Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 115-133.DOI: 10.13745/j.esf.sf.2023.5.11
Previous Articles Next Articles
NIE Xiao1,2(), CHEN Lei3, GUO Xianqing1, YU Tao1, WANG Zongqi4
Received:
2022-11-30
Revised:
2022-12-15
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China[J]. Earth Science Frontiers, 2023, 30(5): 115-133.
Fig.1 Regional geology.(a) Location and tectonic setting of the Qinling orogenic belt.(b) Tectonic units of the middle segment,southern Qinling orogenic belt,showing the distribution of Indosinian granitoids ( adapted from[26⇓-28]).(c) Geological sketch map of the study area.
图a (a) Pegmatite outcrops showing the effect of vegetation on outcrop appearance, and (b, c) TIMA images of rock thin sections from pegmatite specimens.
Fig.3 Mineral analysis of pegmatite specimens. (a) BSE image of pegmatite specimen showing Ap-I, Ap-II and triplite occurrences. (b) EDS spectrum of Ap-I. (c) EDS spectrum of Ap-II. (d) EPMA image of apatite with Mn elemental scan. (e) EPMA image of apatite with F elemental scan.
Fig.4 (a) Representative BSE images of Ap-Ⅰ grains (circles indicate sampling points for Nd isotopic analysis), and (b) Sm-Nd isochron diagram for Ap-Ⅰ grains.
Fig.5 (a-d) BSE images of pegmatite specimens showing occurrences of CGM-Ⅰ/Ⅱ and inclusions Urn and Mcl in CGM-Ⅱ, and (e, f) EDS spectra of inclusions Urn and Mcl.
Fig.8 LA-ICP-MS U-Pb dating data for single-grain CGM-I from pegmatite specimens. (a) Representative BSE images. (b) Tera-Wasserburg concordia diagram and weighted mean 207Pb/206Pb ages.
样品名 | 同位素比值及误差 | 年龄及误差/Ma | ||||||
---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 206Pb/238U | 1σ | rho | 207Pb-corrected | 1σ | ||
K6145-1 | 0.060 74 | 0.001 73 | 0.031 41 | 0.000 43 | 0.32 | 197 | 2.7 | |
K6145-2 | 0.058 46 | 0.003 34 | 0.031 68 | 0.000 85 | 0.45 | 199 | 5.4 | |
K6145-3 | 0.053 10 | 0.001 33 | 0.032 12 | 0.000 59 | 0.63 | 203 | 3.7 | |
K6145-4 | 0.061 38 | 0.003 20 | 0.032 52 | 0.000 65 | 0.16 | 204 | 4.1 | |
K6145-5 | 0.053 73 | 0.001 57 | 0.032 39 | 0.000 46 | 0.34 | 205 | 2.9 | |
K6145-6 | 0.051 47 | 0.001 49 | 0.032 31 | 0.000 50 | 0.59 | 205 | 3.2 | |
K6145-7 | 0.089 15 | 0.004 54 | 0.034 05 | 0.000 86 | 0.68 | 206 | 5.3 | |
K6145-8 | 0.049 75 | 0.002 30 | 0.032 41 | 0.000 49 | 0.21 | 206 | 3.1 | |
K6145-9 | 0.053 81 | 0.002 76 | 0.032 59 | 0.000 62 | 0.01 | 206 | 3.9 | |
K6145-10 | 0.050 16 | 0.001 31 | 0.032 49 | 0.000 38 | 0.26 | 206 | 2.4 | |
K6145-11 | 0.052 79 | 0.001 05 | 0.032 61 | 0.000 38 | 0.41 | 206 | 2.4 | |
K6145-12 | 0.053 12 | 0.002 34 | 0.032 67 | 0.000 54 | 0.13 | 207 | 3.4 | |
K6145-13 | 0.049 57 | 0.001 09 | 0.032 57 | 0.000 48 | 0.54 | 207 | 3.0 | |
K6145-14 | 0.052 13 | 0.001 36 | 0.032 70 | 0.000 40 | 0.11 | 207 | 2.5 | |
