其中Li 质量。 m1(Li)/mg | 加入不同量的AlCl3,换算出其中Al质量。 m3(Al)/mg | 沉淀时的pH值(同量的碳酸 钙) | 从锂辉石及不同量的CaCO3混合溶液中沉淀物以铝酸锂(LiAlO2) 和硅酸钙为主, 换算出其中Li 质量。 m2(Li)/mg | 从上列混合溶液中,沉淀出铝酸锂(LiAlO2),换算出其中Al质量。 m4(Al)/mg | ||||||
69 | 33.1 | 7 | 2 | 9.4 | 20.8 | 40.1 | 7 | 12.3 | 11.1 | ||||||
69 | 66.2 | 7 | 3.1 | 12 | 20.8 | 50.2 | 7 | 9.5 | 12.3 | ||||||
69 | 99.3 | 7 | — | — | 20.8 | 70.3 | 7 | 8.6 | 9.4 | ||||||
69 | 132.4 | 7 | 6.05 | 39.5 | 20.8 | 80.6 | 7 | 6.37 | 19.5 | ||||||
69 | 165.5 | 7 | 13.55 | 85.53 | 20.8 | 133.2 | 7 | 3.22 | 25.3 |
[1] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. |
[2] | 侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651-3652. |
[3] | 李娜, 张振芳, 王靓靓, 等. 战略性新兴产业若干关键矿产开发应用与展望[M]. 北京: 地质出版社, 2020: 1-185. |
[4] | ČERNÝ P. Rare-element granitic pegmatites, part I: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canada, 1991, 18(2): 49-67. |
[5] |
BENSON T R, COBLE M A, RYTUBA J J, et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature Communications, 2017, 8: 270.
DOI PMID |
[6] |
LINNEN R L, VAN LICHTERVELDE M, CERNY P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280.
DOI URL |
[7] | 王登红, 王成辉, 孙艳, 等. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 2017, 4(5): 1-8. |
[8] | 许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106. |
[9] | 郑范博, 王国光, 倪培. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 2021, 27(4): 596-613. |
[10] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. |
[11] | 蒋少涌, 王春龙, 张璐, 等. 伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展[J]. 地质学报, 2021, 95(10): 3017-3038. |
[12] |
MÜLLER A, KEYSER W, SIMMONS W B, et al. Quartz chemistry of granitic pegmatites: implications for classification, genesis and exploration[J]. Chemical Geology, 2021, 584: 120507.
DOI URL |
[13] |
WEBSTER J D, THOMAS R, RHEDE D, et al. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2589-2604.
DOI URL |
[14] |
CERNY P, LONDON D, NOVAK M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4): 289-294.
DOI URL |
[15] |
LONDON D, MORGAN G B. The pegmatite puzzle[J]. Elements, 2012, 8(4): 263-268.
DOI URL |
[16] | 李杭, 洪涛, 杨智全, 等. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究: 以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 2020, 36(9): 2869-2892. |
[17] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
DOI URL |
[18] |
HULSBOSCH N, BOIRON M C, THOMAS R, et al. Evaluation of the petrogenetic significance of melt inclusions in pegmatitic schorl-dravite from graphic tourmaline-quartz assemblages: application of LA-ICP-QMS analyses and volume ratio calculations[J]. Geochimica et Cosmochimica Acta, 2019, 244: 308-335.
DOI URL |
[19] |
MCCAULEY A, BRADLEY D C. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 2014, 52(2): 183-190.
DOI URL |
[20] | 王汝成, 邬斌, 谢磊, 等. 稀有金属成矿全球时空分布与大陆演化[J]. 地质学报, 2021, 95(1): 182-193. |
[21] | 舒良树, 朱文斌, 许志琴. 华南花岗岩型锂矿地质背景与成矿条件[J]. 地质学报, 2021, 95(10): 3099-3114. |
[22] |
CUNEY M, MARIGNAC C, WEISBROD A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J]. Economic Geology, 1992, 87(7): 1766-1794.
DOI URL |
[23] | 熊欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2): 241-253. |
[24] |
THOMAS R, WEBSTER J D, HEINRICH W. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure[J]. Contributions to Mineralogy and Petrology, 2000, 139(4): 394-401.
