Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 294-319.DOI: 10.13745/j.esf.sf.2020.3.23
Previous Articles Next Articles
XUE Chunji1(), ZHAO Xiaobo1, ZHAO Weice1, ZHAO Yun1, ZHANG Guozhen2, Bakhtiar NURTAEV3, Nikolay PAK4, MO Xuanxue1
Received:
2019-12-18
Revised:
2020-03-11
Online:
2020-03-25
Published:
2020-03-25
CLC Number:
XUE Chunji, ZHAO Xiaobo, ZHAO Weice, ZHAO Yun, ZHANG Guozhen, Bakhtiar NURTAEV, Nikolay PAK, MO Xuanxue. Deformed zone hosted gold deposits in the China-Kazakhstan-Kyrgyzstan-Uzbekistan Tian Shan: metallogenic environment, controlling parameters, and prospecting criteria[J]. Earth Science Frontiers, 2020, 27(2): 294-319.
Fig.1 Tectonic sketch map of the Central Asian Orogenic Belt (a), Tectonic framework, granitoids and deformation zone hosted gold deposits in the China-Kazakhstan-Kyrgyzstan-Uzbekistan Tian Shan Belt (b). Modified from [2,8,15,19-20].
金矿床 | 国家 | 储量/t | 品位/(g·t-1) | 成矿环境 | 控矿构造样式与性质 | 容矿岩石 | 岩浆岩时代及方法 | 金属矿物 | 成矿时代 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
穆龙套 | 乌 | 6 137 | 3.5 | 陆块拼贴变形带 | D2期南北向强烈挤压与缩短和D3期左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | (287.1±4.6) Ma (Rb-Sr),(292±8) Ma (U-Pb) | 黄铁矿、毒砂、自然金、白钨矿 | (287.5±1.7) Ma (毒砂,Re-Os) | [ | |||||
科克巴塔斯 | 乌 | 150 | 7.5 | 陆块拼贴变形带 | D3期北东向左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | 黄铁矿、毒砂、辉锑矿 | 早二叠世 (?) | [ | ||||||
阿曼泰套 | 乌 | 120 | 1.3 | 陆块拼贴变形带 | D3期北东向左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | 黄铁矿、毒砂、辉锑矿 | 早二叠世 (?) | [ | ||||||
道吉兹套 | 乌 | 180 | 4.0 | 陆块拼贴变形带 | D3期北东向左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | 黄铁矿、毒砂、黄铜矿 | 早二叠世 (?) | [ | ||||||
扎尔米坦 | 乌 | 314 | 9.8 | 陆块拼贴变形带 | 北西西向高角度左行走滑断裂 | 志留系变沉积岩系及侵入其中的石英二长斑岩 | (286±2) Ma (U-Pb) | 黄铁矿、毒砂、碲化铋 | 约286 Ma (黄铁矿,Re-Os) | [ | |||||
库姆托尔 | 吉 | 1 100 | 4.4 | 陆块拼贴变形带 | 北东走向逆冲推覆构造及构造混杂岩带 | 新元古界文德系含碳浊积岩系 | (296.7±4.2) Ma (U-Pb) | 黄铁矿、白钨矿、自然金 | 288~284 Ma (绢云母,Ar/Ar) | [ | |||||
查尔库拉 | 哈 | 100 | 10~15 | 陆块拼贴变形带 | 北东走向逆冲推覆构造及构造混杂岩带 | 新元古界文德系含碳浊积岩系 | 黄铁矿、白钨矿、自然金 | 早二叠世 (?) | [ | ||||||
萨瓦亚尔顿 | 中 | 127 | 2.0 | 陆块拼贴变形带 | 北东向韧-脆性剪切带,南西走向,倾向北西 | 泥盆—石炭系含碳浊积岩系 | (207.5±4.2) Ma (K/Ar) | 黄铁矿、毒砂、磁黄铁矿 | (323.9±4.8) Ma (282±12) Ma (黄铁矿,Re-Os) | [ | |||||
阿万达 | 中 | 11.6 | 1.8 | 陆块拼贴变形带 | 东西向韧-脆性剪切带,倾向北西 | 泥盆—石炭系含碳浊积岩系 | (298±15) Ma (U-Pb) | 黄铁矿、毒砂、磁黄铁矿 | 早二叠世 (?) | [ | |||||
卡特巴阿苏 | 中 | 87 | 3.8 | 陆块拼贴变形带 | D1南北向缩短导致的次级北东东向逆冲断层系及相关张性-张扭性裂隙系统 | 石炭纪二长花岗岩、花岗闪长岩和闪长岩 | (345.5±2.6) Ma (U-Pb),(340.1±1.8) Ma (U-Pb),(342.4±3.6) Ma (U-Pb) | 黄铁矿、黄铜矿、自然金 | (310.9±4.2) Ma(黄铁矿,Re-Os)(322.5±6.8) Ma(黄铁矿,Rb-Sr) | [ | |||||
阿拉斯托 | 中 | 9.4 | 3.0 | 陆块拼贴变形带 | 北东向脆-韧性断层 | 石炭纪花岗闪长岩 | (350.3±3.0) Ma (U-Pb) | 黄铁矿、磁黄铁矿、黄铜矿 | (327.7±2.9) Ma(黄铁矿,Re-Os) | [ | |||||
萨日达拉 | 中 | 10 | 2.8 | 陆块拼贴变形带 | 北西西向韧性剪切带 | 新元古代变沉积岩及侵入其中的志留纪花岗岩 | (441.6±3.8) Ma (U-Pb) | 黄铁矿、自然金、磁黄铁矿 | (337.6±1.7) Ma(绢云母,Ar/Ar) | [ | |||||
望峰 | 中 | 3 | 9.0 | 陆块拼贴变形带 | 北西西向韧性剪切带 | 志留纪二长花岗岩 | (439.9±2.2) Ma (U-Pb) | 黄铁矿、自然金、磁黄铁矿 | 早石炭世 (?) | [ | |||||
康古尔 | 中 | 40 | 9.9 | 陆内走滑变形带 | 北北东向右行走滑剪切 | 石炭纪雅满苏组中酸性火山岩及碎屑岩 | (282±16) Ma (Rb-Sr) | 黄铁矿、黄铜矿、自然金 | (261.0 ± 1.0) Ma(绢云母,Ar/Ar) | [ | |||||
