Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (6): 224-238.DOI: 10.13745/j.esf.sf.2022.8.7
Previous Articles Next Articles
ZHENG Herong1(), HU Zongquan1, YUN Lu2, LIN Huixi1, DENG Shang1, JIA Huichong3, PU Yong4
Received:
2022-07-07
Revised:
2022-08-01
Online:
2022-11-25
Published:
2022-10-20
CLC Number:
ZHENG Herong, HU Zongquan, YUN Lu, LIN Huixi, DENG Shang, JIA Huichong, PU Yong. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation[J]. Earth Science Frontiers, 2022, 29(6): 224-238.
Fig.5 Layered, segmented structural characteristics of no.15 fault zone of Fuling area in eastern Sichuan Basin and Moxi-Gaoshiti strike-slip fault in central Sichuan Basin (see Fig.4 for fault locations)
Fig.6 Layered, segmented and displacement structural characteristics of strike-slip fault zone of Jingyan-Qianwei area, Southwest Sichuan Basin (see Fig.4 for the location)
盆地 | 构造样式 | 断穿层位 | 活动时期 | 主控因素 | ||
---|---|---|---|---|---|---|
断裂体系 | 平面分布 | 剖面样式 | ||||
塔里木 盆地 | 塔北隆起似共轭断裂体系 | 断裂体系南北对接,东西分区 | 纵向分层,深部平面分段直立走滑,浅部雁列正断 | 基底—新生界 | 加里东中期、加里东晚期—海西早期、海西中晚期多期活动;隆起之上印支期、喜山期继承性活动 | 盆缘多边界多期非共轴挤压 |
塔中隆起及北坡近平行断裂体系 | 塔中隆起:基底—新生界; 塔中北坡:基底—石炭系 | |||||
塔西南多走向走滑断裂体系 | 呈北东向近平行展布,先巴扎地区似共轭 | 多期逆冲-走滑叠加 | 基底—二叠系 | 加里东期到海西晚期之前,巴什托持续至喜山期 | 盆缘多期挤压 | |
四川 盆地 | 川东-川北近共线走滑断裂体系 | 北西向为主 | 单层花状构造为主,深部分段直立走滑 | 前寒武系基底—二叠系 | 海西晚期为主 | 基底先存断裂、盆缘应力 |
川中多走向走滑断裂体系 | 近东西向、北东东向、北西西向 | 纵向分层,深部直立走滑,浅部可见雁列正断 | 前寒武系基底—白垩系 | 海西晚期、印支期、燕山期 | ||
川南多走向走滑断裂体系 | 北西西向、北东东向 | 前寒武系基底—三叠系 | 海西晚期、印支期 | |||
鄂尔多 斯盆地 | 西南部近平行断裂体系 | 主滑移带北西西向;雁列带呈北东东向 | 纵向分层,深部直立走滑,浅部雁列正断 | 基底—白垩系 | 燕山早期、燕山晚期 | 西南缘挤压应力向盆内传递 |
Table 1 Similarities and differences in strike-slip faults between the three marine cratonic basins
盆地 | 构造样式 | 断穿层位 | 活动时期 | 主控因素 | ||
---|---|---|---|---|---|---|
断裂体系 | 平面分布 | 剖面样式 | ||||
塔里木 盆地 | 塔北隆起似共轭断裂体系 | 断裂体系南北对接,东西分区 | 纵向分层,深部平面分段直立走滑,浅部雁列正断 | 基底—新生界 | 加里东中期、加里东晚期—海西早期、海西中晚期多期活动;隆起之上印支期、喜山期继承性活动 | 盆缘多边界多期非共轴挤压 |
塔中隆起及北坡近平行断裂体系 | 塔中隆起:基底—新生界; 塔中北坡:基底—石炭系 | |||||