DOI URL |
[25] |
CAO M J, ZHOU Q F, QIN K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6): 985-1005.
DOI URL |
[26] |
KAETER D, BARROS R, MENUGE J F, et al. The magmatic-hydrothermal transition in rare-element pegmatites from Southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimica et Cosmochimica Acta, 2018, 240: 98-130.
DOI URL |
[27] | 陈欢, 冯梦, 康志强, 等. 桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义[J]. 地球科学, 2020, 45(6): 2059-2076. |
[28] | 王汝成, 谢磊, 诸泽颖, 等. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2019, 35(1): 69-75. |
[29] |
BREITER K M. Evolution of rare-metal granitic magmas documented by quartz chemistry[J]. European Journal of Mineralogy, 2009, 21(2): 335-346.
DOI URL |
[30] |
OYARZÁBAL J, GALLISKI M Ã, PERINO E. Geochemistry of K-feldspar and muscovite in rare-element pegmatites and granites from the totoral pegmatite field, San Luis, Argentina[J]. Resource Geology, 2009, 59(4): 315-329.
DOI URL |
[31] | 徐兴旺, 洪涛, 李杭, 等. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 2020, 36(12): 3572-3592. |
[32] |
CHAROY B. Beryllium speciation in evolved granitic magmas: phosphates versus silicates[J]. European Journal of Mineralogy, 1999, 11(1): 135-148.
DOI URL |
[33] | FRANZ G, MORTEANI G. The system BeO-Al2O3-SiO2-H2O: hydrothermal investigation of the stability of beryl and euclase in the range from 1 to 6 kb and 400 to 800 ℃[J]. Neues Jahrbuch für Mineralogie Abhandlungen, 1981, 140(3): 273-299. |
[34] |
EVENSEN J M, LONDON D, WENDLANDT R F. Solubility and stability of beryl in granitic melts[J]. American Mineralogist, 1999, 84(5/6): 733-745.
DOI URL |
[35] |
LONDON D, EVENSEN J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 445-486.
DOI URL |
[36] |
Ryan J G, Langmuir C H. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1727-1741.
DOI URL |
[37] |
BRENAN J M, NERODA E, LUNDSTROM C C, et al. Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments[J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2129-2141.
DOI URL |
[38] |
BARTELS A, BEHRENS H, HOLTZ F, et al. The effect of lithium on the viscosity of pegmatite forming liquids[J]. Chemical Geology, 2015, 410: 1-11.
DOI URL |
[39] |
MULJA T, WILLIAMS-JONES A E. The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada[J]. Chemical Geology, 2018, 493: 281-297.
DOI URL |
[40] |
LONDON D. The origin of primary textures in granitic pegmatites[J]. The Canadian Mineralogist, 2009, 47(4): 697-724.
DOI URL |
[41] |
THOMAS R, WEBSTER J D, DAVIDSON P. Be-daughter minerals in fluid and melt inclusions: implications for the enrichment of Be in granite-pegmatite systems[J]. Contributions to Mineralogy and Petrology, 2011, 161(3): 483-495.
DOI URL |
[42] |
MANETA V, BAKER D R, MINARIK W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1): 1-16.
DOI URL |
[43] | WEBSTER J, THOMAS R, FÖRSTER H J, et al. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany[J]. Mineralium Deposita, 2004, 39(4): 452-472. |
[44] |
ZAJACZ Z, HALTER W E, PETTKE T, et al. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197.
DOI URL |
[45] | 丁欣, 李建康. 新疆阿斯喀尔特铍矿床的流体和熔体包裹体特征成矿机制研究[J]. 矿物学报, 2015, 35(增刊1): 573-574. |
[46] | LI J K, CHOU I M. Homogenization experiments of crystal-rich inclusions in spodumene from jiajika lithium deposit, China, under elevated external pressures in a hydrothermal diamond-anvil cell[J]. Geofluids, 2017, 2017: 1-12. |
[47] |
ICENHOWER J, LONDON D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O)[J]. American Mineralogist, 1995, 80(11/12): 1229-1251.