K6145-15 | 0.051 48 | 0.001 43 | 0.032 73 | 0.000 56 | 0.68 | 207 | 3.5 | |
K6145-16 | 0.049 70 | 0.001 36 | 0.032 68 | 0.000 49 | 0.49 | 207 | 3.1 | |
K6145-17 | 0.050 96 | 0.001 43 | 0.032 75 | 0.000 41 | 0.29 | 208 | 2.6 | |
K6145-18 | 0.057 64 | 0.002 97 | 0.033 19 | 0.000 51 | 0.18 | 209 | 3.3 | |
K6145-19 | 0.055 79 | 0.002 88 | 0.033 34 | 0.000 64 | 0.25 | 210 | 4.1 | |
K6145-20 | 0.147 02 | 0.003 80 | 0.037 70 | 0.000 64 | 0.72 | 210 | 3.7 | |
K6145-21 | 0.050 68 | 0.002 95 | 0.033 19 | 0.000 51 | 0.04 | 210 | 3.3 | |
K6145-22 | 0.175 33 | 0.005 67 | 0.039 42 | 0.000 54 | 0.29 | 211 | 3.4 | |
K6145-23 | 0.335 93 | 0.004 41 | 0.052 59 | 0.000 75 | 0.73 | 214 | 3.8 |
Table 4 LA-ICP-MS U-Pb ages for CGM from pegmatite specimens
样品名 | 同位素比值及误差 | 年龄及误差/Ma | ||||||
---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 206Pb/238U | 1σ | rho | 207Pb-corrected | 1σ | ||
K6145-1 | 0.060 74 | 0.001 73 | 0.031 41 | 0.000 43 | 0.32 | 197 | 2.7 | |
K6145-2 | 0.058 46 | 0.003 34 | 0.031 68 | 0.000 85 | 0.45 | 199 | 5.4 | |
K6145-3 | 0.053 10 | 0.001 33 | 0.032 12 | 0.000 59 | 0.63 | 203 | 3.7 | |
K6145-4 | 0.061 38 | 0.003 20 | 0.032 52 | 0.000 65 | 0.16 | 204 | 4.1 | |
K6145-5 | 0.053 73 | 0.001 57 | 0.032 39 | 0.000 46 | 0.34 | 205 | 2.9 | |
K6145-6 | 0.051 47 | 0.001 49 | 0.032 31 | 0.000 50 | 0.59 | 205 | 3.2 | |
K6145-7 | 0.089 15 | 0.004 54 | 0.034 05 | 0.000 86 | 0.68 | 206 | 5.3 | |
K6145-8 | 0.049 75 | 0.002 30 | 0.032 41 | 0.000 49 | 0.21 | 206 | 3.1 | |
K6145-9 | 0.053 81 | 0.002 76 | 0.032 59 | 0.000 62 | 0.01 | 206 | 3.9 | |
K6145-10 | 0.050 16 | 0.001 31 | 0.032 49 | 0.000 38 | 0.26 | 206 | 2.4 | |
K6145-11 | 0.052 79 | 0.001 05 | 0.032 61 | 0.000 38 | 0.41 | 206 | 2.4 | |
K6145-12 | 0.053 12 | 0.002 34 | 0.032 67 | 0.000 54 | 0.13 | 207 | 3.4 | |
K6145-13 | 0.049 57 | 0.001 09 | 0.032 57 | 0.000 48 | 0.54 | 207 | 3.0 | |
K6145-14 | 0.052 13 | 0.001 36 | 0.032 70 | 0.000 40 | 0.11 | 207 | 2.5 | |
K6145-15 | 0.051 48 | 0.001 43 | 0.032 73 | 0.000 56 | 0.68 | 207 | 3.5 | |
K6145-16 | 0.049 70 | 0.001 36 | 0.032 68 | 0.000 49 | 0.49 | 207 | 3.1 | |
K6145-17 | 0.050 96 | 0.001 43 | 0.032 75 | 0.000 41 | 0.29 | 208 | 2.6 | |
K6145-18 | 0.057 64 | 0.002 97 | 0.033 19 | 0.000 51 | 0.18 | 209 | 3.3 | |
K6145-19 | 0.055 79 | 0.002 88 | 0.033 34 | 0.000 64 | 0.25 | 210 | 4.1 | |
K6145-20 | 0.147 02 | 0.003 80 | 0.037 70 | 0.000 64 | 0.72 | 210 | 3.7 | |
K6145-21 | 0.050 68 | 0.002 95 | 0.033 19 | 0.000 51 | 0.04 | 210 | 3.3 | |
K6145-22 | 0.175 33 | 0.005 67 | 0.039 42 | 0.000 54 | 0.29 | 211 | 3.4 | |
K6145-23 | 0.335 93 | 0.004 41 | 0.052 59 | 0.000 75 | 0.73 | 214 | 3.8 |
Fig.9 LA-ICP-MS U-Pb dating data for single-grain uraninite from pegmatite specimens. (a) Representative BSE images. (b) Concordia diagram. (c) Weighted mean ages.
