Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 303-315.DOI: 10.13745/j.esf.sf.2021.12.37
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• A spacial section on The India-Eurasia Collision and Its Long-Range Effect • Previous Articles Next Articles
ZHANG Dingding(), ZHANG Heng*(
)
Received:
2021-11-15
Revised:
2021-12-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
ZHANG Heng
CLC Number:
ZHANG Dingding, ZHANG Heng. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints[J]. Earth Science Frontiers, 2022, 29(1): 303-315.
Fig.2 Comparison of the p-T paths of eclogites from the Alps orogenic belt. Modified after [12-15]. P: prehnite-pumpellyite facies; Z: laumontite facies; GS: greenschist facies; A: amphibolite facies; EA: epidote-amphibolite facies; B: blueschist facies; EC:eclogite facies; EC-HPG: eclogite-high-pressure granulite; G: granulite-facies; UHP: ultrahigh-pressure metamorphism; UHT: ultrahigh-temperature metamorphism.
Fig.4 Comparison of the p-T paths of eclogites from the Dabie orogenic belt. Modified after [29]. P: prehnite-pumpellyite facies; Z: laumontite facies; GS: greenschist facies; A: amphibolite facies; EA: epidote-amphibolite facies;B: blueschist facies; EC: eclogite facies; EC-HPG: eclogite-high-pressure granulite; G: granulite-facies;UHP: ultrahigh-pressure metamorphism; UHT: ultrahigh-temperature metamorphism.
Fig.6 Comparison of the p-T paths of eclogites from the Western Himalaya Syntaxis and central Himalaya. Modified after [52,55,59-60,62]. P: prehnite-pumpellyite facies; Z: laumontite facies; GS: greenschist facies; A: amphibolite facies; EA: epidote-amphibolite facies;B: blueschist facies; EC:eclogite facies; EC-HPG: eclogite-high-pressure granulite; G: granulite-facies;UHP: ultrahigh-pressure metamorphism; UHT: ultrahigh-temperature metamorphism.
[1] |
CHOPIN C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences[J]. Contributions to Mineralogy and Petrology, 1984, 86(2):107-118.
DOI URL |
[2] |
SMITH D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics[J]. Nature, 1984, 310(5979):641-644.
DOI URL |
[3] |
YE K, CONG B, YE D. The possible subduction of continental material to depths greater than 200 km[J]. Nature, 2000, 407:734-736.
DOI URL |
[4] |
ERDMAN M E, LEE C T A. Oceanic-and continental-type metamorphic terranes: occurrence and exhumation mechanisms[J]. Earth-Science Reviews, 2014, 139:33-46.
DOI URL |
[5] |
CHEMENDA A I, MATTAUER M, BOKUN A N. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman[J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4):173-182.
DOI URL |
[6] | LIU L, ZHANG J, HARRY I I, et al. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km[J]. European Journal of Mineralogy, 2007, 263(3/4):0-191. |
[7] |
WILKE F D H, O’BRIEN P J, GERDES A, et al. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages[J]. European Journal of Mineralogy, 2010, 22(5):703-719.
DOI URL |
[8] |
DONG S, CHEN J, HUANG D. Differential exhumation of tectonic units and ultrahigh-pressure metamorphic rocks in the Dabie Mountains, China[J]. Island Arc, 1998, 7(1/2):174-183.
DOI URL |
[9] |
WHITNEY D L, EVANS B W. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 2010, 95(1):185-187.
DOI URL |
[10] |
DALPIAZ G, BISTACCHI A, MASSIRONI M. Geological outline of the Alps[J]. Episodes, 2003, 26:175-180.
DOI URL |
[11] | MALUSÀ M G, GUILLOT S, ZHAO L, et al. The deep structure of the Alps based on the CIFALPS seismic experiment: a synjournal[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(3): e2020GC009466. |
[12] |
RUBATTO D, HERMANN J. Exhumation as fast as subduction?[J]. Geology, 2001, 29(1):3-6.
DOI URL |
[13] |
HAUZENBERGER C A, TAFERNER H, KONZETT J. Genesis of chromium-rich kyanite in eclogite-facies Cr-spinel-bearing gabbroic cumulates, Pohorje Massif, Eastern Alps[J]. American Mineralogist, 2016, 101:448-460.
DOI URL |
[14] |
LI B, HANS-JOACHIM M, KOLLER F, et al. Metapelite from the high-ultrahigh pressure terrane of the eastern Alps (Pohorje Mountains, Slovenia): new pressure, temperature, and time constraints on a polymetamorphic rock[J]. Journal of Metamorphic Geology, 2021, 39(1):695-726.