塔西南多走向走滑断裂体系 | 呈北东向近平行展布,先巴扎地区似共轭 | 多期逆冲-走滑叠加 | 基底—二叠系 | 加里东期到海西晚期之前,巴什托持续至喜山期 | 盆缘多期挤压 | |
四川 盆地 | 川东-川北近共线走滑断裂体系 | 北西向为主 | 单层花状构造为主,深部分段直立走滑 | 前寒武系基底—二叠系 | 海西晚期为主 | 基底先存断裂、盆缘应力 |
川中多走向走滑断裂体系 | 近东西向、北东东向、北西西向 | 纵向分层,深部直立走滑,浅部可见雁列正断 | 前寒武系基底—白垩系 | 海西晚期、印支期、燕山期 | ||
川南多走向走滑断裂体系 | 北西西向、北东东向 | 前寒武系基底—三叠系 | 海西晚期、印支期 | |||
鄂尔多 斯盆地 | 西南部近平行断裂体系 | 主滑移带北西西向;雁列带呈北东东向 | 纵向分层,深部直立走滑,浅部雁列正断 | 基底—白垩系 | 燕山早期、燕山晚期 | 西南缘挤压应力向盆内传递 |
盆地 | 储集体类型 | 储集空间 | 成储机制 | 圈闭类型 | 通源层系 | |
---|---|---|---|---|---|---|
塔里木 盆地 | 顺北地区 | 断控缝洞型 | 洞穴、孔洞、裂缝 | 拉分段和压隆段破裂成储 | 断控缝洞型圈闭 | 震旦系、寒武系、奥陶系 |
塔河及顺南地区 | 断-溶缝洞型 | 洞穴、孔洞、裂缝 | 大气淡水沿断裂带下行溶蚀;上行热液溶蚀改造 | 断裂-岩溶型圈闭 | 奥陶系、志留系、侏罗系、白垩系 | |
四川盆地 | 断-溶缝洞型 | 洞穴、孔洞、裂缝 | 大气淡水沿断裂带下行溶蚀 | 断裂-岩溶型圈闭 | 二叠系茅口组、二叠系栖霞组、震旦系、下寒武统 | |
鄂尔多斯盆地 | 裂缝-孔隙型 | 孔隙、裂缝 | 高角度裂缝或断裂伴生的破碎带 | 断缝体圈闭 | 下古生界、三叠系延长组、侏罗系延安组 |
Table 2 List of strike-slip fault properties that have controls on petroleum reservoirs of the three marine cratonic basins
盆地 | 储集体类型 | 储集空间 | 成储机制 | 圈闭类型 | 通源层系 | |
---|---|---|---|---|---|---|
塔里木 盆地 | 顺北地区 | 断控缝洞型 | 洞穴、孔洞、裂缝 | 拉分段和压隆段破裂成储 | 断控缝洞型圈闭 | 震旦系、寒武系、奥陶系 |
塔河及顺南地区 | 断-溶缝洞型 | 洞穴、孔洞、裂缝 | 大气淡水沿断裂带下行溶蚀;上行热液溶蚀改造 | 断裂-岩溶型圈闭 | 奥陶系、志留系、侏罗系、白垩系 | |
四川盆地 | 断-溶缝洞型 | 洞穴、孔洞、裂缝 | 大气淡水沿断裂带下行溶蚀 | 断裂-岩溶型圈闭 | 二叠系茅口组、二叠系栖霞组、震旦系、下寒武统 | |
鄂尔多斯盆地 | 裂缝-孔隙型 | 孔隙、裂缝 | 高角度裂缝或断裂伴生的破碎带 | 断缝体圈闭 | 下古生界、三叠系延长组、侏罗系延安组 |
[1] | 贾承造, 李本亮, 张兴阳, 等. 中国海相盆地的形成与演化[J]. 科学通报, 2007(增刊1): 1-8. |
[2] | 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. |
[3] | 吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4): 444-452. |
[4] | 马德波, 汪泽成, 段书府, 等. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义[J]. 石油勘探与开发, 2018, 45(5): 795-805. |
[5] | 潘杰, 刘忠群, 蒲仁海, 等. 鄂尔多斯盆地镇原—泾川地区断层特征及控油意义[J]. 石油地球物理勘探, 2017, 52(2): 360-370. |
[6] | 何发岐, 梁承春, 陆骋, 等. 鄂尔多斯盆地南缘过渡带致密-低渗油藏断缝体的识别与描述[J]. 石油与天然气地质, 2020, 41(4): 710-718. |
[7] | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、 形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
[8] |
云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52.