[1] |
李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13.
DOI |
[2] | 邹天人, 徐建国. 论花岗伟晶岩的成因和类型的划分[J]. 地球化学, 1975, 4(3): 161-174. |
[3] | LONDON D. Internal differentiation of rare-element pegmatites: a synthesis of recent research[M]// Geological Society of America Special Papers. Boulder: Geological Society of America, 1990: 35-50. |
[4] |
LONDON D. The origin of primary textures in granitic pegmatites[J]. The Canadian Mineralogist, 2009, 47(4): 697-724.
DOI URL |
[5] | ČERNÝ P. Rare-element granitic pegmatites, part II: regional to global environments and petrogenesis[J]. Geoscience Canada, 1991, 18(2), 68-81. |
[6] | ČERNÝ P. Rare-element granitic pegmatites. part I: anatomy and internal evolution of pegmatitic deposits[J]. Geoscience Canada, 1991, 18(2), 49-67. |
[7] |
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026.
DOI URL |
[8] |
MARTIN R F, DE VITO C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. The Canadian Mineralogist, 2005, 43(6): 2027-2048.
DOI URL |
[9] |
SIMMONS W BS, WEBBER K L. Pegmatite genesis: state of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438.
DOI URL |
[10] | 许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106. |
[11] |
BARROS R, KAETER D, MENUGE J F, et al. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: constraints from mineral chemistry[J]. Lithos, 2020, 352/353: 105289.
DOI URL |
[12] |
VAN LICHTERVELDE M, SALVI S, BEZIAT D, et al. Texturalfeatures and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the tanco lower pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2): 257-276.
DOI URL |
[13] |
DEMARTIS M, MELGAREJO J C, COLOMBO F, et al. Extremef activities in late pegmatitic events as a key factor for lile and hfse enrichment: the ángel pegmatite, central Argentina[J]. The Canadian Mineralogist, 2014, 52(2): 247-269.
DOI URL |
[14] |
RAO C, WANG R C, YANG Y Q, et al. Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No.31 pegmatite (SE China)[J]. Ore Geology Reviews, 2017, 91: 864-876.
DOI URL |
[15] |
YIN R, HUANG X L, XU Y G, et al. Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China[J]. Lithos, 2020, 352/353: 105208.
DOI URL |
[16] | 秦克章, 周起凤, 唐冬梅, 等. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜[J]. 地质学报, 2021, 95(10): 3039-3053. |
[17] | 彭海练, 李维成, 李武杰, 等. 陕西宁陕县铷等稀有金属成矿地质特征及找矿前景分析[J]. 陕西地质, 2016, 34(2): 21-26. |
[18] |
NIE X, WANG Z Q, CHEN L, et al. Geochemical contrasts between late Triassic Rb-rich and barren pegmatites from Ningshan pegmatite district, South Qinling orogen, China: implications for petrogenesis and rare metal exploration[J]. Minerals, 2020, 10(7): 582.
DOI URL |
[19] |
MENG Q R, ZHANG G W. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 1999, 27(2): 123-126.
DOI URL |
[20] |
YAN Z, WANG Z Q, CHEN J L, et al. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze Block, China: U-Pb geochronology and petrography of sandstones[J]. Journal of Asian Earth Sciences, 2010, 37(4): 322-334.
DOI URL |
[21] |
MATTAUER M, MATTE P, MALAVIEILLE J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6037): 496-500.