红石 | 中 | 5.4 | 5.0 | 陆内走滑变形带 | 北北东向右行走滑剪切 | 石炭纪干敦组海相沉积夹少量火山建造 | (337.6±4.5)Ma (U-Pb) | 黄铁矿、黄铜矿、自然金 | (257.0±4.0) Ma(包裹体 Rb-Sr) | [ | |||||
左岸 | 吉 | 130 | 6.9 | 俯冲增生变形带 | 北北西向塔尔迪布拉克韧-脆性剪切带,倾向南西 | 新元古代片岩和绿片岩 | (435.3±3.8) Ma (U-Pb),(427.7±1.9) Ma (U-Pb) | 黄铁矿、黄铜矿、自然金、银金矿 | (511±18) Ma (黄铁矿,Re-Os) | [ |
金矿床 | 国家 | 储量/t | 品位/(g·t-1) | 成矿环境 | 控矿构造样式与性质 | 容矿岩石 | 岩浆岩时代及方法 | 金属矿物 | 成矿时代 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
穆龙套 | 乌 | 6 137 | 3.5 | 陆块拼贴变形带 | D2期南北向强烈挤压与缩短和D3期左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | (287.1±4.6) Ma (Rb-Sr),(292±8) Ma (U-Pb) | 黄铁矿、毒砂、自然金、白钨矿 | (287.5±1.7) Ma (毒砂,Re-Os) | [ | |||||
科克巴塔斯 | 乌 | 150 | 7.5 | 陆块拼贴变形带 | D3期北东向左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | 黄铁矿、毒砂、辉锑矿 | 早二叠世 (?) | [ | ||||||
阿曼泰套 | 乌 | 120 | 1.3 | 陆块拼贴变形带 | D3期北东向左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | 黄铁矿、毒砂、辉锑矿 | 早二叠世 (?) | [ | ||||||
道吉兹套 | 乌 | 180 | 4.0 | 陆块拼贴变形带 | D3期北东向左行韧性剪切变形 | 奥陶—志留系别萨潘组含碳浊积岩系 | 黄铁矿、毒砂、黄铜矿 | 早二叠世 (?) | [ | ||||||
扎尔米坦 | 乌 | 314 | 9.8 | 陆块拼贴变形带 | 北西西向高角度左行走滑断裂 | 志留系变沉积岩系及侵入其中的石英二长斑岩 | (286±2) Ma (U-Pb) | 黄铁矿、毒砂、碲化铋 | 约286 Ma (黄铁矿,Re-Os) | [ | |||||
库姆托尔 | 吉 | 1 100 | 4.4 | 陆块拼贴变形带 | 北东走向逆冲推覆构造及构造混杂岩带 | 新元古界文德系含碳浊积岩系 | (296.7±4.2) Ma (U-Pb) | 黄铁矿、白钨矿、自然金 | 288~284 Ma (绢云母,Ar/Ar) | [ | |||||
查尔库拉 | 哈 | 100 | 10~15 | 陆块拼贴变形带 | 北东走向逆冲推覆构造及构造混杂岩带 | 新元古界文德系含碳浊积岩系 | 黄铁矿、白钨矿、自然金 | 早二叠世 (?) | [ | ||||||
萨瓦亚尔顿 | 中 | 127 | 2.0 | 陆块拼贴变形带 | 北东向韧-脆性剪切带,南西走向,倾向北西 | 泥盆—石炭系含碳浊积岩系 | (207.5±4.2) Ma (K/Ar) | 黄铁矿、毒砂、磁黄铁矿 | (323.9±4.8) Ma (282±12) Ma (黄铁矿,Re-Os) | [ | |||||
阿万达 | 中 | 11.6 | 1.8 | 陆块拼贴变形带 | 东西向韧-脆性剪切带,倾向北西 | 泥盆—石炭系含碳浊积岩系 | (298±15) Ma (U-Pb) | 黄铁矿、毒砂、磁黄铁矿 | 早二叠世 (?) | [ | |||||
卡特巴阿苏 | 中 | 87 | 3.8 | 陆块拼贴变形带 | D1南北向缩短导致的次级北东东向逆冲断层系及相关张性-张扭性裂隙系统 | 石炭纪二长花岗岩、花岗闪长岩和闪长岩 | (345.5±2.6) Ma (U-Pb),(340.1±1.8) Ma (U-Pb),(342.4±3.6) Ma (U-Pb) | 黄铁矿、黄铜矿、自然金 | (310.9±4.2) Ma(黄铁矿,Re-Os)(322.5±6.8) Ma(黄铁矿,Rb-Sr) | [ | |||||
阿拉斯托 | 中 | 9.4 | 3.0 | 陆块拼贴变形带 | 北东向脆-韧性断层 | 石炭纪花岗闪长岩 | (350.3±3.0) Ma (U-Pb) | 黄铁矿、磁黄铁矿、黄铜矿 | (327.7±2.9) Ma(黄铁矿,Re-Os) | [ | |||||
萨日达拉 | 中 | 10 | 2.8 | 陆块拼贴变形带 | 北西西向韧性剪切带 | 新元古代变沉积岩及侵入其中的志留纪花岗岩 | (441.6±3.8) Ma (U-Pb) | 黄铁矿、自然金、磁黄铁矿 | (337.6±1.7) Ma(绢云母,Ar/Ar) | [ | |||||
望峰 | 中 | 3 | 9.0 | 陆块拼贴变形带 | 北西西向韧性剪切带 | 志留纪二长花岗岩 | (439.9±2.2) Ma (U-Pb) | 黄铁矿、自然金、磁黄铁矿 | 早石炭世 (?) | [ | |||||
康古尔 | 中 | 40 | 9.9 | 陆内走滑变形带 | 北北东向右行走滑剪切 | 石炭纪雅满苏组中酸性火山岩及碎屑岩 | (282±16) Ma (Rb-Sr) | 黄铁矿、黄铜矿、自然金 | (261.0 ± 1.0) Ma(绢云母,Ar/Ar) | [ | |||||
红石 | 中 | 5.4 | 5.0 | 陆内走滑变形带 | 北北东向右行走滑剪切 | 石炭纪干敦组海相沉积夹少量火山建造 | (337.6±4.5)Ma (U-Pb) | 黄铁矿、黄铜矿、自然金 | (257.0±4.0) Ma(包裹体 Rb-Sr) | [ | |||||
左岸 | 吉 | 130 | 6.9 | 俯冲增生变形带 | 北北西向塔尔迪布拉克韧-脆性剪切带,倾向南西 | 新元古代片岩和绿片岩 | (435.3±3.8) Ma (U-Pb),(427.7±1.9) Ma (U-Pb) | 黄铁矿、黄铜矿、自然金、银金矿 | (511±18) Ma (黄铁矿,Re-Os) | [ |
Fig.7 Geological map (a) and cross-section of the No.23 exploration line of the IV mineralized belt (b) from the Sawayaerdun gold deposit, Xinjiang, China. Modified from [116].
