Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 136-150.DOI: 10.13745/j.esf.sf.2020.5.58
Special Issue: Research Articles (English)
Previous Articles Next Articles
Victor M. Okrugin(), Elena D. Skilskaia
Received:
2020-03-11
Revised:
2020-06-02
Online:
2020-09-25
Published:
2020-09-25
CLC Number:
Victor M. Okrugin, Elena D. Skilskaia. Mineralogy and fluid inclusions study of the Baranevskoye gold-silver deposit, central Kamchatka, Russia[J]. Earth Science Frontiers, 2020, 27(5): 136-150.
Elements | Mass fraction (%) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 12.34 | 12.21 | 51.73 | 53.36 | 51.8 | 34.32 | 31.81 | 33.6 | 34.29 | 25.13 | 25.44 | |||||||||||||||
As | - | - | 3.19 | - | - | - | - | - | - | - | - | |||||||||||||||
Pb | 86.95 | 88.38 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 45.09 | 46.72 | 46.81 | 2.64 | 0.24 | 30.72 | 31.01 | 11.76 | 11.37 | |||||||||||||||
Cd | - | - | - | - | - | 0.35 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 34.52 | 34.76 | 63.69 | 62.97 | |||||||||||||||
Zn | - | - | - | - | - | 62.53 | 64.88 | - | - | - | - | |||||||||||||||
Sum | 99.29 | 100.59 | 100.01 | 100.08 | 98.61 | 99.84 | 97.05 | 98.84 | 100.06 | 100.58 | 99.78 | |||||||||||||||
Elements | Mole fraction (%) | |||||||||||||||||||||||||
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 47.31 | 46.89 | 65.50 | 66.45 | 65.74 | 51.46 | 49.82 | 48.94 | 49.24 | 39.26 | 39.92 | |||||||||||||||
As | - | - | 1.72 | - | 34.26 | - | - | - | - | - | - | |||||||||||||||
Pb | 52.69 | 53.11 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 32.78 | 33.55 | - | 2.40 | 0.22 | 25.69 | 25.52 | 10.54 | 10.24 | |||||||||||||||
Cd | - | - | - | - | - | 0.15 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 25.37 | 25.24 | 50.2 | 49.84 | |||||||||||||||
Zn | - | - | - | - | - | 45.99 | 49.82 | - | - | - | - |
Elements | Mass fraction (%) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 12.34 | 12.21 | 51.73 | 53.36 | 51.8 | 34.32 | 31.81 | 33.6 | 34.29 | 25.13 | 25.44 | |||||||||||||||
As | - | - | 3.19 | - | - | - | - | - | - | - | - | |||||||||||||||
Pb | 86.95 | 88.38 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 45.09 | 46.72 | 46.81 | 2.64 | 0.24 | 30.72 | 31.01 | 11.76 | 11.37 | |||||||||||||||
Cd | - | - | - | - | - | 0.35 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 34.52 | 34.76 | 63.69 | 62.97 | |||||||||||||||
Zn | - | - | - | - | - | 62.53 | 64.88 | - | - | - | - | |||||||||||||||
Sum | 99.29 | 100.59 | 100.01 | 100.08 | 98.61 | 99.84 | 97.05 | 98.84 | 100.06 | 100.58 | 99.78 | |||||||||||||||
Elements | Mole fraction (%) | |||||||||||||||||||||||||
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 47.31 | 46.89 | 65.50 | 66.45 | 65.74 | 51.46 | 49.82 | 48.94 | 49.24 | 39.26 | 39.92 | |||||||||||||||
As | - | - | 1.72 | - | 34.26 | - | - | - | - | - | - | |||||||||||||||
Pb | 52.69 | 53.11 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 32.78 | 33.55 | - | 2.40 | 0.22 | 25.69 | 25.52 | 10.54 | 10.24 | |||||||||||||||