DOI URL |
[15] | VRABEC M, JANÁK M, FROITZHEIM N, et al. Phase relations during peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern Alps, Slovenia)[J]. Lithos, 2012, 144:40-55. |
[16] |
GIACOMUZZI G, CHIARABBA C, GORI P D. Linking the Alps and Apennines subduction systems: new constraints revealed by high-resolution teleseismic tomography[J]. Earth and Planetary Science Letters, 2011, 301(3/4):531-543.
DOI URL |
[17] |
ZHAO L, MALUSÀ M G, YUAN H, et al. Author Correction: evidence for a serpentinized plate interface favouring continental subduction[J]. Nature Communications, 2020, 11(1):1-8.
DOI URL |
[18] | BUTLER R, MAZZOLI S, CORRADO S, et al. Applying thick-skinned tectonic models to the Apennine thrust belt of Italy: limitations and implications[J]. AAPG Memoir, 2005, 82:647-667. |
[19] |
ZHAO L. First seismic evidence for continental subduction beneath the Western Alps[J]. Geology, 2015, 43(9):815-818.
DOI URL |
[20] |
ZHANG R Y, LIOU J G, ERNST W G. The Dabie-Sulu continental collision zone: a comprehensive review[J]. Gondwana Research, 2009, 16(1):1-26.
DOI URL |
[21] |
ZHENG Y F, FU B, BING G, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 2003, 62(1/2):105-161.
DOI URL |
[22] |
WANG X, JING Y, LIOU J G, et al. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China[J]. Lithos, 1990, 25(1/2/3):119-131.
DOI URL |
[23] |
XU S T, SU W, LIU Y C, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting[J]. Science, 1992, 256(5053):80-82.
DOI URL |
[24] |
CONG B, WANG Q. Ultra-high-pressure metamorphic rocks in China[J]. Episodes, 1995, 18(1):91-94.
DOI URL |
[25] |
LIOU J G, ZHANG R Y, JAHN B M. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China[J]. Lithos, 1997, 41(1):59-78.
DOI URL |
[26] | HACKER B R, RATSCHBACHER L, WEBB L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6):13339-13364. |
[27] |
FAURE M, LIN W, SCHÄRER U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)[J]. Lithos, 2003, 70(3/4):213-241.
DOI URL |
[28] | 石永红. 大别山太湖地区榴辉岩变质p-T条件及构造意义[D]. 北京: 中国科学院地质与地球物理研究所, 2004. |
[29] | 王清晨. 大别山造山带高压-超高压变质岩的折返过程[J]. 岩石学报, 2013, 29(5):1607-1620. |
[30] |
ZHENG Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4):1223-1254.
DOI URL |
[31] | 索书田, 钟增球, 游振东. 大别—苏鲁超高压-高压变质带伸展构造格架及其动力学意义[J]. 地质学报, 2001, 75(1):14-24. |
[32] | 郑永飞. 超高压变质与大陆碰撞研究进展: 以大别—苏鲁造山带为例[J]. 科学通报, 2008, 53(18):2129-2152. |
[33] | 吴萍萍, 王椿镛, 丁志峰, 等. 大别—苏鲁及邻区上地幔的各向异性[J]. 地球物理学报, 2012, 55(8): 12:2539-2550. |
[34] | 徐佩芬, 刘福田, 王清晨, 等. 大别—苏鲁碰撞造山带的地震层析成像研究: 岩石圈三维速度结构[J]. 地球物理学报, 2000, 43(3):377-385. |
[35] | YANG W, WANG J. Geophysical evidences for magmatic underplating in the Sulu Area, East China[J]. Acta Geologica Sinica, 2002, 76(2):173-179. |
[36] | 杨文采, 方慧. 苏鲁超高压变质带北部地球物理调查(Ⅱ): 非地震方法[J]. 地球物理学报, 1999, 42(4):508-519. |
[37] | 杨文采. 大别苏鲁地区层状地幔反射体及其解释[J]. 地球物理学报, 2003, 46(2):191-196. |
[38] |
CAI F, DING L, YUE Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India-Asia collision[J]. Earth and Planetary Science Letters, 2011, 305(1/2):195-206.
DOI URL |
[39] |
DING L, ZHONG D. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet[J]. Science in China: Series D, 1999, 42(5):491-505.
DOI URL |
[40] |
DING L, KAPP P, ZHONG D, et al. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10):1833-1865.