Fig.11 Histogram of mineral resources showing major deformed zone hosted gold deposits in the Tian Shan and their metallogenic enviroment (data from Table 1)
Fig.13 Cartoon showing the characteristics and evolution of pyrite during multi-stage gold mineralization events of the Sawayaerdun gold deposit, Xinjiang, China
[1] |
XIAO W J, ZHANG L C, QIN K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304(4): 370-395.
DOI URL |
[2] |
WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47.
DOI URL |
[3] | 肖文交, 韩春明, 袁超, 等. 新疆北部石炭纪—二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 2006, 22(5): 1062-1076. |
[4] | 李锦轶, 王克卓, 李亚萍, 等. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报, 2006, 25(8): 895-909. |
[5] | 陈毓川, 刘德权, 唐延龄, 等. 中国天山矿产及成矿体系[M]. 北京: 地质出版社, 2008: 1-1063. |
[6] | 高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12): 1804-1816. |
[7] |
BISKE Y S, SELTMANN R. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans[J]. Gondwana Research, 2010, 17(2/3): 602-613.
DOI URL |
[8] |
XIAO W J, WINDLEY B F, ALLEN M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23(4): 1316-1341.
DOI URL |
[9] |
CHARVET J, SHU L S, LAURENT-CHARVET S, et al. Palaeozoic tectonic evolution of the Tianshan Belt, NW China[J]. Science China: Earth Sciences, 2011, 54(2): 166-184.
DOI URL |
[10] |
FRIMMEL H E. Earth’s continental crustal gold endowment[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 45-55.
DOI URL |
[11] |
MAO J, KONOPELKO D, SELTMANN R, et al. Post collisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan[J]. Economic Geology, 2004, 99(8): 1771-1780.
DOI URL |
[12] |
ABZALOV M. Zarmitan granitoid-hosted gold deposit, Tian Shan Belt, Uzbekistan[J]. Economic Geology, 2007, 102(3): 519-532.
DOI URL |
[13] |
BIERLEIN F P, WILDE A R. New constraints on the polychromous nature of the giant Muruntau gold deposit from wall-rock alteration and ore paragenetic studies[J]. Australian Journal of Earth Sciences, 2010, 57(6): 839-854.
DOI URL |
[14] | 刘春涌. 周边国家矿产资源现状对比研究报告(中亚地区)[R]. 乌鲁木齐: 新疆维吾尔自治区地质调查院, 2003. |
[15] | 薛春纪, 赵晓波, 莫宣学, 等. 西天山“亚洲金腰带”及其动力学背景和成矿控制与找矿[J]. 地学前缘, 2014, 21(5): 128-155. |
[16] | 张祺, 薛春纪, 赵晓波, 等. 新疆西天山卡特巴阿苏大型金矿床地质地球化学和成岩成矿年代[J]. 中国地质, 2015, 42(3): 411-437. |
[17] | YAKUBCHUK A, COLE A, SELTMANN R, et al. Tectonic setting, characteristics, and regional exploration criteria for gold mineralization in the Altaid orogenic collage: the Tien Shan province as a key example[J]. Society of Economic Geologists, Special Publication, 2002, 9: 177-202. |
[18] | 毛景文, 韩春明, 王义天, 等. 中亚地区南天山大型金矿带的地质特征、成矿模型和勘查准则[J]. 地质通报, 2002, 21(12): 858-868. |
[19] | 薛春纪, 赵晓波, 张国震, 等. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力[J]. 中国地质, 2015, 42(3): 381-410. |
[20] |
ŞENGÖR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307.
DOI URL |
[21] | GAR'KOVETS V G. On the definition of the Kyzylkum-Type syngenetic-epigenetic deposits[J]. Doklady Akademiinauk SSSR, 1973, 208(1): 163-165. |
[22] | 郑明华, 张寿庭, 刘家军, 等. 西南天山穆龙套型金矿床产出地质背景与成矿机制[M]. 北京: 地质出版社, 2001: 1-131. |
[23] | 杨富全, 王义天, 李蒙文, 等. 新疆天山黑色岩系型矿床的地质特征及找矿方向[J]. 地质通报, 2005, 24(5): 462-469. |
[24] | 刘春涌, 王永江. 初论中亚黑色岩系型金矿床的基本特征:兼论新疆黑色岩系型金矿找矿方向[J]. 新疆地质, 2007, 25(1): 34-39. |
[25] | COLE A. Genesis of granitoid-hosted gold-tungsten mineralization, Jilau, Tajikistan[D]. London: University of London, 2001: 1-240. |
[26] | COLE A. Gold mineralization in the southern Tien Shan, Central Asia: tectonic setting, characteristics, exploration criteria[M] // SELTMANN R, JENCHURAEVA R. Paleozoic geodynamics and gold deposits in the Kyrgyz Tien Shan. IGCP-373 Field Conference in Bishkek and Kyrgyz Tien Shan: Excursion Guidebook. Krakow, Poland: IGCP-373, 2001: 71-80. |
[27] | 朱永峰. 克拉通和古生代造山带中的韧性剪切带型金矿: 金矿成矿条件与成矿环境分析[J]. 矿床地质, 2004, 23(4): 509-519. |
[28] |
GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 7-27.
DOI URL |
[29] |
ZHOU T H, GOLDFARB R J, PHILLIPS N G. Tectonics and distribution of gold deposits in China: an overview[J]. Mineralium Deposita, 2002, 37(3): 249-282.
DOI URL |
[30] | GROVES D I, GOLDFARB R J, ROBERT F, et al. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance[J]. Economic Geology, 2003, 98(1): 1-29. |
[31] |
GOLDFARB R J, GROVES D I, GARDOLL S. Orogenic gold and geologic time: a global synjournal[J]. Ore Geology Reviews, 2001, 18(1/2): 1-75.
DOI URL |
[32] |
BIERLEIN F P, GROVES D I, GOLDFARB R J, et al. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits[J]. Mineralium Deposita, 2006, 40(8): 874-886.