Cd | - | - | - | - | - | 0.15 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 25.37 | 25.24 | 50.2 | 49.84 | |||||||||||||||
Zn | - | - | - | - | - | 45.99 | 49.82 | - | - | - | - |
Elements | Mass fraction (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | 43.19 | 44.20 | 41.81 | 42.14 | 45.3 | 43.19 | 42.02 | 42.52 | 44.49 | 41.17 |
Ag | 0.12 | 0.04 | 0.14 | 0.08 | 0.04 | 0.12 | 0.14 | 0.19 | 0.06 | 0.12 |
Fe | 2.88 | 3.41 | 2.35 | 2.35 | 4.38 | 3.20 | 2.82 | 2.81 | 3.33 | 3.92 |
Zn | 3.32 | 2.77 | 3.80 | 3.92 | 1.93 | 2.98 | 2.73 | 3.10 | 2.82 | 3.74 |
Sb | 17.53 | 9.69 | 19.93 | 19.03 | 3.31 | 18.21 | 22.59 | 17.47 | 5.05 | 18.25 |
As | 8.35 | 13.78 | 6.77 | 7.18 | 18.84 | 9.17 | 5.39 | 8.73 | 17.57 | 7.29 |
S | 25.61 | 27.10 | 26.04 | 25.66 | 27.94 | 25.63 | 25.26 | 25.80 | 26.97 | 25.84 |
Sum | 101.00 | 100.99 | 100.84 | 100.36 | 101.74 | 102.5 | 100.95 | 100.62 | 100.29 | 100.33 |
Elements | Number of atoms | |||||||||
Cu | 10.727 | 10.571 | 10.449 | 10.571 | 10.484 | 10.626 | 10.652 | 10.582 | 10.571 | 10.266 |
Ag | 0.017 | 0.006 | 0.020 | 0.023 | 0.006 | 0.017 | 0.020 | 0.026 | 0.009 | 0.020 |
Fe | 0.815 | 0.928 | 0.670 | 0.670 | 1.151 | 0.896 | 0.812 | 0.798 | 0.896 | 1.114 |
Zn | 0.800 | 0.644 | 0.925 | 0.954 | 0.432 | 0.711 | 0.673 | 0.748 | 0.650 | 0.748 |
Sb | 2.274 | 1.212 | 2.598 | 2.491 | 0.403 | 2.337 | 2.990 | 2.271 | 0.638 | 2.375 |
As | 1.760 | 2.799 | 1.436 | 1.528 | 3.698 | 1.911 | 1.16 | 1.844 | 3.541 | 1.543 |
S | 12.606 | 12.841 | 12.902 | 12.763 | 12.821 | 12.502 | 12.693 | 12.731 | 12.696 | 12.775 |
Elements | Mass fraction (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | 43.19 | 44.20 | 41.81 | 42.14 | 45.3 | 43.19 | 42.02 | 42.52 | 44.49 | 41.17 |
Ag | 0.12 | 0.04 | 0.14 | 0.08 | 0.04 | 0.12 | 0.14 | 0.19 | 0.06 | 0.12 |
Fe | 2.88 | 3.41 | 2.35 | 2.35 | 4.38 | 3.20 | 2.82 | 2.81 | 3.33 | 3.92 |
Zn | 3.32 | 2.77 | 3.80 | 3.92 | 1.93 | 2.98 | 2.73 | 3.10 | 2.82 | 3.74 |
Sb | 17.53 | 9.69 | 19.93 | 19.03 | 3.31 | 18.21 | 22.59 | 17.47 | 5.05 | 18.25 |
As | 8.35 | 13.78 | 6.77 | 7.18 | 18.84 | 9.17 | 5.39 | 8.73 | 17.57 | 7.29 |
S | 25.61 | 27.10 | 26.04 | 25.66 | 27.94 | 25.63 | 25.26 | 25.80 | 26.97 | 25.84 |
Sum | 101.00 | 100.99 | 100.84 | 100.36 | 101.74 | 102.5 | 100.95 | 100.62 | 100.29 | 100.33 |
Elements | Number of atoms | |||||||||
Cu | 10.727 | 10.571 | 10.449 | 10.571 | 10.484 | 10.626 | 10.652 | 10.582 | 10.571 | 10.266 |
Ag | 0.017 | 0.006 | 0.020 | 0.023 | 0.006 | 0.017 | 0.020 | 0.026 | 0.009 | 0.020 |
Fe | 0.815 | 0.928 | 0.670 | 0.670 | 1.151 | 0.896 | 0.812 | 0.798 | 0.896 | 1.114 |
Zn | 0.800 | 0.644 | 0.925 | 0.954 | 0.432 | 0.711 | 0.673 | 0.748 | 0.650 | 0.748 |
Sb | 2.274 | 1.212 | 2.598 | 2.491 | 0.403 | 2.337 | 2.990 | 2.271 | 0.638 | 2.375 |
As | 1.760 | 2.799 | 1.436 | 1.528 | 3.698 | 1.911 | 1.16 | 1.844 | 3.541 | 1.543 |
S | 12.606 | 12.841 | 12.902 | 12.763 | 12.821 | 12.502 | 12.693 | 12.731 | 12.696 | 12.775 |
