Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 126-135.DOI: 10.13745/j.esf.sf.2020.5.47
Previous Articles Next Articles
ZHANG Huafeng(), ZHANG Shaoying
Received:
2020-03-11
Revised:
2020-05-12
Online:
2020-09-25
Published:
2020-09-25
CLC Number:
ZHANG Huafeng, ZHANG Shaoying. Geological signatures of the Baiyun pyrophyllite deposit in Wutai, Shanxi Province: implication for prospecting of Cu-Au ores in deep[J]. Earth Science Frontiers, 2020, 27(5): 126-135.
Fig.1 Geological skeleton map of the Wutai Complex(b) and distribution of the Mesozoic magmatism and structures(c) (b modified from [11]; c modified from [23])
Fig.5 (a)δ18O versus δD of quartz/whole rocks from pyrophyllite and gold deposits of the Wutai area; (b) SiO2 concentrations vs total metal abundances (a after [31]; data of b from [10])
[1] |
WANG L, ZHANG M, REDFERN S A, et al. Dehydroxylation and transformations of the 2∶1 phyllosilicate pyrophyllite at elevated temperatures: an infrared spectroscopic study[J]. Clays and Clay Minerals, 2002, 50(2):272-283.
DOI URL |
[2] |
MUKHOPADHYAY T K, GHATAK S, MAITI H S. Pyrophyllite as raw material for ceramic applications in the perspective of its pyro-chemical properties[J]. Ceramics International, 2010, 36(3):909-916.
DOI URL |
[3] | ZEN E A. Mineralogy and petrology of the system Al2O3-SiO2-H2O in some pyrophyllite deposits of North-Carolina[J]. American Mineralogist, 1961, 46(1/2):52-66. |
[4] |
PHILLIPS G. Widespread fluid infiltration during metamorphism of the Witwatersrand Goldfields: generation of chloritoid and pyrophyllite[J]. Journal of Metamorphic Geology, 1988, 6(3):311-332.
DOI URL |
[5] | EVANS B W, GUGGENHEIM S. Talc, pyrophyllite, and related minerals[J]. Reviews in Mineralogy and Geochemistry, 1988, 19(1):225-294. |
[6] |
DAS B, MOHANTY J K. Mineralogical characterization and beneficiation studies of pyrophyllite from Orissa, India[J]. Journal of Minerals and Materials Characterization and Engineering, 2009, 8(4):329-338.
DOI URL |
[7] | CORBETT G J, LEACH T M. Southwest Pacific Rim gold-copper systems: structure, alteration and mineralization[M]. Denver: Society of Economic Geologists, 1998, 6:238. |
[8] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41.
DOI URL |
[9] | SEEDORFF E, DILLES J H, PROFFETT J M, et al. Porphyry deposits: characteristics and origin of hypogene features[J]. Economic Geology, 2005, 29:251-298. |
[10] | 张少颖, 张华锋. 叶蜡石化蚀变过程中的元素活动性与流体性质: 以山西五台地区白云叶蜡石矿为例[J]. 岩石学报, 2017, 33(6):1872-1892. |
[11] | 白瑾, 王汝铮, 郭进京. 五台山早前寒武纪重大地质事件及其年代[M]. 北京: 地质出版社, 1992. |
[12] | 沈保丰, 骆辉, 毛德宝, 等. 五台山—恒山绿岩带金矿床地质[M]. 北京: 地质出版社, 1998. |
[13] | ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and p-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2):45-73. |
[14] |
WILDE S A, CAWOOD P A, WANG K Y, et al. Determining Precambrian crustal evolution in China: a case study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology[J]. Geological Society, London, Special Publications, 2004, 226(1):5-25.