DOI URL |
[48] |
ACOSTA-VIGIL A, BUICK I, CESARE B, et al. The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: a study of partially melted metapelitic enclaves[J]. Journal of Petrology, 2012, 53(7): 1319-1356.
DOI URL |
[49] |
LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F; constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7): 1013-1025.
DOI URL |
[50] |
LONDON D, MORGAN G B. Experimental crystallization of the macusani obsidian, with applications to lithium-rich granitic pegmatites[J]. Journal of Petrology, 2017, 58(5): 1005-1030.
DOI URL |
[51] | 徐兴旺, 翟明国, 洪涛, 等. 大陆地壳锂铍迁移-循环过程与富集-成矿机制[J]. 岩石学报, 2023, 39(3): 639-658. |
[52] |
BADANINA E V, VEKSLER I V, THOMAS R, et al. Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia)[J]. Chemical Geology, 2004, 210(1/2/3/4): 113-133.
DOI URL |
[53] |
THOMAS R, DAVIDSON P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state: consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 2016, 72: 1088-1101.
DOI URL |
[54] | 赵博, 张德会, 张荣臻, 等. 富F熔体-溶液流体体系的地球化学性状及成矿效应研究进展[J]. 地质科学, 2015, 50(1): 222-240. |
[55] |
WOOD S A. Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300℃ at saturated vapor pressure: application to bertrandite/phenakite deposits[J]. Ore Geology Reviews, 1992, 7(4): 249-278.
DOI URL |
[56] |
MIGDISOV A A, WILLIAMS-JONES A E, WAGNER T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 ℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(23): 7087-7109.
DOI URL |
[57] | CARROLL M R, WEBSTER J D. Chapter 7. solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas[M]//Volatiles in magmas. Berlin: De Gruyter, 1994: 231-280. |
[58] |
KEPPLER H. Partitioning of phosphorus between melt and fluid in the system haplogranite-H2O-P2O5[J]. Chemical Geology, 1994, 117(1/2/3/4): 345-353.
DOI URL |
[59] | 马绍良. LiAlO2 添加对Na3AlF6Al2O3熔体初晶温度, Al2O3溶解度的影响[C]// 中国科协. 第十五届中国科协年会第15分会场:全国铝冶金技术研讨会论文集. 贵阳: 工程科技Ⅰ辑, 2013: 340-346. |
[60] | 贾晓林, 郭晓伟, 封鉴秋, 等. 溶胶-凝胶法制备Li-β-Al2O3纳米粉体[J]. 硅酸盐通报, 2008, 27(1): 38-41. |
[61] | 孙仁安, 刘永东, 王长生. SiOM(M=Li, Be, B, Na, Mg, Al)分子结构的DFT研究[J]. 高等学校化学学报, 2000, 21(12): 1870-1874. |
[62] |
AHRLAND S, CHATT J, DAVIES N R. The relative affinities of ligand atoms for acceptor molecules and ions[J]. Quarterly Reviews, Chemical Society, 1958, 12(3): 265-276.
DOI URL |
[63] |
BAES J C F, MESMER R E. Thermodynamics of cation hydrolysis[J]. American Journal of Science, 1981, 281(7): 935-962.
DOI URL |
[64] | 王玉荣. 高温高压下络合物研究的地球化学意义与实验方法[J]. 科学通报, 1978, 11: 682-686. |
[65] | 何俊杰, 丁兴, 王玉荣, 等. 沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义[J]. 岩石学报, 2015, 31(7): 1870-1878. |
[66] | 熊小林, 侯通, 王小林. 实验矿床学的发展现状和前景展望[J]. 地球科学, 2022, 47(8): 2701-2713. |
[67] | 朱笑青, 王中刚. 纳米粒子-胶体溶液-吸附作用: 对某些金属矿床成因的探讨[J]. 中国地质, 2002, 29(1): 82-85. |
[68] | 马生凤, 温宏利, 李冰, 等. 微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J]. 岩矿测试, 2016, 35(3): 271-275. |
[69] |
FEDOSEYEV A D. Synthesis of chrysoberyl and investigation of its suitability as a refractory[J]. Refractories, 1961, 2(5): 230-235.