DOI |
[9] | 焦方正, 杨雨, 冉崎, 等. 四川盆地中部地区走滑断层的分布与天然气勘探[J]. 天然气工业, 2021, 41(8): 92-101. |
[10] |
MANN P. Global catalogue, classification and tectonic origins of restraining and releasing bends on active and ancient strike-slip fault systems[J]. Geological Society, London, Special Publications, 2007, 290(1): 13-142.
DOI URL |
[11] | 邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、 演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J/OL]. 大地构造与成矿学, 2021, 45(6): 1063-1078[2021-10-28]. https://doi.org/10.16539/j.ddgzyckx.2020.05.015. |
[12] |
云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787.
DOI |
[13] |
GOGONENKOV G N, TIMURZIEV A I. Strike-slip faults in the West Siberian basin: implications for petroleum exploration and development[J]. Russian Geology and Geophysics, 2010, 51(3): 304-316.
DOI URL |
[14] | HARDING T P. Petroleum traps associated with wrench faults[J]. AAPG Bulletin, 1974, 58(7): 1290-1304. |
[15] |
漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
DOI |
[16] | 杨海军, 邓兴梁, 张银涛, 等. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 17-27. |
[17] | 李三忠, 赵淑娟, 李玺瑶, 等. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性[J]. 岩石学报, 2016, 32(9): 2609-2627. |
[18] |
肖文交, 宋东方, 李继亮, 等. 中亚增生造山过程与成矿作用研究进展[J]. Scientia Sinica Terrae, 2019, 49(10): 1512-1545.
DOI URL |
[19] |
SOBEL E R, ARNAUD N. A possible middle Paleozoic suture in the Altyn Tagh, NW China[J]. Tectonics, 1999, 18(1): 64-74.
DOI URL |
[20] |
MATTERN F, SCHNEIDER W. Suturing of the Proto-and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China)[J]. Journal of Asian Earth Sciences, 2000, 18(6): 637-650.
DOI URL |
[21] |
LI S, ZHAO S, LIU X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75.
DOI URL |
[22] |
QIU H, DENG S, CAO Z, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113.
DOI URL |
[23] | GEHRELS G E, YIN A, WANG X F. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B9): 2423. |
[24] |
WU C, YIN A, ZUZA A V, et al. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system[J]. Lithosphere, 2016, 8(3): 254-292.
DOI URL |
[25] |
YIN A, MANNING C E, LOVERA O, et al. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China[J]. International Geology Review, 2007, 49(8): 681-716.
DOI URL |
[26] |
XIAO W, WINDLEY B F, ALLEN M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23(4): 1316-1341.
DOI URL |
[27] |
JU W, HOU G. Late Permian to Triassic intraplate orogeny of the southern Tianshan and adjacent regions, NW China[J]. Geoscience Frontiers, 2014, 5(1): 83-93.
DOI URL |
[28] |
MATTAUER M, MATTE P, MALAVIEILLE J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6037): 496-500.
DOI URL |
[29] | HACKER B R, RATSCHBACHER L, WEBB L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic - Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13339-13364. |
[30] |
RATSCHBACHER L, HACKER B R, CALVERT A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1/2): 1-53.
DOI URL |
[31] | XIAO W, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1069-1089. |
[32] |
XIAO W, WINDLEY B F, SUN S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507.