DOI URL |
[33] |
DE BOORDER H. Spatial and temporal distribution of the orogenic gold deposits in the Late Palaeozoic Variscides and Southern Tianshan: how orogenic are they?[J]. Ore Geology Reviews, 2012, 46: 1-31.
DOI URL |
[34] |
GOLDFARB R J, TAYLOR R D, COLLINS G S, et al. Phanerozoic continental growth and gold metallogeny of Asia[J]. Gondwana Research, 2014, 25(1): 48-102.
DOI URL |
[35] |
WILHEM C, WINDLEY B F, STAMPFLI G M. The Altaids of Central Asia: a tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113: 303-341.
DOI URL |
[36] |
XIAO W J, WINDLEY B F, YUAN C M, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3): 221-270.
DOI URL |
[37] |
XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 477-507.
DOI URL |
[38] | JAHN B M, WU F, CHEN B. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic[J]. Geological Society of America Special Papers, 2000, 350: 181-193. |
[39] | 涂光炽. 初议中亚成矿域[J]. 地质科学, 1999, 34(4): 397-404. |
[40] | YAKUBCHUK A S, SHATOV V V, KIRWIN D, et al. Gold and base metal metallogeny of the central Asian orogenic supercollage[J]. Economic Geology, 2005, 100th Anniversary Volume, 1035-1068. |
[41] | 肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, 26(1): 4-8. |
[42] | PORTER T M. The Tien Shan belt: golden heart of Central Asia[J]. The Gangue, 2006, 88(1): 4-5. |
[43] | 黄汲清, 任纪舜, 姜春发, 等. 中国大地构造及其演化[M]. 北京: 科学出版社, 1980: 1-140. |
[44] | 王作勋, 邬继易, 吕喜朝, 等. 天山多旋回构造演化与成矿[M]. 北京: 科学出版社, 1990: 1-217. |
[45] | NIKOLAEV V A. About principal structural line of Tianshan[J]. Proceedings of All-Russian Mineralogical Society Series, 1933, 62(2): 347-354. |
[46] |
HAN Y G, ZHAO G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian orogenic belt: constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews. 2018, 186: 129-152.
DOI URL |
[47] | 王宗秀, 李春麟, NIKOLAI P, 等. 西天山造山带构造单元划分及古生代洋陆转换过程[J]. 中国地质, 2017, 44(4): 623-641. |
[48] | BURTMAN B S. The Tien Shan Early Paleozoic tectonics and geodynamics[J]. Russian Journal of Earth Sciences, 2006, 8(3): 1-23. |
[49] |
ROJAS-AGRAMONTE Y, KRÖNER A, ALEXEIEV D V, et al. Detrital and igneous zircon ages for supracrustal rocks of the Kyrgyz Tianshan and palaeo geographic implications[J]. Gondwana Research, 2014, 26(3/4): 957-974.
DOI URL |
[50] |
ALEXEIEV D V, KRÖNER A, HEGNER E, et al. Middle to Late Ordovician arc system in the Kyrgyz Middle Tianshan: from arc-continent collision to subsequent evolution of a Palaeozoic continental margin[J]. Gondwana Research, 2016, 39: 261-291.
DOI URL |
[51] |
QIAN Q, GAO J, KLEMD R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal of Earth Sciences, 2009, 98(3): 551-569.
DOI URL |
[52] | 徐学义, 李向民, 马中平, 等. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J]. 地质学报, 2006, 80(8): 1168-1176. |
[53] | 徐学义, 夏林圻, 马中平, 等. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报, 2006, 22(1): 83-94. |
[54] |
ZHANG Y Y, SUN M, YUAN C, et al. Alternating trench advance and retreat: insights from Paleozoic magmatism in the Eastern Tianshan, Central Asian orogenic belt[J]. Tectonics, 2018, 37(7): 2142-2164.
DOI URL |
[55] | 舒良树, 朱文斌, 王博, 等. 新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J]. 岩石学报, 2005, 21(1): 25-36. |
[56] |
KRÖNER A, ALEXEIEV D V, HEGNER E, et al. Zircon and muscovite ages, geochemistry, and Nd-Hf isotopes for the Aktyuz metamorphic terrane: evidence for an early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan[J]. Gondwana Research, 2012, 21(4): 901-927.
DOI URL |
[57] | KRÖNER A, WINDLEY B F, BADARCH G, et al. Accretionary growth and crust formation in the Central Asian orogenic belt and comparison with the Arabian-Nubian shield[J]. Geological Society of America Memoirs, 2007, 200: 181-209. |
[58] |
KRÖNER A, ALEXEIEV D V, ROJAS-AGRAMONTE Y, et al. Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tianshan: zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian orogen[J]. Gondwana Research, 2013, 23(1): 272-295.
DOI URL |
[59] |
LIU H S, WANG B, SHU L S, et al. Detrital zircon ages of Proterozoic meta-sedimentary rocks and paleozoic sedimentary cover of the Northern Yili block: implications for the tectonics of microcontinents in the Central Asian orogenic belt[J]. Precambrian Research, 2014, 252: 209-222.
DOI URL |
[60] | 龙晓平, 黄宗莹. 中亚造山带内微陆块的起源:以中国天山造山带研究为例[J]. 矿物岩石地球化学通报, 2017, 36(5): 771-785, 696. |
[61] |
KRÖNER A, ALEXEIEV D V, KOVACH V P, et al. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3-1.8 Ga Kuilyu Complex, East Kyrgyzstan: the oldest continental basement fragment in the Tianshan orogenic belt[J]. Journal of Asian Earth Sciences, 2017, 135: 122-135.
DOI URL |
[62] | 胡霭琴, 张国新, 陈义兵, 等. 中国新疆地壳演化主要地质事件年代学和地球化学[M]. 北京: 地质出版社, 2006: 1-427. |
[63] | HE Z Y, KLEMD R, ZHANG Z M, et al. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan arc terrane of the southern Central Asian orogenic belt: geochronological and geochemical evidence[J]. Lithos, 2015, 236: 74-89. |
[64] | 胡霭琴, 韦刚健, 江博明, 等. 天山0.9 Ga新元古代花岗岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地球化学, 2010, 39(3): 197-212. |
[65] |
HUANG Z Y, LONG X P, KRÖNER A, et al. Neoproterozoic granitic gneisses in the Chinese Central Tianshan block: implications for tectonic affinity and Precambrian crustal evolution[J]. Precambrian Research, 2015, 269: 73-89.