DOI |
[22] |
DONG Y, ZHANG G, NEUBAUER F, et al. Tectonic evolution of the Qinling orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
DOI URL |
[23] | 陈西京, 王淑荣, 张秀颖. 秦岭花岗伟晶岩基本特征与成矿作用[M]. 北京: 地质出版社. 1993, 1-75. |
[24] | 卢欣祥, 祝朝辉, 谷德敏, 等. 东秦岭花岗伟晶岩的基本地质矿化特征[J]. 地质论评, 2010, 56(1): 21-30. |
[25] | 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11(2): 101-114. |
[26] |
LIU S W, LI Q G, TIAN W, et al. Petrogenesis of indosinian granitoids in middle-segment of South Qinling tectonic belt: constraints from Sr-Nd isotopic systematics[J]. Acta Geologica Sinica (English Edition), 2011, 85(3): 610-628.
DOI URL |
[27] |
DONG Y P, LIU X M, ZHANG G W, et al. Triassic diorites and granitoids in the Foping area: constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 2012, 47: 123-142.
DOI URL |
[28] |
WANG X X, WANG T, ZHANG C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151.
DOI URL |
[29] |
YANG P T, LIU S W, LI Q G, et al. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the South Qinling belt, Central China: constraints on petrogenesis and geodynamic processes[J]. Journal of Asian Earth Sciences, 2012, 61: 166-186.
DOI URL |
[30] |
LIU Z C, WU F Y, YANG Y H, et al. Neodymium isotopic compositions of the standard monazites used in U-Th-Pb geochronology[J]. Chemical Geology, 2012, 334: 221-239.
DOI URL |
[31] | 赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11): 3325-3347. |
[32] |
MELCHER F, GRAUPNER T, GÄBLER H E, et al. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667-719.
DOI URL |
[33] |
CHE X D, WU F Y, WANG R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989.
DOI URL |
[34] |
LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[35] |
STACEY J T, KRAMERS J. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221.
DOI URL |
[36] | LUDWIG K R. User’s manual for Isoplot 3. 00: a geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003: 1-74. |
[37] |
ZONG K Q, CHEN J Y, HU Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China Earth Sciences, 2015, 58(10): 1731-1740.
DOI URL |
[38] |
HU Z C, ZHANG W, LIU Y S, et al. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157.
DOI URL |
[39] |
LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[40] |
RODA E, PESQUERA A, FONTAN F, et al. Phosphate mineral associations in the Cañada pegmatite (Salamanca, Spain): paragenetic relationships, chemical compositions, and implications for pegmatite evolution[J]. American Mineralogist, 2004, 89(1): 110-125.
DOI URL |
[41] |
RODA-ROBLES E, GALLISKI M A, ROQUET M B, et al. Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis Province, Argentina: paragenesis, composition and significance[J]. The Canadian Mineralogist, 2012, 50(4): 913-931.
DOI URL |
[42] |
GALLISKI M Á, ČERNÝ P, MÁRQUEZ-ZAVALÍA M F, et al. An association of secondary Al-Li-Be-Ca-Sr phosphates in the San Elias pegmatite, San Luis, Argentina[J]. The Canadian Mineralogist, 2012, 50(4): 933-942.
DOI URL |
[43] |
VIGNOLA P, ZUCALI M, ROTIROTI N, et al. The chrysoberyl- and phosphate-bearing albite pegmatite of Malga Garbella, val di Rabbi, Trento Province, Italy[J]. The Canadian Mineralogist, 2018, 56(4): 411-424.
DOI URL |
[44] |
SHA L K, CHAPPELL B W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3861-3881.
DOI URL |
[45] |
BELOUSOVA E A, GRIFFIN W L, O’REILLY S Y, et al. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 2002, 76(1): 45-69.
DOI URL |
[46] |
SWANSON S E. Mineralogy of spodumene pegmatites and related rocks in the tin-spodumene belt of North Carolina and South Carolina, USA[J]. The Canadian Mineralogist, 2012, 50(6): 1589-1608.
DOI URL |
[47] |
CAO M J, ZHOU Q F, QIN K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No.3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6): 985-1005.
DOI URL |
[48] |
SELWAY J B, BREAKS F W, TINDLE A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1/2/3/4): 1-30.
DOI URL |
[49] |
PIECZKA A. Beusite and an unusualmn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland[J]. The Canadian Mineralogist, 2007, 45(4): 901-914.
DOI URL |
[50] |
JIANG Y H, JIN G D, LIAO S Y, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent-continent collision[J]. Lithos, 2010, 117(1/2/3/4): 183-197.