DOI URL |
[33] | 朱日祥, 赵盼, 赵亮. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 2022, 52(1): 1-25. |
[34] |
HUANG L, ZHANG C L, PU R H, et al. Tectonic evolution of the thrust-nappe belt in the southwestern Ordos Basin (China): constraints from exploration seismic data[J]. Geotectonics, 2020, 54: 229-239.
DOI URL |
[35] | 罗志立. 峨眉地裂运动和四川盆地天然气勘探实践[J]. 新疆石油地质, 2009, 30(4): 419-424. |
[36] |
ZHAI M G. The main old lands in China and assembly of Chinese unified continent[J]. Science China Earth Sciences, 2013, 56(11): 1829-1852.
DOI URL |
[37] |
ZHANG G W, GUO A L, WANG Y J, et al. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 2013, 56(11): 1804-1828.
DOI URL |
[38] |
HAN X, DENG S, TANG L, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: a study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427.
DOI URL |
[39] | 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(6): 878-889. |
[40] | 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5): 990-998, 1073. |
[41] |
DENG S, LI H, ZHANG Z, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137.
DOI URL |
[42] | 李兵, 邓尚, 李王鹏, 等. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义[J]. 特种油气藏, 2019, 26(4): 45-51. |
[43] | 马德波, 崔文娟, 陶小晚, 等. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 65-75. |
[44] | 张永, 郑孟林, 陈槚俊, 等. 塔里木盆地巴楚隆起玛扎塔格断裂带几何学与运动学特征[J]. 石油与天然气地质, 2021, 42(2): 325-337. |
[45] | 蔡新明. 塔河油田构造演化及成藏过程动态仿真研究[D]. 北京: 中国地质大学(北京), 2011. |
[46] | 朱丽芬, 陈红汉, 丰勇. 塔北于奇地区奥陶系碳酸盐岩成岩环境分析: 来自于流体包裹体的证据[J]. 岩性油气藏, 2013, 25(4): 38-43, 49. |
[47] | 尚培, 陈红汉, 胡守志, 等. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程[J]. 地球科学, 2020, 45(3): 1013-1026. |
[48] | 丛富云. 塔里木盆地塔北隆起中西部下古生界深层油气成藏过程[D]. 武汉: 中国地质大学(武汉), 2021. |
[49] | 宁飞, 云金表, 李建交, 等. 塔里木盆地巴楚隆起西南缘构造特征与勘探前景[J]. 石油与天然气地质, 2021, 42(2): 299-308. |
[50] |
SONG Z, TANG L, LIU C. Variations of thick-skinned deformation along Tumuxiuke thrust in Bachu uplift of Tarim Basin, northwestern China[J]. Journal of Structural Geology, 2021, 144: 104277.
DOI URL |
[51] |
NING F, MAO G, YUN J, et al. Differential interlayer deformation and its significance for hydrocarbon accumulation in the Tazhong area, Tarim Basin, NW China[J]. Carpathian Journal of Earth and Environmental Sciences, 2020, 15(1): 113-125.
DOI URL |
[52] | DENG S, ZHAO R, KONG Q, et al. Two distinct strike-slip fault networks in the Shunbei area and its surroundings, Tarim Basin: hydrocarbon accumulation, distribution and controlling factors[J/OL]. AAPG Bulletin, 2022, 106(1): 1-26[2021-11-12]. https://archives.datapages.com/data/bulletns/aop/2021-08-02/aapgbltn19113aop.html. |
[53] | 邬光辉, 陈鑫, 马兵山, 等. 塔里木盆地晚新元古代—早古生代板块构造环境及其构造-沉积响应[J]. 岩石学报, 2021, 37(8): 2431-2441. |
[54] | 李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6): 934-944. |
[55] | 邹玉涛, 张文睿. 川东南LZ地区走滑断裂特征与油气成藏作用[J]. 中国石油和化工标准与质量, 2021, 41(16): 128-129. |
[56] | 屈雪峰, 赵中平, 雷启鸿, 等. 鄂尔多斯盆地合水地区延长组裂缝发育特征及控制因素[J]. 物探与化探, 2020, 44(2): 262-270. |
[57] | 王旭. 泾河长8走滑断裂特征及其对油气富集的影响[J]. 石油化工用, 2021, 40(6): 101-105. |
[58] | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. |
[59] |
李海英, 刘军, 龚伟, 等. 顺北地区走滑断裂与断溶体圈闭识别描述技术[J]. 中国石油勘探, 2020, 25(3): 107-120.