DOI URL |
[15] | WILDE S A, CAWOOD P A, WANG K Y, et al. Granitoid evolution in the Late Archean Wutai Complex, North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):597-613. |
[16] | PENG P, ZHAI M G, ZHANG H F, et al. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes[J]. International Geology Review, 2005, 47(5):492-508. |
[17] | LI Q, SANTOSH M, LI S R, et al. Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cretaceous dykes in the central North China Craton: implications for magma genesis and gold metallogeny[J]. Ore Geology Reviews, 2015, 67:57-77. |
[18] | LI S R, SANTOSH M, ZHANG H F, et al. Inhomogeneous lithospheric thinning in the central North China Craton: zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains[J]. Gondwana Research, 2013, 23(1):141-160. |
[19] | LI S R, SANTOSH M, ZHANG H F, et al. Metallogeny in response to lithospheric thinning and craton destruction: geochemistry and U-Pb zircon chronology of the Yixingzhai gold deposit, central North China Craton[J]. Ore Geology Reviews, 2014, 56:457-471. |
[20] | 刘凤岐, 真允庆. 晋东北“金三角”地区金、银矿床成矿构造环境[J]. 地质找矿论丛, 1994, 9(1):27-38. |
[21] | 真允庆. 五台山—恒山一带金、银多金属矿床同位素地球化学及其成矿模型[J]. 桂林工学院学报, 2004, 24(2):127-137. |
[22] | 张文亮, 李朝辉, 陈宇鹏, 等. 五台山区燕山期侵入岩特征及控矿作用[J]. 地质找矿论丛, 2005, 20(增刊):49-52. |
[23] | 葛良胜, 王治华, 杨贵才, 等. 晋东北燕山期岩浆活动与金多金属成矿动力学[J]. 岩石学报, 2012, 28(2):619-636. |
[24] | 庞尔成, 席伟杰, 施光海, 等. 山西代县滩上钼多金属矿床辉钼矿Re-Os同位素测年及其地质意义[J]. 地球学报, 2012, 33(5):787-793. |
[25] | 张文义. 五台县岭底金矿区矿体特征[J]. 华北国土资源, 2012, 48(3):84-85. |
[26] | 毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 21(1):169-188. |
[27] | 李双保, 李俊建. 山西恒山义兴寨脉金矿田成矿地球化学特征[J]. 前寒武纪研究进展, 1997, 20(2):1-21. |
[28] | 田永清, 王安建, 余克忍, 等. 山西省五台山—恒山地区脉状金矿成矿的地球动力学[J]. 华北地质矿产杂志, 1998, 13(4):301-456. |
[29] | 王自力, 牛树银, 郭鹏志, 等. 冀西石湖地区多金属矿床成矿流体氦氩碳氢氧同位素特征及地质意义[J]. 中国地质, 2014, 41(2):577-588. |
[30] |
LI S R, SANTOSH M. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction[J]. Gondwana Research, 2017, 50:267-292.
DOI URL |
[31] | ZHANG S Y, ZHANG H F. Genesis of the Baiyun pyrophyllite deposit in the central Taihang Mountain, China: implications for gold mineralization in wall rocks[J]. Ore Geology Review, 2020, 120: 103313 https://doi.org/10.1016/j.oregeorev.2020.103313. |
[32] | WHITNEY D L, EVANS B W. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 2010, 95(1):185-187. |
[33] |
HEMLEY J J, MONTOYA J W, MARINENKO J W, et al. Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes[J]. Economic Geology, 1980, 75(2):210-228.
DOI URL |
[34] | ZHENG Y F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):1079-1091. |
[35] | ROBERT F, BROMMECKER R, BOURNE B T, et al. Models and exploration methods for major gold deposit types[J]. Ore Deposits and Exploration Technology, 2007, 48:691-711. |
[36] | GOD R, ZEMANN J. Native arsenic-realgar mineralization in marbles from Saualpe, Carinthia, Austria[J]. Mineralogy and Petrology, 2000, 70(1):37-53. |
[37] |
MOREY A, TOMKINS A G, BIERLEIN F P, et al. Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean boorara and bardoc shear systems, Yilgarn Craton, Western Australia[J]. Economic Geology, 2008, 103(3):599-614.
