Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 79-89.DOI: 10.13745/j.esf.sf.2021.2.9
Previous Articles Next Articles
PENG Ziqi(), MA Teng*(), LIU Yanjun, CHEN Juan, QIU Wenkai, LIU Rui
Received:
2020-04-10
Revised:
2020-08-20
Online:
2021-09-25
Published:
2021-10-29
Contact:
MA Teng
CLC Number:
PENG Ziqi, MA Teng, LIU Yanjun, CHEN Juan, QIU Wenkai, LIU Rui. Effect of pressure on C-N-S-Fe-H2O system in sil[J]. Earth Science Frontiers, 2021, 28(5): 79-89.
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.596 | 0.975** | 0.184 |
| 0.596 | 1 | 0.988* | 0.387** |
| 0.975** | 0.988* | 1 | 0.806 |
Fe2+ | 0.184 | 0.387** | 0.806 | 1 |
Table 1 DOC, NO 3 -, S O 4 2 -, Fe2+ correlations under 0.04 MPa/12 h pressurization
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.596 | 0.975** | 0.184 |
| 0.596 | 1 | 0.988* | 0.387** |
| 0.975** | 0.988* | 1 | 0.806 |
Fe2+ | 0.184 | 0.387** | 0.806 | 1 |
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.489** | 0.869** | 0.573** |
| 0.489** | 1 | 0.861** | 0.198 |
| 0.869** | 0.861** | 1 | 0.589** |
Fe2+ | 0.573** | 0.198 | 0.589** | 1 |
Table 2 DOC, NO 3 -, S O 4 2 -, Fe2+correlations under 0.04 MPa/24 h pressurization
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.489** | 0.869** | 0.573** |
| 0.489** | 1 | 0.861** | 0.198 |
| 0.869** | 0.861** | 1 | 0.589** |
Fe2+ | 0.573** | 0.198 | 0.589** | 1 |
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.269 | 0.635** | 0.049 |
| 0.269 | 1 | 0.041 | 0.376 |
| 0.635** | 0.041 | 1 | 0.085 |
Fe2+ | 0.049 | 0.376 | 0.085 | 1 |
Table 3 DOC, NO 3 -, S O 4 2 -, Fe2+correlations under 0.04 MPa/36 h pressurization
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.269 | 0.635** | 0.049 |
| 0.269 | 1 | 0.041 | 0.376 |
| 0.635** | 0.041 | 1 | 0.085 |
Fe2+ | 0.049 | 0.376 | 0.085 | 1 |
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.206 | 0.906** | 0.595* |
| 0.206 | 1 | 0.241 | 0.604* |
| 0.906** | 0.241 | 1 | 0.783** |
Fe2+ | 0.595* | 0.604* | 0.783** | 1 |
Table 4 DOC, NO 3 -, S O 4 2 -, Fe2+correlations under 0.04-0.06 MPa/12 h pressurization
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.206 | 0.906** | 0.595* |
| 0.206 | 1 | 0.241 | 0.604* |
| 0.906** | 0.241 | 1 | 0.783** |
Fe2+ | 0.595* | 0.604* | 0.783** | 1 |
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.817** | 0.804** | 0.517** |
| 0.817** | 1 | 0.808** | 0.324 |
| 0.804** | 0.808** | 1 | 0.364 |
Fe2+ | 0.517** | 0.324 | 0.364 | 1 |
Table 5 DOC, NO 3 -, S O 4 2 -, Fe2+correlations under 0.04-0.02 MPa/12 h pressurization
指标 | 各指标间相关系数 | |||
---|---|---|---|---|
DOC | | | Fe2+ | |
DOC | 1 | 0.817** | 0.804** | 0.517** |
| 0.817** | 1 | 0.808** | 0.324 |
| 0.804** | 0.808** | 1 | 0.364 |
Fe2+ | 0.517** | 0.324 | 0.364 | 1 |
[1] |
HUNTER K S, WANG Y F, VAN CAPPELLEN P V . Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry[J]. Journal of Hydrology, 1998, 209(1/2/3/4):53-80.
DOI URL |
[2] |
MYERS C R, NEALSON K H. Microbial reduction of manganese oxides: interactions with iron and sulfur[J]. Geochimica et Cosmochimica Acta, 1988, 52(11):2727-2732.
DOI URL |
[3] | 罗莎莎, 万国江. 云贵高原湖泊沉积物: 水界面铁、锰、硫体系的研究进展[J]. 地质地球化学, 1999, 27(3):47-52. |
[4] | 朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4):355-364. |
[5] | 邓通初. 黑臭河涌沉积物中硝酸盐还原硫氧化微生物氮硫共去除特性[D]. 南昌: 江西农业大学, 2015. |
[6] | 李学刚, 宋金明. 海洋沉积物中碳的来源、迁移和转化[G]//海洋科学集刊. 北京: 科学出版社, 2004: 106-117. |
[7] | 何永胜, 胡东平, 朱传卫. 地球科学中铁同位素研究进展[J]. 地学前缘, 2015, 22(5):54-71. |
[8] |
HUERTA-DIAZ M A, MORSE J W. A quantitative method for determination of trace metal concentrations in sedimentary pyrite[J]. Marine Chemistry, 1990, 29(2/3):119-144.