DOI URL |
[70] |
DAILEY S R, CHRISTIANSEN E H, DORAIS M J, et al. Origin of the fluorine- and beryllium-rich rhyolites of the spor mountain formation, western Utah[J]. American Mineralogist, 2018, 103(8): 1228-1252.
DOI URL |
[71] |
LONDON D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1/2/3/4): 281-303.
DOI URL |
[72] | 司幼东, 黄舜华. 铍矿化交代作用的地球化学实验研究[J]. 地质科学, 1963, 4(4): 169-176. |
[73] | 何畅通, 秦克章, 李金祥, 等. 喜马拉雅东段错那洞钨-锡-铍矿床中铍的赋存状态及成因机制初探[J]. 岩石学报, 2020, 36(12): 3593-3606. |
[74] | CHRISTIANSEN E H, BIKUN J, SHERIDAN M, et al. Geochemical evolution of topaz rhyolites from the Thomas Range and Spor Mountain, Utah[J]. American Mineralogist, 1984, 69(3/4), 223-236. |
[75] |
SOUFI M. Origin and physical-chemical control of topaz crystallization in felsic igneous rocks: contrasted effect of temperature on its OH-F substitution[J]. Earth-Science Reviews, 2021, 213: 103467.
DOI URL |
[76] | 衣龙升, 范宏瑞, 翟明国, 等. 新疆白杨河铍铀矿床萤石Sm-Nd和沥青铀矿U-Pb年代学及其地质意义[J]. 岩石学报, 2016, 32(7): 2099-2110. |
[77] |
KUNZ B E, WARREN C J, JENNER F E, et al. Critical metal enrichment in crustal melts: the role of metamorphic mica[J]. Geology, 2022, 50(11): 1219-1223.
DOI URL |
[78] |
WEBSTER J D, MANDEVILLE C W. Fluid immiscibility in volcanic environments[J]. Reviews in Mineralogy and Geochemistry, 2007, 65(1): 313-362.
DOI URL |
[79] |
唐勇, 覃山县, 赵景宇, 等. 稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约[J]. 地学前缘, 2022, 29(1): 81-92.
DOI |
[80] |
CANDELA P A. A review of shallow, ore-related granites: textures, volatiles, and ore metals[J]. Journal of Petrology, 1997, 38(12): 1619-1633.
DOI URL |
[81] |
HARRIS A C, KAMENETSKY V S, WHITE N C, et al. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina[J]. Resource Geology, 2004, 54(3): 341-356.
DOI URL |
[82] |
ZHANG H J, TIAN S H, WANG D H, et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 2021, 134: 104139.
DOI URL |
[83] |
JAHNS R H, BURNHAM C W. Experimental studies of pegmatite genesis: 1, a model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8): 843-864.
DOI URL |
[84] |
SIMMONS W B, PEZZOTTA F, SHIGLEY J E, et al. Granitic pegmatites as sources of colored gemstones[J]. Elements, 2012, 8(4): 281-287.
DOI URL |
[85] | LENTZ D, FOWLER A. A dynamic model for quartz-feldspar graphic intergrowths from granitic pegmatites in the southwestern Grenville Province[J]. The Canadian Mineralogist, 1992, 30(3), 571-585. |
[86] | ČERNÝ P. Rare-element granitic pegmatites, part II: regional to global environments and petrogenesis[J]. Geoscience Canada, 1991, 18(2), 68-81. |
[87] | TAYLOR R P, STRONG D F. Recent advances in the geology of granite-related mineral deposits[C]. Montreal: Canadian Institute of Mining and Metallurgy, 1988, S( 39): 50-71. |
[88] | 张玲, 梁磊. 伟晶岩与细晶岩的成因: 以广西栗木稀有金属花岗岩地区为例[J]. 桂林理工大学学报, 2018, 38(2): 175-188. |
[89] | 付小方, 黄韬, 邹付戈, 等. 甲基卡式锂矿田控矿作用与深部找矿方向[J]. 地质学报, 2021, 95(3): 791-808. |
[90] | 朱金初, 李人科, 周凤英, 等. 广西栗木水溪庙不对称层状伟晶岩-细晶岩岩脉的成因讨论[J]. 地球化学, 1996, 25(1): 1-9. |
[1] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
[2] | NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China [J]. Earth Science Frontiers, 2023, 30(5): 115-133. |