DOI URL |
[38] | REICH M, KESTER S E, UTSUNOMIYA S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11):2781-2796. |
[39] |
AN F, ZHU Y F. Native antimony in the Baogutu gold deposit (West Junggar, NW China): its occurrence and origin[J]. Ore Geology Reviews, 2010, 37(3):214-223.
DOI URL |
[40] | ZHU Y F, AN F, TAN J J. Geochemistry of hydrothermal gold deposits: a review[J]. Geoscience Frontiers, 2011, 2(3):367-374. |
[41] |
CABRI L J, NEWVILLE M, GORDON R A, et al. Chemical speciation of gold in arsenopyrite[J]. The Canadian Mineralogist, 2000, 38(5):1265-1281.
DOI URL |
[42] |
TARAN Y, BERNARD A, GAVILANES J, et al. Native gold in mineral precipitates from high-temperature volcanic gases of Colima volcano, Mexico[J]. Applied Geochemistry, 2000, 15(3):337-346.
DOI URL |
[43] |
SIMON G, KESLER S E, CHRYSSOULIS S L. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in carlin-type deposits[J]. Economic Geology, 1999, 94(3):405-421.
DOI URL |
[44] | CAMUTI K. Clay minerals in alteration systems: terry leach symposium[J]. Australian Institute of Geoscientists Bulletin, 2008, 48:13-18. |
[1] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[2] | DONG Xiaoyu, KONG Ruoyan, YAN Danping, QIU Liang, QIU Junting. Origin and gold mineralization significance of Late Triassic syn-tectonic dykes in the Qingchengzi area, Liaodong Peninsula [J]. Earth Science Frontiers, 2023, 30(2): 215-238. |
[3] | ZHANG Baolin, LÜ Guxian, YU Jianguo, LIANG Guanghe, LI Zhiyuan, XU Xingwang, HU Baoqun, WANG Hongcai, BI Minfeng, JIAO Jiangang, WANG Cuizhi. Classification of tectonic deformation lithofacies based on deep geophysical information [J]. Earth Science Frontiers, 2022, 29(1): 413-426. |
[4] | ZHENG Youye, CI Qiong, GAO Shunbao, WU Song, JIANG Xiaojia, CHEN Xin. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt, Tibet [J]. Earth Science Frontiers, 2021, 28(3): 379-402. |
[5] | CHEN Hui, LIN Lujun, PANG Zhenshan, CHENG Zhizhong, XUE Jianling, TAO Wen, MA Yixing, GONG Lingming, SHEN Hongtao. Construction and demonstration of an ore prospecting model for the Lala copper deposit in Huili, Sichuan [J]. Earth Science Frontiers, 2021, 28(3): 309-327. |
[6] | WANG Kun, LI Weiqiang, LI Shilei. Stable potassium isotope geochemistry and cosmochemistry [J]. Earth Science Frontiers, 2020, 27(3): 104-122. |
[7] | SHEN Junfeng,WANG Shuhao,XU Liwei,LUO Zhaohua,LI Jinchun,LIU Haiming, NIE Xiao,QIN Yuliang,PENG Zidong,NIU Gang,DU Baisong,LIU Jiajun. Polymetallic droplets in a quartz diorite porphyry from the GangchaKemo gold deposit, West Qinling Belt, China: implications in petrogenesis and prospecting [J]. Earth Science Frontiers, 2019, 26(5): 222-242. |
[8] | . The intrusion-related gold deposits in the XiaheHezuo district, West Qinling Orogen: geodynamic setting and exploration potential. [J]. Earth Science Frontiers, 2019, 26(5): 17-32. |
[9] | SHU Yong-Feng. Geochemistry of hydrothermal mineralization: Taking gold deposit as an example. [J]. Earth Science Frontiers, 2010, 17(2): 45-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||