DOI URL |
[51] |
LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383.
DOI URL |
[52] |
WANG H, GAO H, ZHANG X Y, et al. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360/361: 105449.
DOI URL |
[53] | 徐兴旺, 洪涛, 李杭, 等. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 2020, 36(12): 3572-3592. |
[54] |
SIMMONS W, FALSTER A, WEBBER K, et al. Bulk composition of Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis[J]. The Canadian Mineralogist, 2016, 54(4): 1053-1070.
DOI URL |
[55] |
MÜLLER A, ROMER R L, PEDERSEN R B. The Sveconorwegian pegmatite province: thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2): 283-315.
DOI URL |
[56] |
LV Z H, ZHANG H, TANG Y, et al. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 2018, 95: 161-181.
DOI URL |
[57] |
FEI G, MENUGE J F, LI Y, et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364/365: 105555.
DOI URL |
[58] |
CHEN B, HUANG C, ZHAO H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology, 2020, 551: 119769.
DOI URL |
[59] | LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization, in Linnen R L and Samson I M, eds., rare-element geochemistry and mineral deposits[J]. Geological Association of Canada Short Course Notes, 2005, 17: 45-68. |
[60] |
LONDON D, MORGAN G B BABB H A, et al. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O)[J]. Contributions to Mineralogy and Petrology, 1993, 113(4): 450-465.
DOI URL |
[61] | MYSEN B O, RYERSON F J, VIRGO D. The structural role of phosphorus in silicate melts[J]. American Mineralogist. 1981, 66(1/2), 106-117. |
[62] |
XIONG X L, ZHAO Z H, ZHU J C, et al. Phase relations in albite granite-H2O-HF system and their petrogenetic applications[J]. Geochemical Journal, 1999, 33(3): 199-214.
DOI URL |
[63] | CHEVYCHELOV V Y, ZARAISKY G, BORISOVSKII S, et al. Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites[J]. Petrology, 2005, 13(4): 305-321. |
[64] |
MULJA T, WILLIAMS-JONES A E, MARTIN R F, et al. Compositional variation and structural state of columbite-tantalite in rare-element granitic pegmatites of the Preissac-Lacorne Batholith, Quebec, Canada[J]. American Mineralogist, 1996, 81(1/2): 146-157.
DOI URL |
[65] |
LI J, HUANG X L, HE P L, et al. In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65: 793-810.
DOI URL |
[66] |
STEPANOV A, MAVROGENES J A, MEFFRE S, et al. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1009.
DOI URL |
[67] | RAIMBAULT L, BURNOL L. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites[J]. The Canadian Mineralogist, 1998, 36(2), 265-282. |
[68] |
BREITER K, KORBELOVÁ Z, CHLÁDEK Š, et al. Diversity of Ti-Sn-W-Nb-Ta oxide minerals in the classic granite-related magmatic-hydrothermal Cínovec/Zinnwald Sn-W-Li deposit (Czech Republic)[J]. European Journal of Mineralogy, 2017, 29(4): 727-738.
DOI URL |
[69] |
WU M Q, SAMSON I M, ZHANG D H. Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan deposit, Nanling range, southeastern China[J]. Economic Geology, 2017, 112(4): 855-887.
DOI URL |
[70] |
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China[J]. Economic Geology, 2018, 113(4): 937-960.
DOI URL |
[71] |
XIE L, WANG Z J, WANG R C, et al. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China)[J]. Ore Geology Reviews, 2018, 95: 695-712.
DOI URL |
[72] |
BALLOUARD C, ELBURG M A, TAPPE S, et al. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa)[J]. Ore Geology Reviews, 2020, 116: 103252.
DOI URL |
[73] |
HUANG W T, WU J, LIANG H Y, et al. Ages and genesis of W-Sn and Ta-Nb-Sn-W mineralization associated with the Limu granite complex, Guangxi, China[J]. Lithos, 2020, 352/353: 105321.
DOI URL |
[74] |
LAHTI S I. Zoning in columbite-tantalite crystals from the granitic pegmatites of the Eräjärvi area, southern Finland[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 509-517.