Vein | Mass fraction (%) | Mole fraction (%) | |||
---|---|---|---|---|---|
Au | Ag | ∑ | Au | Ag | |
The Central vein | 80.55 | 19.10 | 99.65 | 69.79 | 30.21 |
80.60 | 19.40 | 100.00 | 69.47 | 30.53 | |
81.69 | 18.30 | 99.99 | 70.97 | 29.03 | |
82.00 | 18.68 | 100.68 | 70.63 | 29.37 | |
82.51 | 17.96 | 100.47 | 71.55 | 28.45 | |
The stockwork | 79.15 | 18.74 | 97.89 | 69.81 | 30.19 |
80.35 | 18.79 | 99.14 | 79.08 | 29.93 | |
78.57 | 18.86 | 97.43 | 69.52 | 30.48 | |
79.48 | 18.72 | 98.20 | 69.92 | 30,08 | |
79.17 | 18.65 | 97.82 | 69.93 | 30.07 | |
The Yuzhnaya vein | 78.87 | 20.00 | 98.87 | 68.76 | 31.24 |
79.76 | 20.43 | 100.19 | 68.85 | 31.25 | |
79.33 | 20.67 | 100.00 | 68.44 | 31.56 | |
80.89 | 19.40 | 100.29 | 69.84 | 30.16 | |
80.73 | 19.71 | 100.45 | 69.42 | 30.58 | |
Gold crystals in voids of the altered host rocks | 78.75 | 18.67 | 97.42 | 69.79 | 30.21 |
79.95 | 20.05 | 100.00 | 68.59 | 31.41 | |
80.90 | 18.17 | 99.07 | 70.92 | 29.08 | |
81.95 | 18.08 | 100.03 | 71.28 | 28.72 | |
94.15 | 6.18 | 100.33 | 89.29 | 10.71 | |
The Rhzavaya vein | 76.84 | 23.16 | 100.00 | 65.50 | 34.50 |
42.90 | 57.10 | 100.00 | 59.21 | 40.79 | |
84.24 | 15.86 | 100.08 | 72.24 | 27.76 |
Vein | Mass fraction (%) | Mole fraction (%) | |||
---|---|---|---|---|---|
Au | Ag | ∑ | Au | Ag | |
The Central vein | 80.55 | 19.10 | 99.65 | 69.79 | 30.21 |
80.60 | 19.40 | 100.00 | 69.47 | 30.53 | |
81.69 | 18.30 | 99.99 | 70.97 | 29.03 | |
82.00 | 18.68 | 100.68 | 70.63 | 29.37 | |
82.51 | 17.96 | 100.47 | 71.55 | 28.45 | |
The stockwork | 79.15 | 18.74 | 97.89 | 69.81 | 30.19 |
80.35 | 18.79 | 99.14 | 79.08 | 29.93 | |
78.57 | 18.86 | 97.43 | 69.52 | 30.48 | |
79.48 | 18.72 | 98.20 | 69.92 | 30,08 | |
79.17 | 18.65 | 97.82 | 69.93 | 30.07 | |
The Yuzhnaya vein | 78.87 | 20.00 | 98.87 | 68.76 | 31.24 |
79.76 | 20.43 | 100.19 | 68.85 | 31.25 | |
79.33 | 20.67 | 100.00 | 68.44 | 31.56 | |
80.89 | 19.40 | 100.29 | 69.84 | 30.16 | |
80.73 | 19.71 | 100.45 | 69.42 | 30.58 | |
Gold crystals in voids of the altered host rocks | 78.75 | 18.67 | 97.42 | 69.79 | 30.21 |
79.95 | 20.05 | 100.00 | 68.59 | 31.41 | |
80.90 | 18.17 | 99.07 | 70.92 | 29.08 | |
81.95 | 18.08 | 100.03 | 71.28 | 28.72 | |
94.15 | 6.18 | 100.33 | 89.29 | 10.71 | |
The Rhzavaya vein | 76.84 | 23.16 | 100.00 | 65.50 | 34.50 |
42.90 | 57.10 | 100.00 | 59.21 | 40.79 | |
84.24 | 15.86 | 100.08 | 72.24 | 27.76 |
[1] | ANDREEVA E D, 2006. Textural features of epithermal mineralization of the Zolotoye ore body, Central Kamchatka[J]. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences, 8:195-200. |
[2] | AVDEIKO G P, VOLYNETS O N, ANTONOV A Y, et al., 1991. Kurile Island arc volcanism: structural and petrological aspects[J]. Tectonophysics, 199:271-287. |
[3] |
BINDEMAN I N, LEONOV V L, IZBEKOV P E, et al., 2010. Large-volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions[J]. Journal of Volcanology and Geothermal Research, 189:57-80.