DOI URL |
[41] | DING L, KAPP P, WAN X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, South central Tibet[J]. Tectonics, 2005, 24(3): TC3001. |
[42] |
DING L, QASIM M, JADOON I A K, et al. The India-Asia collision in north Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth and Planetary Science Letters, 2016, 455:49-61.
DOI URL |
[43] |
DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3):215-218.
DOI URL |
[44] |
DECELLES P G, KAPP P, GEHRELS G E, et al. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision[J]. Tectonics, 2014, 33(5):824-849.
DOI URL |
[45] |
GUILLOT S, MAHÉO G, SIGOYER J, et al. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks[J]. Tectonophysics, 2008, 451(1/2/3/4):225-241.
DOI URL |
[46] |
WU F Y, JI W Q, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 2014, 314(2):548-579.
DOI URL |
[47] |
ZHANG Q, DING L, WILLEMS H. Initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology[J]. Journal of Geology, 2012, 120(2):175-189.
DOI URL |
[48] |
DING H X, ZHANG Z M, DONG X, et al. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: constraints from the North Himalayan metamorphic rocks, southeastern Tibet[J]. Earth and Planetary Science Letters, 2016, 435:64-73.
DOI URL |
[49] | MUKHERJEE B K, SACHAN H K. Discovery of coesite from Indian Himalaya: a record of ultra-high pressure metamorphism in Indian continental crust[J]. Current Science, 2001, 81(10):1358-1361. |
[50] | O’BRIEN P J, ZOTOV N, LAW R, et al. Coesite in eclogite from the Upper Kaghan Valley, Pakistan: a first record and implications[J]. Terra Nostra, 1999, 99(2):109-111. |
[51] |
O’BRIEN P J, ZOTOV N, LAW R, et al. Coesite in Himalayan eclogite and implications for models of India-Asia collision[J]. Geology, 2001, 29(5):435-438.
DOI URL |
[52] |
PARRISH R R, GOUGH S J, SEARLE M P, et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya[J]. Geology, 2006, 34(11):989-992.
DOI URL |
[53] | ZHANG Z M, DONG X, DING H X, et al. Metamorphism and partial melting of the Himalayan orogen[J]. Acta Petrologica Sinica, 2017, 33(8):2313-234. |
[54] | ZHANG Z, DING H, PALIN R M, et al. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: implications for the tectonic evolution of the Himalayan orogen[J]. Gondwana Research, 2021 (in press). |
[55] |
WILKE F D H, O’BRIEN P J, ALTENBERGER U, et al. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes[J]. Lithos, 2010, 114(1/2):70-85.
DOI URL |
[56] |
KANEKO Y, KATAYAMA I, YAMAMOTO H, et al. Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia[J]. Journal of Metamorphic Geology, 2003, 21(6):589-599.
DOI URL |
[57] |
O’BRIEN P J. Eclogites and other high-pressure rocks in the Himalaya: a review[J]. Geological Society, London, Special Publications, 2019, 483(1):183-213.
DOI URL |
[58] | ZHANG D D, DING L, CHEN Y, et al. Two contrasting exhumation scenarios of deeply subducted continental crust in North Pakistan[J]. Geochemistry, Geophysics, Geosystems, 2022 (in press). |
[59] |
WANG Y, ZHANG L, ZHANG J, et al. The youngest eclogite in central Himalaya: p-T path, U-Pb zircon age and its tectonic implication[J]. Gondwana Research, 2017, 41:188-206.
DOI URL |
[60] |
LI Q, ZHANG L, FU B, et al. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in central Himalaya and their tectonic implications[J]. Journal of Metamorphic Geology, 2019, 37(2):203-226.
DOI URL |
[61] |
WANG J M, LANARI P, WU F Y, et al. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: implications for collisional tectonics on early Earth[J]. Earth and Planetary Science Letters, 2021, 558:116760.
DOI URL |
[62] |
GROPPO C, LOMBARDO B, ROLFO F, et al. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (eastern Himalayas)[J]. Journal of Metamorphic Geology, 2007, 25(1):51-75.
DOI URL |
[63] |
KUFNER S K, KAKAR N, BEZADA M, et al. The Hindu Kush slab break-off as revealed by deep structure and crustal deformation[J]. Nature Communications, 2021, 12(1):1-11.
DOI URL |
[64] |
ISCHUK A, BENDICK R, RYBIN A, et al. Kinematics of the Pamir and Hindu Kush regions from GPS geodesy[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5):2408-2416.
DOI URL |
[65] |
SHAH S T H, ZHAO J, XIAO Q, et al. Electrical resistivity structures and tectonic implications of Main Karakorum Thrust (MKT) in the Western Himalayas: NNE Pakistan[J]. Physics of the Earth and Planetary Interiors, 2018, 279:57-66.
