Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 402-410.DOI: 10.13745/j.esf.sf.2020.12.2
Previous Articles Next Articles
JING Cui1(), HAO Long2, ZHANG Jing1, DENG Xia1, YU Wenhui2,*()
Received:
2019-12-20
Revised:
2020-11-25
Online:
2021-01-25
Published:
2021-01-28
Contact:
YU Wenhui
CLC Number:
JING Cui, HAO Long, ZHANG Jing, DENG Xia, YU Wenhui. Genesis of the abnormal formation pressure in the Wufeng-Longmaxi Formation, Sichuan Basin and a generalized Poisson’s ratio prediction method: A case study of the Changning area[J]. Earth Science Frontiers, 2021, 28(1): 402-410.
Fig.1 A schematic diagram showing the macro-distribution of the formation pressure coefficients and the current tectonic division in the Wufeng-Longmaxi Formation, Sichuan Basin and the distribution of sedimentary facies belts in the region. Modified from [7,8,9,10].
Fig.5 Results of digital petrophysical simulation on the equivalent digital cores (shown in Fig.4) under different confining pressures. (1, 2) Variation ofPoisson’s ratio with pore pressure for 4% or 6% porosity; (3, 4) P- and S-wave velocity change with pore pressure for 4% or 6% porosity.
Fig.4 Composite illustration for the Wufeng-Longmaxi Formation. (1) Electron microscope images of shale rocks; (2) An equivalent digital core model built by the process method; (3) Equivalent digital cores with 4% (bottom) or 6% (top) porosity.
Fig.6 Scatter plots of formation pressure coefficient vs. seismic parameter measured in Wells A, B and E in the Wufeng-Longmaxi Formation, showing the variation trends
Fig.7 Results of drilling porosity, gas content and pressure coefficient analyses for wells A, B, and E in the Changning area. (1) Correlation between total gas content and porosity; (2-4) Plot of total gas content difference (left panel) or pressure coefficient difference (right panel) between indicated well pairs at different well layer
Fig.9 Application of the Poisson’s ratio formation pressure prediction method in the Changning area (1)~(3) Calculated formation pressure coefficient contour maps showing three local formation pressure distributions in the Changing area.
项目 | A | B | 后验井C | 后验井D |
---|---|---|---|---|
实钻结果 | 1.35 | 2.15 | 1.50 | 1.65 |
泊松比地层 压力预测成果 | 1.38 | 2.17 | 1.51 | 1.63 |
Table 1 Comparison of Poisson’s ratio formation pressure prediction results and actual drilling results (Changning area)
项目 | A | B | 后验井C | 后验井D |
---|---|---|---|---|
实钻结果 | 1.35 | 2.15 | 1.50 | 1.65 |
泊松比地层 压力预测成果 | 1.38 | 2.17 | 1.51 | 1.63 |
[1] | 樊洪海. 异常地层压力分析方法与应用[M]. 北京: 科学出版社, 2016. |
[2] | 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1):8-10. |
[3] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4):561-574. |
[4] | OLALERE O, STEPHEN B. Energy-based formation pressure prediction[J]. Journal of Petroleum Science and Engineering, 2019, 17(3):955-964. |
[5] | 艾池, 冯福平, 李洪伟. 地层压力预测技术现状及发展趋势[J]. 石油地质与工程, 2007, 12(6):1673-1680. |
[6] | 谢玉洪, 李绪深, 童传新, 等. 莺琼盆地高温超压天然气成藏理论与勘探实践[M]. 北京: 石油工业出版社, 2015. |
[7] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6):693-697. |
[8] |
WANG Q, ZHANG P, JEFFREY T F M, et al. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 2001, 294(4):574-577.
DOI URL |
[9] | WANG Q, QIAO X J, LAN Q G, et al. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 2011(4):634-640. |
[10] | WANG M, SHEN Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5):1-22. |
[11] | 胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5):605-615. |
[12] | 姜磊. 强改造作用下川南下古生界页岩气保存条件研究[D]. 成都: 成都理工大学, 2019. |
[13] | 王明文, 罗纲, 孙云强, 等. 数值模拟盐体几何起伏导致的应力扰动[J]. 石油勘探与开发, 2020, 47(2):310-318. |
[14] | 王志宏, 郝翠果, 李建明, 等. 川西前陆盆地超压分布及成因机制[J]. 岩性油气藏, 2019, 31(6):36-43. |
[15] | 梁超, 姜在兴, 杨镜婷, 等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发, 2012, 39(12):691-697. |
[16] | 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018, 38(10):1-10. |
[17] | 何登发, 鲁人齐, 黄涵宇, 等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 2019, 46(5):993-1006. |
[18] | 吴晓智, 周刚, 何登发, 等. 四川盆地川东地区高陡构造形成机制与天然气聚集[J]. 地质科学, 2019, 54(4):1100-1113. |
[19] | 董大忠, 施振生, 管全中, 等. 四川盆地五峰组-龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018(4):67-76. |
[20] | 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1):193-201. |
[21] | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1):31-44. |
[22] | MARK R P, CHRIS K, ANDREW L, et al. Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin, 2013(4):639-672. |
[23] | LEI T, YIN X Y, ZONG Z Y. Pore pressure prediction in orthotropic medium based on rock physics modeling of shale gas[J]. Journal of Natural Gas Science and Engineering, 2020, 7(4):625-630. |
[24] | GEHEN, FORBES, BENSON. Fluid-driven tensile fracture and fracture toughness in Nash Point shale at elevated pressure[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2):635-640. |
[25] | WAYNE A, DONALD O. Groundwater table mounding, pore pressure, and liquefaction induced by explosions: energy-distance relations[J]. Reviews of Geophysics, 2007, 45(4):4006-4010. |
[26] | 姜文亚, 宋泽章, 周立宏, 等. 渤海湾盆地歧口凹陷地层压力结构特征[J]. 吉林大学学报(地球科学版), 2020, 50(1):52-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||