DOI URL |
[75] | ČERNÝ P, NOVÁK M, CHAPMAN R. Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites, Marsikov, northern Moravia, Czechoslovakia[J]. Canadian Mineralogist, 1992, 30(3): 699-718. |
[76] |
TINDLE A G, BREAKS F W. Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: separation Lakeh area, N.W. Ontario, Canada[J]. Mineralogy and Petrology, 2000, 70(3/4): 165-198.
DOI URL |
[77] |
THOMAS R, DAVIDSON P, BADANINA E. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems[J]. Mineralogy and Petrology, 2009, 96(3): 129-140.
DOI URL |
[78] |
ZARAISKY G P, KORZHINSKAYA V, KOTOVA N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 ℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3): 287-300.
DOI URL |
[79] |
TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A. An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2015, 158: 103-111.
DOI URL |
[80] |
TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2017, 197: 294-304.
DOI URL |
[81] |
VAN LICHTERVELDE M, GRÉGOIRE M, LINNEN R L, et al. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada[J]. Contributions to Mineralogy and Petrology, 2008, 155(6): 791-806.
DOI URL |
[82] |
ZHANG A C, WANG R C, HU H, et al. Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No.3 granitic pegmatite, Altai, northwestern China[J]. Mineralogical Magazine, 2004, 68(5): 739-756.
DOI URL |
[83] |
ALFONSO P, MELGAREJO J C. Fluid evolution in the zoned rare-element pegmatite field at Cap de Creus, Catalonia, Spain[J]. The Canadian Mineralogist, 2008, 46(3): 597-617.
DOI URL |
[84] |
ROMER R L, WRIGHT J E. U-Pb dating of columbites: a geochronologic tool to date magmatism and ore deposits[J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 2137-2142.
DOI URL |
[85] |
NOVÁK M, PROKOP J, LOSOS Z, et al. Tourmaline, an indicator of external Mg-contamination of granitic pegmatites from host serpentinite: examples from the Moldanubian Zone, Czech Republic[J]. Mineralogy and Petrology, 2017, 111(4): 625-641.
DOI URL |
[1] | LIU Jinping, WANG Gaiyun, JIAN Xiaoling, ZHU Chuanqing, HU Xiaoqiang, YUAN Xiaoqiang, WANG Chao. Tectono-thermal mechanism and hydrocarbon generation action in the North Yellow Sea Eastern Sub-basin [J]. Earth Science Frontiers, 2024, 31(4): 206-218. |
[2] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[3] | WANG Jiaqi, LI Zongxing, LIU Kui. Rehabilitation status of denuded land in the eastern Qaidam Basin: Geophysical and thermochronological evidences [J]. Earth Science Frontiers, 2022, 29(4): 371-384. |
[4] | ZHANG Weimin, WANG Zhen, QIAN Cheng, GUO Yadan, LIU Haiyan. An activated calcite-loaded hydroxyapatite PRB media for uranium ion removal from aqueous solution [J]. Earth Science Frontiers, 2021, 28(5): 175-185. |
[5] | LI Yuan, WANG Changqiu, LU Anhuai, LI Yan, YANG Chongqing, LI Kang. Mineralogical characteristics and distribution patterns of different types of calcification in a cerebrovascular atherosclerotic lesion [J]. Earth Science Frontiers, 2020, 27(5): 291-299. |
[6] | LUO Shaoyong, ZHOU Yuefei, LIU Xing. Effect of apatite on the stability of ferrihydrite in lacustrine sediments [J]. Earth Science Frontiers, 2020, 27(5): 218-226. |
[7] | ZHOU Qiushi, WANG Rui. Advances in chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 42-67. |
[8] | ZHAO Xinfu, ZENG Liping, LIAO Wang, LI Wanting, HU Hao, LI Jianwei. An overview of recent advances in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and its implication for ore genesis [J]. Earth Science Frontiers, 2020, 27(2): 197-217. |
[9] | CHEN Xue,YUAN Wanming,YUAN Erjun,WANG Ke,FENG Zirui. Apatite fission track analysis of tectonic activity in the Dongshangen mining area, East Kunlun, QinghaiTibet Plateau. [J]. Earth Science Frontiers, 2018, 25(6): 330-337. |
[10] | DIAO Zhen-Hua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis. [J]. Earth Science Frontiers, 2010, 17(1): 267-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||