DOI URL |
[66] |
SIPPL C, SCHURR B, TYMPEL J, et al. Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography[J]. Earth and Planetary Science Letters, 2013, 384:165-177.
DOI URL |
[67] | 李玮, 陈赟, 谭萍, 等. 大陆深俯冲的深浅动力学响应: 来自帕米尔高原地壳精细结构的约束[J]. 中国科学: 地球科学, 2020, 50(5):663-676. |
[68] |
LI W, CHEN Y, YUAN X, et al. Continental lithospheric subduction and intermediate-depth seismicity: constraints from S-wave velocity structures in the Pamir and Hindu Kush[J]. Earth and Planetary Science Letters, 2018, 482:478-489.
DOI URL |
[69] |
ZHAO L, XU X, MALUSÀ M G. Seismic probing of continental subduction zones[J]. Journal of Asian Earth Sciences, 2017, 145:37-45.
DOI URL |
[70] |
ZHAO L, MALUSÀ M G, YUAN H, et al. Author correction: evidence for a serpentinized plate interface favouring continental subduction[J]. Nature Communications, 2020, 11(1):1-8.
DOI URL |
[71] |
ZHAO L, PAUL A, GUILLOT S, et al. First seismic evidence for continental subduction beneath the Western Alps[J]. Geology, 2015, 43(9):815-818.
DOI URL |
[72] | 刘福田, 徐佩芬, 刘劲松, 等. 大陆深俯冲带的地壳速度结构: 东大别造山带深地震宽角反射/折射研究[J]. 地球物理学报, 2003, 46(3):366-372. |
[73] | 范桃园, 石耀霖, 汪集旸, 等. 影响超高压变质岩p-T-t轨迹特征的主要因素[J]. 地球物理进展, 2007, 22(5):1352-1360. |
[74] |
ERNST W G, MARUYAMA S, WALLIS S. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust[J]. Proceedings of the National Academy of Sciences, 1997, 94(18):9532-9537.
DOI URL |
[75] |
MARUYAMA S, LIOU J G, ZHANG R. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China[J]. Island Arc, 1994, 3(2):112-121.
DOI URL |
[76] |
MERLE O, GUILLIER B. The building of the Central Swiss Alps: an experimental approach[J]. Tectonophysics, 1989, 165(1/2/3/4):41-56.
DOI URL |
[77] |
WHEELER J. Structural evolution of a subducted continental sliver: the northern Dora Maira massif, Italian Alps[J]. Journal of the Geological Society, 1991, 148(6):1101-1113.
DOI URL |
[78] |
CLOOS M, SHREVE R L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description[J]. Pure and Applied Geophysics, 1988, 128(3):455-500.
DOI URL |
[79] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865):738-742.
DOI URL |
[80] | GERYA T V, STOCKHERTÖ B, PERCHUK A L. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation[J]. Tectonics, 2002, 21(6):1056. |
[81] | 郑永飞, 张立飞, 刘良, 等. 大陆深俯冲与超高压变质研究进展[J]. 矿物岩石地球化学通报, 2013, 32(2):135-158. |
[82] |
MALUSÀ M G, FACCENNA C, GARZANTI E, et al. Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps)[J]. Earth and Planetary Science Letters, 2011, 310(1/2):21-32.
DOI URL |
[83] |
ANDERSEN T B, JAMTVEIT B, DEWEY J F, et al. Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides[J]. Terra Nova, 1991, 3(3):303-310.
DOI URL |
[84] |
BRUN J P, FACCENNA C. Exhumation of high-pressure rocks driven by slab rollback[J]. Earth and Planetary Science Letters, 2008, 272(1/2):1-7.
DOI URL |
[85] |
DURETZ T, PETRI B, MOHN G, et al. The importance of structural softening for the evolution and architecture of passive margins[J]. Scientific Reports, 2016, 6(1):1-7.
DOI URL |
[86] |
WANG Y, ZHANG L F, LI Z H, et al. The exhumation of subducted oceanic-derived eclogites: insights from phase equilibrium and thermomechanical modeling[J]. Tectonics, 2019, 38(5):1764-1797.
DOI URL |
[87] |
HACKER B R, GERYA T V, GILOTTI J A. Formation and exhumation of ultrahigh-pressure terranes[J]. Elements, 2013, 9(4):289-293.