DOI URL |
[66] |
GAO J, WANG X S, KLEMD R, et al. Record of assembly and breakup of Rodinia in the Southwestern Altaids: evidence from Neoproterozoic magmatism in the Chinese Western Tianshan orogen[J]. Journal of Asian Earth Sciences, 2015, 113: 173-193.
DOI URL |
[67] |
MA X X, SHU L S, JAHN B M, et al. Precambrian tectonic evolution of Central Tianshan, NW China: constraints from U-Pb dating and in-situ Hf isotopic analysis of detrital zircons[J]. Precambrian Research, 2012, 222-223: 450-473.
DOI URL |
[68] |
MA X X, SHU L S, SANTOSH M, et al. Paleoproterozoic collisional orogeny in Central Tianshan: assembling the Tarim Block within the Columbia supercontinent[J]. Precambrian Research, 2013, 228: 1-19.
DOI URL |
[69] |
WANG X S, GAO J, KLEMD R, et al. The Central Tianshan Block: a microcontinent with a Neoarchean-Paleoproterozoic basement in the southwestern Central Asian Orogenic Belt[J]. Precambrian Research, 2017, 295: 130-150.
DOI URL |
[70] |
HUANG H, ZHANG Z C, SANTOSH M, et al. Petrogenesis of the Early Permian volcanic rocks in the Chinese South Tianshan: implications for crustal growth in the Central Asian Orogenic Belt[J]. Lithos, 2015, 228/229: 23-42.
DOI URL |
[71] |
HAN B F, GUO Z J, ZHANG Z C, et al. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin, 2010, 122(3/4): 627-640.
DOI URL |
[72] | 穆利修, 李平, 王哲, 等. 中天山乌兰莫仁构造混杂岩带的初步确立及构造意义[J]. 新疆地质, 2016, 34(1): 34-39. |
[73] |
TAGIRI M, TAKIGUCHI S, ISHIDA C, et al. Intrusion of UHP metamorphic rocks into the upper crust of Kyrgyzian Tien Shan: p-T path and metamorphic age of the Makbal Complex[J]. Journal of Mineralogical and Petrological Sciences, 2010, 105(5): 233-250.
DOI URL |
[74] | MIRKAMALOV R K, ISOKOV M U, CHIRIKIN V V, et al. New results of U-Pb (SHRIMP) dating of granitoid and metamophic complexs of the Tien Shan Folded Belt[M]// KBAROV K A A, NURTAEV B S. Geosciences in Uzbekistan. Tashkent: State Enterprise Scientific-research Institute of Mineral Resources, 2012: 114-125. |
[75] |
MCCANN T, NURTAEV B, KHARIN V, et al. Ordovician-Carboniferous tectono-sedimentary evolution of the North Nuratau region, Uzbekistan (Westernmost Tien Shan)[J]. Tectonophysics, 2013, 590: 196-213.
DOI URL |
[76] |
HAN B F, HE G Q, WANG X C, et al. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, Western China[J]. Earth-Science Reviews, 2011, 109(3/4): 74-93.
DOI URL |
[77] | 周鼎武, 苏犁, 简平, 等. 南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义[J]. 科学通报, 2004, 49(14): 1411-1415. |
[78] | 龙灵利, 高俊, 熊贤明, 等. 南天山库勒湖蛇绿岩地球化学特征及其年龄[J]. 岩石学报, 2006, 22(1): 65-73. |
[79] |
GAO J, KLEMD R. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints[J]. Lithos, 2003, 66(1/2): 1-22.
DOI URL |
[80] |
HEGNER E, KLEMD R, KRÖNER A, et al. Mineral ages and p-T conditions of Late Paleozoic high-pressure eclogite and provenance of mélange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan[J]. American Journal of Science, 2010, 310(9): 916-950.
DOI URL |
[81] | 董连慧, 王克卓, 朱志新, 等. 新疆大型变形构造特征与成矿关系研究[J]. 中国地质, 2013, 40(5): 1552-1568. |
[82] | 万天丰, 赵庆乐. 天山—阿尔泰地区古生代构造成矿作用[J]. 中国地质, 2015, 42(2): 365-378. |
[83] | 杨天南, 李锦轶, 文中田, 等. 中天山地块南北两缘的韧性剪切带[J]. 地质学报, 2004, 78(3): 311-321, 437-438. |
[84] | 唐哲民, 蔡志慧, 王宗秀, 等. 中天山东部南北两缘韧性剪切带变形特征[J]. 中国地质, 2011, 38(4): 970-979. |
[85] |
WANG B, FAURE M, CLUZEL D, et al. Late Paleozoic tectonic evolution of the Northern West Chinese Tianshan Belt[J]. Geodinamica Acta, 2006, 19(3/4): 237-247.
DOI URL |
[86] |
DE JONG K, WANG B, FAURE M, et al. New 40Ar/39Ar age constraints on the Late Palaeozoic tectonic evolution of the Western Tianshan (Xinjiang, Northwestern China), with emphasis on Permian fluid ingress[J]. International Journal of Earth Sciences, 2009, 98(6): 1239-1258.
DOI URL |
[87] |
WANG B, CLUZEL D, SHU L S, et al. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, Western Chinese Tianshan[J]. International Journal of Earth Sciences, 2009, 98(6): 1275-1298.
DOI URL |
[88] | ZHOU D, GRAHAM S A, CHANG E Z, et al. Paleozoic tectonic amalgamation of the Chinese Tian Shan: evidence from a transect along the Dushanzi-Kuqa Highway[M]// HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Boulder, Colorado: Geological Society of America Memoir, 2001: 23-46. |
[89] | LAURENT-CHARVET S, CHARVET J, MONIÉ P, et al. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): new structural and geochronological data[J]. Tectonics, 2003, 22(2): 1099-1101. |
[90] |
YANG T N, LI J Y, WANG Y, et al. Late Early Permian (266 Ma) N-S compressional deformation of the Turfan basin, NW China: the cause of the change in basin pattern[J]. International Journal of Earth Sciences, 2009, 98(6): 1311-1324.
DOI URL |
[91] | 蔡志慧, 许志琴, 何碧竹, 等. 东天山—北山造山带中大型韧性剪切带属性及形成演化时限与过程[J]. 岩石学报, 2012, 28(6): 1875-1895. |
[92] |
SHU L S, CHARVET J, LU H F, et al. Paleozoic accretion-collision events and kinematics of ductile deformation in the eastern part of the Southern-central Tianshan Belt, China[J]. Acta Geologica Sinica, 2002, 76(3): 308-323.