[3] | DU Baisong, ZHU Guangyou, LIU Shufei, WANG Yehan, YU Bingsong, XU Kexin. Key factors and mechanisms affecting calcite growth and dissolution-a critical review [J]. Earth Science Frontiers, 2023, 30(4): 335-351. |
[4] | XIAO Xuewei, CHEN Honghan, LIU Xiuyan, PENG Zhongqin, LI Peijun, WANG Baozhong. Fluid inclusion evidence on the shale gas formation process in the Lower Cambrian Niutitang Formation in Jishou slope zone, western Hunan Province—a case study of well XJD 1 [J]. Earth Science Frontiers, 2023, 30(3): 181-194. |
[5] | SHEN Junfeng, YAN Guoying, ZHANG Mengmeng, WANG Zhaojing, XU Kexin, MENG Wenxiang. REE enrichment process in the Bayan Obo Fe-REE-Nb deposit: Genetic and mineralogical evidence [J]. Earth Science Frontiers, 2023, 30(2): 370-383. |
[6] | CUI Xiaoliang, SU Shangguo, ZHANG Yanan, CHEN Xuegen, SI Xiaobo, HUO Xiaoyan. Deep magmatic process of the Fushan complex in the southern section of Taihang Mountain, Hebei Province and its tectonic significance [J]. Earth Science Frontiers, 2022, 29(1): 342-363. |
[7] | FAN Fu, HOU Xianhua, ZHENG Mianping, MENG Fanwei, YANG Zhenjing, MIAO Qing. Homogenization temperature of fluid inclusions in Early-Middle Pleistocene halite from Liang Hole ZK02 in Dalangtan area, Qaidam Basin and its constraints on potash mineralization [J]. Earth Science Frontiers, 2021, 28(6): 105-114. |
[8] | NI Yanhua, LI Minghui, FANG Xiaomin, MENG Fanwei, YAN Maodu, LIU Yingxin. Paleotemperature during the Mid-Pleistocene Transition in western Qaidam Basin: Evidence from fluid inclusions in halite from drill hole SG-1 [J]. Earth Science Frontiers, 2021, 28(6): 115-124. |
[9] | LI Shengrong, SHEN Junfeng, LI Lin, ZHANG Huafeng. Considerations on big data-based genetic mineralogical research [J]. Earth Science Frontiers, 2021, 28(3): 76-86. |
[10] | LONG Zhengyu, YU Xiaoyan, ZHENG Yuyu, GUO Bijun. Geochemical characteristics of tourmalines from the Dayakou emerald deposit in Yunnan Province: implications for emerald mineralization [J]. Earth Science Frontiers, 2021, 28(2): 333-347. |
[11] | LI Ruipeng, CUI Xiaoliang, SU Shangguo, ZHANG Yanan, LIANG Cuntao, CHEN Xuegen. Discussion on the features and mechanism of cryptoexplosive breccia in Wu’an, Hebei Province [J]. Earth Science Frontiers, 2021, 28(1): 353-362. |
[12] | LU Anhuai, LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuwei, ZHU Ying, LI Yanzhang. Natural mineral photoelectric effect: non-classical mineral photosynthesis [J]. Earth Science Frontiers, 2020, 27(5): 179-194. |
[13] | ZHANG Juquan, LIANG Xian, YAN Lina, LI Shengrong, SHEN Junfeng, LU Jing, WU Weizhe, LI Qing. The mineralogical records of magmatic process: cases from Mesozoic intrusive rocks in the Handan-Xingtai region [J]. Earth Science Frontiers, 2020, 27(5): 70-87. |
[14] | LUO Zhaohua. Mineralogical constraints on the formation of cumulates in layered intrusions in the Pan-Xi region, Sichuan Province, China [J]. Earth Science Frontiers, 2020, 27(5): 61-69. |
[15] | MENG Fancong, BAI Shengjin, Alexander B. MAKEYEV, Ksenia V. KULIKOVA. Genetic mineralogy of jadeitite from Polar Urals, Russia [J]. Earth Science Frontiers, 2020, 27(5): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||