DOI URL |
[88] | 李忠海. 大陆俯冲-碰撞-折返的动力学数值模拟研究综述[J]. 中国科学: 地球科学, 2014, 44(5):817-841 |
[89] | 张建新. 俯冲隧道研究: 进展, 问题及其挑战[J]. 中国科学: 地球科学, 2020, 50(12):1671-1691. |
[1] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[2] | XIA Teng, ZHANG Jiaming, LI Shupeng, GUO Lili, WANG Qi, MAO Deqiang. Geophysical dynamic monitoring and analysis of in-situ remediation process at organic contaminated sites [J]. Earth Science Frontiers, 2024, 31(3): 432-442. |
[3] | WANG Jian, YANG Yanchen, LI Ai, YUAN Haiqi. Characteristics of mineral chemistry and geochemistry of the Late Triassic Hongqiling mafic-ultramafic intrusions: Implications for Ni-Cu mineralization [J]. Earth Science Frontiers, 2024, 31(2): 249-269. |
[4] | REN Jishun, LIU Jianhui, ZHU Junbin. Mesozoic superposed orogenic system in eastern China [J]. Earth Science Frontiers, 2024, 31(1): 142-153. |
[5] | XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes [J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[6] | BI Wenjun, ZHANG Jiawei, LI Yalin, DENG Yuzhen. The uplift and exhumation processes in the Qiangtang terrane of Central Tibet since the Cretaceous [J]. Earth Science Frontiers, 2023, 30(2): 18-34. |
[7] | MU Hansheng, XUE Xinyu, JIANG Zaixing. Shale oil and gas in the Mesozoic Basins, eastern Yanshan Orogenic Belt—exploration status and outlooks [J]. Earth Science Frontiers, 2023, 30(2): 282-295. |
[8] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. Detailed structure of the Earth’s crust and upper mantle of the Severomuysk segment of the Baikal rift zone according to teleseismic data [J]. Earth Science Frontiers, 2022, 29(2): 378-392. |
[9] | LIU Yong, LI Tingdong, XIAO Qinghui, ZHANG Kexin, ZHU Xiaohui, DING Xiaozhong. Progress in geological study of oceanic plates [J]. Earth Science Frontiers, 2022, 29(2): 79-93. |
[10] | HUANG Ranxiao, WANG Guosheng, YUAN Guoli, QIU Kunfeng, Hounkpe Jechonias BIDOSSESSI. Assimilation-fractional crystallization (AFC) of pegmatitic magma and its implications for uranium mineralization: A case study of the Husab uranium deposit, Namibia [J]. Earth Science Frontiers, 2022, 29(1): 377-402. |
[11] | LI Dian, WANG Genhou, LIU Zhengyong, LI Pengsheng, FENG Yipeng, TANG Yu, LI Chao, LI Yang. Subduction reversal in the accretion complex drives the exhumation of deep subducted mélange in southern Qiangtang, Tibet: Insights from the Mao'ershan detachment fault [J]. Earth Science Frontiers, 2021, 28(6): 205-226. |
[12] | Evgeny Kh. TURUTANOV, Evgeny V. SKLYAROV, Valentina V. MORDVINOVA, Anatoly M. MAZUKABZOV, Viktor S. KANAYKIN. Geological-geophysical models of the Earth’s crust along the Russian-Mongolian geotransects [J]. Earth Science Frontiers, 2021, 28(5): 260-282. |
[13] | ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, Xiaohui YUAN, Rainer KIND, Robert van der HILST, GAN Weijun, SUN Jimin, DENG Tao, LIU Hongbing, PEI Shunping, XU Qiang, ZHANG Heng, JIA Shixu, YAN Maodu, GUO Xiaoyu, LU Zhanwu, YANG Xiaoping, DENG Gong, JU Changhui. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project [J]. Earth Science Frontiers, 2021, 28(5): 230-259. |
[14] | HUANG Haiyong, XU Yang, YIN Xuwei, YANG Kunguang, LIU Yu. Geochronology, petrogenesis and tectonic implications of the Qiaodian granite porphyry from the western Dabie Orogenic Belt, Central China [J]. Earth Science Frontiers, 2021, 28(5): 380-412. |
[15] | LI Jilin, CHEN Zhengle, ZHOU Taofa, HAN Fengbin, ZHANG Wengao, HUO Hailong, LIU Bo, ZHAO Tongyang, HAN Qiong, LI Ping, ZHENG Jiaxing, CHEN Guimin. Estimation of the extend of granitoid exhumation in the Weiya-Tianhu area: Insight into ore prospecting in the Central Tianshan region, Xinjiang [J]. Earth Science Frontiers, 2021, 28(3): 355-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||