DOI URL |
[93] |
WANG B, CHEN Y, ZHAN S, et al. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 2007, 263(3/4): 288-308.
DOI URL |
[94] | 于海峰, 王福君, 潘明臣, 等. 西天山造山带区域构造演化及其大陆动力学解析[J]. 西北地质, 2011, 44(2): 25-40. |
[95] |
WANG B, FAURE M, SHU L S, et al. Structural and geochronological study of high-pressure metamorphic rocks in the Kekesu section (Northwestern China): implications for the Late Paleozoic tectonics of the Southern Tianshan[J]. Journal of Geology, 2010, 118(1): 59-77.
DOI URL |
[96] |
LIN W, FAURE M, SHI Y H, et al. Palaeozoic tectonics of the South-western Chinese Tianshan: new insights from a structural study of the high-pressure/low-temperature metamorphic belt[J]. International Journal of Earth Sciences, 2009, 98(6): 1259-1274.
DOI URL |
[97] | 吴传勇, 吴国栋, 沈军, 等. 那拉提断裂晚第四纪活动及其反映的天山内部构造变形[J]. 第四纪研究, 2014, 34(2): 269-280. |
[98] | 杨兴科, 姬金生, 张连昌, 等. 东天山大型韧性剪切带基本特征与金矿预测[J]. 大地构造与成矿学, 1998, 22(3): 209-218. |
[99] | 李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3): 304-322. |
[100] |
WANG B, CLUZEL D, JAHN B, et al. Late Paleozoic pre-and syn-kinematic plutons of the Kangguer-Huangshan Shear zone: inference on the tectonic evolution of the Eastern Chinese North Tianshan[J]. American Journal of Science, 2014, 314(1): 43-79.
DOI URL |
[101] | 王瑜, 李锦轶, 李文铅. 东天山造山带右行剪切变形及构造演化的40Ar-39Ar年代学证据[J]. 新疆地质, 2002, 20(4): 315-319. |
[102] | 陈文, 孙枢, 张彦, 等. 新疆东天山秋格明塔什—黄山韧性剪切带40Ar/39Ar年代学研究[J]. 地质学报, 2005, 79(6): 790-804. |
[103] |
WANG Y, LI J Y, SUN G H. Post collisional eastward extrusion and tectonic exhumation along the Eastern Tianshan Orogen, Central Asia: constraints from dextral strike-slip motion and 40Ar/39Ar geochronological evidence[J]. The Journal of Geology, 2008, 116(6): 599-618.
DOI URL |
[104] | 王凯, 计文化, 孟勇, 等. 天山造山带东段构造变形对增生造山末期的响应[J]. 大地构造与成矿学, 2019, 43(5): 894-910. |
[105] |
LONG L L, GAO J, KLEMD R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos, 2011, 126(3/4): 321-340.
DOI URL |
[106] |
SELTMANN R, KONOPELKO D, BISKE G, et al. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Sciences, 2011, 42(5): 821-838.
DOI URL |
[107] |
TANG G J, CHUNG S L, WANG Q, et al. Petrogenesis of a Late Carboniferous mafic dike-granitoid association in the Western Tianshan: response to the geodynamics of oceanic subduction[J]. Lithos, 2014, 202/203: 85-99.
DOI URL |
[108] |
KEMPE U, GRAUPNER T, SELTMANN R, et al. The Muruntau gold deposit (Uzbekistan): a unique ancient hydrothermal system in the Southern Tien Shan[J]. Geoscience Frontiers, 2016, 7(3): 495-528.
DOI URL |
[109] |
DREW L J, BERGER B R, KURBANOV N K. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum Desert, Uzbekistan[J]. Ore Geology Reviews, 1996, 11(4): 175-196.
DOI URL |
[110] | KOSTITSYN Y A. Rb-Sr isotope study of Muruntau deposit. 1. Ore veins dating by isochrone technique[J]. Geokhimiya, 1993, 9: 1308-1319. |
[111] |
KEMPE U, SELTMANN R, GRAUPNER T, et al. Concordant U-Pb SHRIMP ages of U-rich zircon in granitoids from the Muruntau gold district (Uzbekistan): timing of intrusion, alteration ages, or meaningless numbers[J]. Ore Geology Reviews, 2015, 65: 308-326.
DOI URL |
[112] |
PASAVA J, FRIMMEL H, VYMAZALOVÁ A, et al. A two-stage evolution model for the Amantaytau orogenic-type gold deposit in Uzbekistan[J]. Mineralium Deposita, 2013, 48(7): 825-840.
DOI URL |
[113] | NIKONOROV V V, KARAEV Y V, BORISOV F I, et al. Gold resources of Kyrgyzstan[M]. Bishkek: State Enterprise Scientific-Research Institute of Mineral Resources, 2007: 1-500. |
[114] |
LIU J J, ZHENG M H, COOK N J, et al. Geological and geochemical characteristics of the Sawaya’erdun gold deposit, Southwestern Chinese Tianshan[J]. Ore Geology Reviews, 2007, 32(1/2): 125-156.
DOI URL |
[115] |
YANG F Q, MAO J W, WANG Y T, et al. Geology and metallogenesis of the Sawayaerdun gold deposit in the Southwestern Tianshan Mountains, Xinjiang, China[J]. Resource Geology, 2007, 57(1): 57-75.
DOI URL |
[116] |
ZHANG G Z, XUE C J, CHI G X, et al. Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, Western Tianshan, Xinjiang: constraints from paragenesis, EMPA analyses, Re-Os dating of pyrite (arsenopyrite) and U-Pb dating of zircon from the host rocks[J]. Ore Geology Reviews, 2017, 81: 326-341.
DOI URL |
[117] |
DING Q F, WU C Z, SANTOSH M, et al. H-O, S and Pb isotope geochemistry of the Awanda gold deposit in Southern Tianshan, Central Asian orogenic belt: implications for fluid regime and metallogeny[J]. Ore Geology Reviews, 2014, 62: 40-53.
DOI URL |
[118] | 武翔. 新疆阿万达金矿床构造变形特征与成因研究[D]. 北京: 中国地质大学(北京), 2018. |
[119] | 丁清峰, 付宇, 吴昌志, 等. 新疆西南天山阿万达金矿床成矿流体演化[J]. 吉林大学学报(地球科学版), 2015, 45(1): 142-155. |
[120] |
ZHAO W C, ZHAO X B, XUE C J, et al. Structural characterization of the Katebasu gold deposit, Xinjiang, China: tectonic correlation with the amalgamation of the Western Tianshan[J]. Ore Geology Reviews, 2019, 107: 888-902.