DOI URL |
[9] |
MORSE J W, LUTHER G W III . Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20):3373-3378.
DOI URL |
[10] | 赵由之. 高原湖泊沉积物中硫形态分布与微生物地球化学行为[D]. 贵阳: 中国科学院地球化学研究所, 2006. |
[11] | 吴丰昌. 云贵高原湖泊沉积物和水体氮、磷和硫的生物地球化学作用和生态环境效应(摘要)[J]. 地质地球化学, 1996, 24(6):88-89. |
[12] | 邓峰煜. 长江口硝酸盐异化还原过程及其影响因素研究[D]. 上海: 华东师范大学, 2016. |
[13] |
BERG P, RISGAARD-PETERSEN N, RYSGAARD S. Interpretation of measured concentration profiles in sediment pore water[J]. Limnology and Oceanography, 1998, 43(7):1500-1510.
DOI URL |
[14] | 周志芳, 徐海洋. 一种实验确定弱透水层水文地质参数的原理与方法[J]. 水文地质工程地质, 2014, 41(5):1-4. |
[15] |
WANG Y X, MA T, RYZHENKO B N, et al. Model for the formation of arsenic contamination in groundwater.1. Datong Basin, China[J]. Geochemistry International, 2009, 47(7):713-724.
DOI URL |
[16] | WANG Y, JIAO J J, CHERRY J A, et al. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 461/462:663-671. |
[17] | LIU Y J, MA T, CHEN J, et al. Contribution of clay-aquitard to aquifer iron concentrations and water quality[J]. Science of the Total Environment, 2020, 741:140061. |
[18] |
POLIZZOTTO M L, KOCAR B D, BENNER S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Nature, 2008, 454(7203):505-508.
DOI URL |
[19] |
MIHAJLOV I, MOZUMDER M R, BOSTICK B C, et al. Arsenic contamination of Bangladesh aquifers exacerbated by clay layers[J]. Nature Communications, 2020, 11(1):2244.
DOI URL |
[20] |
SMITH R, KNIGHT R, FENDORF S. Over pumping leads to California groundwater arsenic threat[J]. Nature Communications, 2018, 9:2089.
DOI URL |
[21] |
MAZUREK M, OYAMA T, WERSIN P, et al. Pore-water squeezing from indurated shales[J]. Chemical Geology, 2015, 400:106-121.
DOI URL |
[22] |
OKIONGBO K S, AKPOFURE E. Hydrogeophysical characterization of shallow unconsolidated alluvial aquifer in yenagoa and environs, southern Nigeria[J]. Arabian Journal for Science and Engineering, 2016, 41(6):2261-2270.
DOI URL |
[23] |
MAZUREK M, ALT-EPPING P, BATH A, et al. Natural tracer profiles across argillaceous formations[J]. Applied Geochemistry, 2011, 26(7):1035-1064.
DOI URL |
[24] |
HENDRY M J, WASSENAAR L I. Transport and geochemical controls on the distribution of solutes and stable isotopes in a thick clay-rich till aquitard, Canada[J]. Isotopes in Environmental and Health Studies, 2004, 40(1):3-19.
DOI URL |
[25] |
SCHAEFER M V, GUO X X, GAN Y Q, et al. Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze River Basin[J]. Geochimica et Cosmochimica Acta, 2017, 204:104-119.
DOI URL |
[26] | ERBAN L E, GORELICK S M, ZEBKER H A, et al. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34):13751-13756. |
[27] | THAMDRUP B. Bacterial manganese and iron reduction in aquatic sediments[J]. Advances in Microbial Ecology, 2000, 16:41-84. |
[28] |
HENDRY M J, SCHWARTZ F W. An alternative view on the origin of chemical and isotopic patterns in groundwater from the Milk River Aquifer, Canada[J]. Water Resources Research, 1988, 24(10):1747-1763.
DOI URL |
[29] |
LIU Y J, MA T, DU Y. Compaction of muddy sediment and its significance to groundwater chemistry[J]. Procedia Earth and Planetary Science, 2017, 17:392-395.