DOI URL |
[4] | BRETT R, YUND R A, 1964. Sulfur-rich bornite[J]. American Mineralogist, 49:1084-1089. |
[5] | BOLSHAKOV V M, FLOROV A I, MINEEV S D, et al., 2010. Geological structure of the Baranevskoe gold ore deposits (Central Kamchatka)[J]. Otechestvenaya Geologiya, 4:15-22 (in Russian). |
[6] | EINAUDI M T, HEDENQUIST J W, INAN E E, 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments[J]. Economic Geology Special Publication, 10:1-50. |
[7] | FADDA S, FIORI M, GRILLO S M, 2005. Chemical variations in tetrahedrite-tennantite minerals from the Furtei epithermal Au deposit, Sardinia, Italy: mineral zoning and ore fluid evolution[J]. Geochemistry, Mineralogy and Petrology: 79-84. |
[8] |
FEISS P G, 1974. Reconnaissance of the tetrahedrite-tennantite/enargite-famatinite phase relations as a possible geothermometer[J]. Economic Geology, 69:383-390.
DOI URL |
[9] | FILIMONOV S V, 2009. Tetrahedrite-tennantite group minerals as indicators of ore genesis on the hydrothermal deposits[D]. Moscow: MSU: 26. |
[10] |
HEALD P, FOLEY N K, HAYBA D O, 1987. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types[J]. Economic Geology, 82:1-26.
DOI URL |
[11] |
HEDENQUIST J W, HENLEY R W, 1985. The importance of CO2 on freezing point measurements of fluid inclusion: evidence from active geothermal systems and implications for epithermal ore deposition[J]. Economic Geology, 80:1379-1406.
DOI URL |
[12] | HERNANDEZ A N G, AKASAKA M, 2010. Ag-rich tetrahedrite in the El Zancudo deposit, Colombia: occurrence, chemical compositions and genetic temperatures[J]. Resource Geology, 60:218-234. |
[13] |
IMAI A, SATOSHI O, 2005. Primary ore mineral assemblage and fluid inclusion study of the BatuHijau Porphyry Cu-Au deposit, Sumbawa, Indonesia[J]. Resource Geology, 55:239-248.
DOI URL |
[14] |
KEMKINA R A, 2007. Fahlores of the Prasolovka Au-Ag volcanogenic deposit, Kunashir island, Russian Far East[J]. Russian Journal of Pacific Geology, 1:130-143.
DOI URL |
[15] | KHASANOV S G, SIDORENKO V I, KRIKUN V I, et al., 2015. Explanatory notes to the map of the Khangar seria[J]. VSEGII: 143. |
[16] | KUZHUGET R V, MONGUSH A A, MONGUSH A O, 2018. Evolution of chemical composition of fahlores of the Ak-Sug gold-molybdenum-copper-porphyry deposit (North-East Tuva)[J]. Bulletin of the Tomsk Polytechnic University, 329:81-91. |
[17] |
MASKE S, SKINNER B J, 1971. Studies of the sulfosalts of copper I. Phase and phase relations in the system, Cu-As-S[J]. Economic Geology, 66:901-918.