DOI URL |
[121] | 冯博, 薛春纪, 赵晓波, 等. 西天山卡特巴阿苏大型金铜矿赋矿二长花岗岩岩石学、元素组成和时代[J]. 地学前缘, 2014, 21(5): 187-195. |
[122] | 邢令, 杨维忠, 藏梅, 等. 新疆卡特巴阿苏金铜矿区二长花岗岩锆石SHRIMPU-Pb年龄及地质意义[J]. 新疆地质, 2015, 33(1): 1-6. |
[123] |
DONG L L, WAN B, YANG W Z, et al. Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the South Tianshan, China and its geological significance[J]. Ore Geology Reviews, 2018, 100: 99-110.
DOI URL |
[124] | 俎波. 西天山“亚洲金腰带”金成矿作用及找矿潜力[D]. 北京: 中国地质大学(北京), 2016: 1-236. |
[125] | HAN Y X, LIU Y H, ZHOU S F, et al. Geochemistry and chronology of the granites in Alasituo, west Tianshan Orogen: implications for a magma mixing origin[J]. Geological Journal, 2018, 53: 44-59. |
[126] |
ZHANG L, CHEN H Y, LIU C F, et al. Ore genesis of the Saridala gold deposit, Western Tianshan, NW China: constraints from fluid inclusion, S-Pb isotopes and 40Ar/39Ar dating[J]. Ore Geology Reviews, 2018, 100: 63-76.
DOI URL |
[127] | 朱永峰, 宋彪. 新疆天格尔糜棱岩化花岗岩的岩石学及其SHRIMP年代学研究: 兼论花岗岩中热液锆石边的定年[J]. 岩石学报, 2006, 22(1): 135-144. |
[128] | 杨猛, 王居里, 王建其, 等. 新疆中天山北缘望峰地区花岗岩的地球化学、锆石U-Pb年代学及Hf同位素组成研究[J]. 岩石学报, 2012, 28(7): 2121-2131. |
[129] |
WANG Y H, XUE C J, ZHANG F F, et al. SHRIMP zircon U-Pb geochronology, geochemistry and H-O-Si-S-Pb isotope systematics of the Kanggur gold deposit in Eastern Tianshan, NW China: implication for ore genesis[J]. Ore Geology Reviews, 2015, 68: 1-13.
DOI URL |
[130] | 张连昌, 姬金生, 李华芹, 等. 东天山康古尔金矿区潜火山岩同位素年代学及其意义[J]. 地质论评, 1999, 45(增刊1): 1095-1098. |
[131] | 陈文, 张彦, 秦克章, 等. 新疆东天山剪切带型金矿床时代研究[J]. 岩石学报, 2007, 23(8): 2007-2016. |
[132] |
WANG Y H, XUE C J, GAO J B, et al. The genesis of the ores and granitic rocks at the Hongshi Au deposit in Eastern Tianshan, China: constraints from zircon U-Pb geochronology, geochemistry and isotope systematics[J]. Ore Geology Reviews, 2015, 74: 122-138.
DOI URL |
[133] | 张达玉. 新疆东天山觉罗塔格地区成岩成矿作用及地球动力学过程[D]. 合肥: 合肥工业大学, 2012: 59-71. |
[134] |
ZHAO X B, XUE C J, CHI G X, et al. Re-O spyrite and U-Pb zircon geochronology from the Taldybulak Levoberezhny gold deposit: insight for Cambrian metallogeny of the Kyrgyz, Northern Tien Shan[J]. Ore Geology Reviews, 2015, 67: 78-89.
DOI URL |
[135] |
ZHAO X B, XUE C J, CHI G X, et al. Multi-stage gold mineralization in the Taldybulak Levoberezhny deposit, Tien Shan, Kyrgyzstan: reply to comment by Boris Trifonov on Re-Os pyrite and U-Pb zircon geochronology from the Taldybulak Levoberezhny gold deposit: insight for Cambrian metallogeny of the Kyrgyz northern Tien Shan[J]. Ore Geology Reviews, 2017, 82: 217-231.
DOI URL |
[136] |
KEMPE U, BELYATSKY B, KRYMSKY R, et al. Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization[J]. Mineralium Deposita, 2001, 36(5): 379-392.
DOI URL |
[137] |
WILDE A R, LAYER P, MERNAGH T, et al. The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constraints on ore genesis[J]. Economic Geology, 2001, 96(3): 633-644.
DOI URL |
[138] | ZONENSHAIN L P. Geology of the USSR: a plate-tectonic synjournal[J]. Geodynamic Monograph, 1990, 21: 242. |
[139] | WALL V J, YANTZEN V, GRAUPNER T, et al. Muruntau[R]. Uzbekistan Report on CERCAMS Research Project. Spring Hill:Taylor Wall & Associate, 2004. |
[140] | KOSTITSYN Y A. Rb-Sr isotopic study of the Muruntau deposit: magmatism, metamorphism and mineralization[J]. Geochemistry International, 1996, 34: 1009-1023. |
[141] |
MORELLI R, CREASER R A, SELTMANN R, et al. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite[J]. Geology, 2007, 35(9): 795-798.
DOI URL |
[142] |
GRAUPNER T, NIEDERMANN S, RHEDE D, et al. Multiple sources for mineralizing fluids in the Charmitan gold(-tungsten) mineralization (Uzbekistan)[J]. Mineralium Deposita, 2010, 45(7), 667-682.