DOI URL |
[30] | 陈娟, 马腾, 刘妍君, 等. 不同压力条件下淤泥中铵氮的释放特性[J]. 安全与环境工程, 2020, 27(4):110-120. |
[31] | 周俊丽. 长江口湿地生态系统中有机质的生物地球化学过程研究: 以崇明东滩为例[D]. 上海: 华东师范大学, 2005. |
[1] | SUN Zhiwen, JIA Yonggang, QUAN Yongzheng, GUO Xiujun, LIU Tao, MENG Qingsheng, SUN Zhongqiang, LI Kai, FAN Zhihan, CHEN Tian, TANG Haoru. Development and application of long-term in situ monitoring system for complex deep-sea engineering geology [J]. Earth Science Frontiers, 2022, 29(5): 216-228. |
[2] | CHEN Tian, JIA Yonggang, LIU Tao, LIU Xiaolei, SHAN Hongxian, SUN Zhongqiang. Long-term in situ observation of pore pressure in marine sediments: A review of technology development and future outlooks [J]. Earth Science Frontiers, 2022, 29(5): 229-245. |
[3] | ZENG Zuoxun, CHEN Zhigeng, LU Chengdong, YANG Yu, CHEN Kangli, XIANG Shimin, DAI Qingqin, ZHANG Jun, DENG Yanting, FU Yan, DU Qiujiao, LIU Lilin, YANG Weiran. Earth system science research on earthquake mechanisms: Theory and validation of a new model [J]. Earth Science Frontiers, 2021, 28(6): 263-282. |
[4] | JING Cui, HAO Long, ZHANG Jing, DENG Xia, YU Wenhui. Genesis of the abnormal formation pressure in the Wufeng-Longmaxi Formation, Sichuan Basin and a generalized Poisson’s ratio prediction method: A case study of the Changning area [J]. Earth Science Frontiers, 2021, 28(1): 402-410. |
[5] | SHU Jinfu. Space, Earth, ocean: mineralogical studies under extreme conditions [J]. Earth Science Frontiers, 2020, 27(3): 133-153. |
[6] | LIU Chenglin,PING Yingqi,GUO Zeqing,TIAN Jixian,HONG Weiyu,ZHANG Wei,HUO Junzhou. Genetic mechanism of overpressure in the Paleogene and Neogene in the northwestern Qaidam Basin [J]. Earth Science Frontiers, 2019, 26(3): 211-219. |
[7] | SONG Zhijie, ZHANG Hongyuan, HOU Di, LIU Changfeng, LIU Wencan, WU Chen. Discovery and the geological significance of retrograded eclogites from the northern margin of the central Qilian block [J]. Earth Science Frontiers, 2019, 26(2): 233-248. |
[8] | DENG Jinfu,LIU Cui,DI Yongjun,FENG Yanfang,XIAO Qinghui,LIU Yong,DING Xiaozhong,MENG Guixiang,HUANG Fan,ZHAO Guochun,WU Zongxu. Discussion on the tonalite-trondhjemite-granodiorite (TTG) petrotectonic assemblage and its subtypes. [J]. Earth Science Frontiers, 2018, 25(6): 42-50. |
[9] | SHEN Rui,GUO Hekun,HU Zhiming,XIONG Wei,ZUO Luo. High pressure adsorption characteristics of shale gas and their impact on the law of reserveproduction. [J]. Earth Science Frontiers, 2018, 25(2): 204-209. |
[10] | QIN Xiao-Li, LI Rong-Xi, DONG Shu-Wen, LIU Hai-Jing. Tectonic fluid and its formation conditions of Dabashan intra continent orogenic belt. [J]. Earth Science Frontiers, 2016, 23(4): 183-189. |
[11] | LIU Hong-Lin, WANG Gong-Yan, FANG Chao-Ge, GUO Wei, SUN Sha-Sha. The formation mechanism of overpressure reservoir and target screening index of the marine shale in the South China. [J]. Earth Science Frontiers, 2016, 23(2): 48-54. |
[12] | YANG Hua, LIU Xin-She, YAN Xiao-Xiong. The relationship between tectonicsedimentary evolution and tight sandstone gas reservoir since the late Paleozoic in Ordos Basin. [J]. Earth Science Frontiers, 2015, 22(3): 174-183. |
[13] | HAO Fang, LIU Jian-Zhang, ZOU Hua-Yao, LI Peng-Peng. Mechanisms of natural gas accumulation and leakage in the overpressured sequences in the Yinggehai and Qiongdongnan basins, offshore South China Sea [J]. Earth Science Frontiers, 2015, 22(1): 169-180. |
[14] | MENG Yuan-Lin, WU Lin, SUN Hong-Bin, WU Chen-Liang, HU An-Wen, ZHANG Lei, ZHAO Zi-Tong, SHI Li-Dong, XU Cheng, LI Chen. Dynamics of diagenesis and prediction of diagenetic facies under abnormally low pressure in the Southern Liaohe West Sag [J]. Earth Science Frontiers, 2015, 22(1): 206-214. |
[15] | . Petrology and metamorphic temperaturepressure conditions of Xilinhot Group, Inner Mongolia, China. [J]. Earth Science Frontiers, 2012, 19(5): 136-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||