DOI URL |
[18] | MELEKESTSEV I V, 2009. The identification and diagnostics of active and potentially active volcanic features in the Kuril-Kamchatka island arc and the Commander islands link of the Aleutian arc[J]. Journal of Volcanology and Seismology, 4:221-245. |
[19] | OKRUGIN V M, 2001. Age and genesis of epithermal deposits located along north-west coast of the Pacific Ocean[M]// Magmatism and metallogeny in continental margins along the Pacific Ocean. [S.l.]:[s.n.]: 39-41 (in Russian). |
[20] | PETRENKO I D, 1999. Gold-silver mineralization in Kamchatka[J]. VSEGII: 115. |
[21] | PEVZNER M M, VOLYNEC A O, 2006. Holocene volcanism in Sredinny Range, Kamchatka[C]// Proceeding of the International Symposium Explosive Volcanism Issues. [S.l.]:[s.n.]: 127-134. |
[22] | PONOMAREVA V, MELEKESTSEV I, BRAITSEVA O, et al., 2007. Late Pleistocene-Holocene volcanism on the Kamchatka Peninsula, Northwest Pacific region. Volcanism and subduction: the Kamchatka Region[J]. Geophysical Monograph Series, 172:165-198. |
[23] | ROEDDER E, 1984. Fluid inclusions[J]. Reviews in Mineralogy, 12:646. |
[24] | SHADRIN A G, 1999. Epithermal precious metal mineralization in Kamchatka[J]. Geology and Mineral Resources of Kamchatka: 74-77 (in Russian). |
[25] | SHEPOTEV Y M, VARTANYAN S S, ORESHIN V Y, et al., 1989. Gold deposits in the volcanic arcs of the Pacific Ocean[M]. Moscow: [s.n.]: 244. |
[26] |
SIMMONS S F, CHRISTENSON B W, 1994. Origins of calcite in a boiling geothermal system[J]. American Journal of Science, 294:361-400.
DOI URL |
[27] |
SIMMONS S F, AREHART G, SIMPSON M P, et al., 2000. Origin of massive calcite veins in the Golden Cross low-sulfidation, epithermal Au-Ag deposit, New Zealand[J]. Economic Geology, 95:99-112.
DOI URL |
[28] | STEPANOV V A, KUNGUROVA V E, KOIDAN I A, 2019. Gold mineralization of the Median Massif, Kamchatka (Kamchatka Sredinnyi Massif)[J]. Proceedings of Higher Educational Establishments. Geology and Exploration, 2:44-53(in Russian). |
[29] | SPIRIDONOV E, MALEEV M, KOVACHEV V, et al., 2005. Minerals of fahlore group: indictors of ore genesis[M]. Sofia: Bulgarian Geological Society: 79-82. |
[30] | TATSUKA K, MORIMOTO N, 1973. Composition variation and polymorphism of tetrahedrite in the Cu-Sb-S system below 400 ℃[J]. American Mineralogist, 58:425-434. |
[31] |
VOLYNEC O, 1991. Geochemical types, petrology, and genesis of Late Cenozoic volcanic rocks from the Kurile-Kamchatka island-arc system[J]. International Geology Review, 36:373-405.
DOI URL |
[32] | WHITE N C, HEDENQUIST J, 1995. Epithermal gold deposits: styles, characteristics and exploration[J]. SEG Newsletter, 2:1-13. |
[1] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[2] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[3] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[4] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[5] | WANG Yan, QIN Yan, LI Hua, WANG Denghong, SUN He, WANG Chenghui, HUANG Fan. Metallogenic regularity and prospecting direction of gold deposits in Northeast China [J]. Earth Science Frontiers, 2024, 31(3): 235-244. |
[6] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[7] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[8] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[9] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[10] | Anastasiya SERGEEVA, Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA. Secondary minerals in basalts of the Evevpenta gold occurrence (North Kamchatka, Russia) as indicators of ore forming processes [J]. Earth Science Frontiers, 2023, 30(5): 450-468. |
[11] | HONG Tao, ZHAI Mingguo, WANG Yuejun, LIU Xingcheng, XU Xingwang, GAO Jun, HU Mingxi, MA Jing. Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study [J]. Earth Science Frontiers, 2023, 30(5): 93-105. |
[12] | LIU Xiuyan, CHEN Honghan, XIAO Xuewei, LI Peijun, WANG Baozhong. Characterization of the shale gas formation process based on fluid inclusion evidence: An example of the Lower Cambrian Niutitang shale formation, Xiushan section, southeastern Chongqing [J]. Earth Science Frontiers, 2023, 30(3): 165-180. |
[13] | XIAO Xuewei, CHEN Honghan, LIU Xiuyan, PENG Zhongqin, LI Peijun, WANG Baozhong. Fluid inclusion evidence on the shale gas formation process in the Lower Cambrian Niutitang Formation in Jishou slope zone, western Hunan Province—a case study of well XJD 1 [J]. Earth Science Frontiers, 2023, 30(3): 181-194. |
[14] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[15] | HE Chencheng, CHEN Honghan, XIAO Xuewei, LIU Xiuyan, SU Ao. Differential shale gas generation in the Lower Cambrian Qiongzhusi stage in the Middle-Upper Yangtze region [J]. Earth Science Frontiers, 2023, 30(3): 44-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||