DOI URL |
[143] | 张国震, 李志丹, 董新丰, 等. 西天山Muruntau金矿床地质和S-Pb同位素示踪[J]. 岩石学报, 2016, 32(5): 1333-1345. |
[144] | JENCHURAEVA R J, NIKONOROV V V, LITVINOV P. The Kumtor gold deposit[M] // SELTMANN R, JENCHURAEVA R J. Excursion 5 Guidebook: Series 9. Annual Newsletter of IGCP-373, 2001: 139-152. |
[145] | Telluris. Field structural review of the Kumtor mine and district, Kyrgyzstan[R]. UK:Telluris Consulting Ltd, 2006. |
[146] | ANSDELL K M, ABELEIRA A, IVANOV S. Structural evolution and vein regenesis at the Kumtor gold deposit, Kyrgyzstan[M]// Mineral deposits: processes to processing. Rotterdam: Balkema, 1999: 1375-1378. |
[147] | IVANOV S, ANSDELL K M, MELROSE D. Ore textures and stable isotope constraints on ore deposition mechanisms at the Kumtor gold deposit[M] // BUCCI L A, MAIR J L. Gold in 2000. Poster session extended abstracts volume. Littleton: Society of Economic Geologists, 2000: 47-52. |
[148] | 李云涛, 刘云华, 李真, 等. 新疆西天山卡特巴阿苏金铜矿区构造特征研究[J]. 黄金, 2016, 37(4): 7-12. |
[149] | 杨维忠, 林泽华, 韩继全, 等. 浅论断裂构造对新疆卡特巴阿苏金矿床的控制作用[J]. 新疆有色金属, 2017, 40(4): 68-70, 72. |
[150] | 王义天, 毛景文, 陈文, 等. 新疆东天山康古尔塔格金矿带成矿作用的构造制约[J]. 岩石学报, 2006, 22(1): 236-244. |
[151] | 曹洁. 新疆鄯善县红石金矿床控矿条件分析及隐伏矿预测研究[D]. 西安: 长安大学, 2007: 27-28. |
[152] | 孙敬博, 张立明, 陈文, 等. 东天山红石金矿床石英Rb-Sr同位素定年[J]. 地质论评, 2013, 59(2): 382-388. |
[153] |
WANG X S, KLEMD R, GAO J, et al. Final assembly of the southwestern Central Asian Orogenic Belt as constrained by the evolution of the South Tianshan Orogen: links with Gondwana and Pangea[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7361-7388.
DOI URL |
[154] | GOLDFARB R, BAKER T, DUBÉ B, et al. Distribution, character and genesis of gold deposits in metamorphic terranes[J]. Economic Geology, 2005, 100th Anniversary Volume: 407-450. |
[155] | 翟裕生, 邓军, 彭润民, 等. 成矿系统论[M]. 北京: 地质出版社, 2010: 1-312. |
[156] | LARGE R R, MASLENNIKOV V. Pyrite textures, composition and isotopic features at the Kumtor gold deposit, Kyrgyzstan: new data to improve the genetic model[R]. Antofagasta, Chile: Society for Geology of Ore Deposits, 2011. |
[157] | 陈喜峰, 彭润民, 刘家军, 等. 吉尔吉斯斯坦库姆托尔超大型金矿床地质特征[J]. 黄金, 2010, 31(12): 15-19. |
[158] |
SOUTHAM G, SAUNDERS J A. The geomicrobiology of ore deposits[J]. Economic Geology, 2005, 100(6): 1067-1084.
DOI URL |
[159] |
TOMKINS A G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis[J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 3246-3259.
DOI URL |
[160] |
THOMAS H V, LARGE R R, BULL S W, et al. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: insights for ore genesis[J]. Economic Geology, 2011, 106(1): 1-31.
DOI URL |
[1] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[2] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[3] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[4] | WANG Yan, QIN Yan, LI Hua, WANG Denghong, SUN He, WANG Chenghui, HUANG Fan. Metallogenic regularity and prospecting direction of gold deposits in Northeast China [J]. Earth Science Frontiers, 2024, 31(3): 235-244. |
[5] | GU Hao, YANG Zeqiang, GAO Meng, TANG Xiangwei, WANG Dongxiao, LIU Kuisong, YANG Shuren, GUO Yueshan, WANG Yun, WANG Gongwen. Three-dimensional geological modeling and mineral prospectivity mapping in the Weishancheng gold-silver district, Henan, China [J]. Earth Science Frontiers, 2024, 31(3): 245-259. |
[6] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[7] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[8] | DONG Xiaoyu, KONG Ruoyan, YAN Danping, QIU Liang, QIU Junting. Origin and gold mineralization significance of Late Triassic syn-tectonic dykes in the Qingchengzi area, Liaodong Peninsula [J]. Earth Science Frontiers, 2023, 30(2): 215-238. |
[9] | LÜ Chengxun, ZHANG Da, XU Yaqing, GUO Tao, WANG Zongyong, HUO Qinglong, YUAN Yuelei. Calculation of metallogenic depth in the Jiaodong gold deposits: Tectonic correction method and metallogenic prediction [J]. Earth Science Frontiers, 2022, 29(1): 427-438. |
[10] | SHAO Xuewei, PENG Yongming, WANG Gongwen, ZHAO Xianyong, TANG Jiayang, HUANG Leilei, LIU Xiaoning, ZHAO Xiandong. Application of SWIR, XRF and thermoelectricity analysis of pyrite in deep prospecting in the Xincheng gold orefield, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(3): 236-251. |
[11] | OUYANG Xin, ZHANG Yongmei, GU Xuexiang, LIU Li, WANG Luzhi, GAO Liye. Characteristics of fluid inclusions in and metallogensis of the Zhuanshanzi gold deposit in Inner Mongolia [J]. Earth Science Frontiers, 2021, 28(2): 320-332. |
[12] | SONG Yingxin, LI Shengrong, SHEN Junfeng, ZHANG Long, LI Wentao, ZENG Yongjie. Characteristics and prospecting significance of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off northern Sanshandao, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(2): 305-319. |
[13] | LI Chenglu, LI Shengrong, YUAN Maowen, DU Bingying, LI Wenlong, Masroor ALAM, LIU Dongyuan, LIU Hao. Genesis of the Keluo Au deposit in the Nenjiang-Heihe tectonic melange belt, Heilongjiang Province: evidence from chemical composition and pyrite He-Ar, S, Pb isotopes [J]. Earth Science Frontiers, 2020, 27(5): 99-115. |
[14] | Victor M. Okrugin, Elena D. Skilskaia. Mineralogy and fluid inclusions study of the Baranevskoye gold-silver deposit, central Kamchatka, Russia [J]. Earth Science Frontiers, 2020, 27(5): 136-150. |
[15] | SHEN Junfeng, LI Shengrong, XU Kexin, WANG Yehan, ZHANG Shiquan, XU Yuanquan, HE Zeyu, CHI Lei, WU Jinchao. Uplifting and denudation of the Chifeng-Chaoyang gold ore zone in western Liaoning Province since the Early Cretaceous and the implication [J]. Earth Science Frontiers, 2020, 27(5): 151-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||