DOI |
[60] | 付晓飞, 沙威, 于丹, 等. 松辽盆地徐家围子断陷火山岩内断层侧向封闭性及与天然气成藏[J]. 地质论评, 2010, 56(1): 60-70. |
[61] | 付晓飞, 徐萌, 柳少波, 等. 塔里木盆地库车坳陷致密砂岩-膏泥岩储盖组合断裂带内部结构及与天然气成藏关系[J]. 地质学报, 2016, 90(3): 521-533. |
[62] |
刘宝增. 塔里木盆地顺北地区油气差异聚集主控因素分析: 以顺北1号、 顺北5号走滑断裂带为例[J]. 中国石油勘探, 2020, 25(3): 83-95.
DOI |
[63] | 刘君龙, 胡宗全, 刘忠群, 等. 四川盆地川西坳陷新场须家河组二段气藏甜点模式及形成机理[J]. 石油与天然气地质, 2021, 42(4): 852-862. |
[64] | 肖承钰, 尹伟, 张颖, 等. 鄂尔多斯镇泾地区延长组成藏体系与油气富集模式[J]. 石油实验地质, 2015, 37(3): 347-353. |
[1] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[2] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[3] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[4] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[5] | HAN Pengyuan, DING Wenlong, YANG Debin, DENG Guangxiao, WANG Zhen, MA Hailong, LÜ Jing, GENG Tian. Characteristics and main controlling factors of fracture development in the Ordovician carbonate reservoir, Tahe oilfield [J]. Earth Science Frontiers, 2024, 31(5): 209-226. |
[6] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[7] | LI Fenglei, LIN Chengyan, REN Lihua, ZHANG Guoyin, GUAN Baozhu. Characteristics of deep karst fracture-cavity reservoir formation controlled by multi-phase faults matching in the northern Tarim Basin [J]. Earth Science Frontiers, 2024, 31(4): 219-236. |
[8] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[9] | CHEN Changjin, CHENG Xiaogan, LIN Xiubin, LI Feng, TIAN Hefeng, QU Mengxue, SUN Siyao. Modeling of the Cenozoic subsidence of northern Tarim Basin using elastic plate numerical model: Implications for uplift of South Tian Shan [J]. Earth Science Frontiers, 2024, 31(4): 340-353. |
[10] | HE Jianhua, LI Yong, DENG Hucheng, WANG Yuanyuan, MA Ruolong, TANG Jianming. Study on tectonic fracture characteristics and stage evolution of Longmaxi shale reservoir in Yongchuan, southeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(3): 298-311. |
[11] | WANG Junpeng, ZENG Lianbo, XU Zhenping, WANG Ke, ZENG Qinglu, ZHANG Zhiyuan, ZHANG Ronghu, JIANG Jun. The impact of diagenetic fluids on the structural fracture filling and dissolution alteration of ultra-deep tight sandstone reservoirs: a case study of the Kelasu oil and gas field in the Tarim Basin [J]. Earth Science Frontiers, 2024, 31(3): 312-323. |
[12] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[13] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[14] | XU Zhaohui, HU Suyun, ZENG Hongliu, MA Debo, LUO Ping, HU Zaiyuan, SHI Shuyuan, CHEN Xiuyan, TAO Xiaowan. Distribution and hydrocarbon significance of source rock in the Upper Xiaoerbulake Formation, Tarim Basin, NW China [J]. Earth Science Frontiers, 2024, 31(2): 343-358. |
[15] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||