Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 379-402.DOI: 10.13745/j.esf.sf.2021.1.19
Previous Articles Next Articles
ZHENG Youye1,2(), CI Qiong3, GAO Shunbao4, WU Song2, JIANG Xiaojia4, CHEN Xin4
Received:
2021-01-07
Revised:
2021-02-27
Online:
2021-05-20
Published:
2021-05-23
CLC Number:
ZHENG Youye, CI Qiong, GAO Shunbao, WU Song, JIANG Xiaojia, CHEN Xin. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt, Tibet[J]. Earth Science Frontiers, 2021, 28(3): 379-402.
Fig.1 (a) Simplified tectonic map of the Qinghai-Tibet Plateau (adapted from [1]) showing the tectonic unit divisions, and (b) simplified geological map of the Gangdese metallogenic belt (adapted from [2]) showing the distribution of main mineral resources
编号 | 矿床名称 | 资源量/品位 | 矿化类型 | 赋矿围岩 | 成岩成矿年龄/Ma | 资料来源 | |
---|---|---|---|---|---|---|---|
1 | 哥布弄巴 | 铁矿石约10 802万吨 | 夕卡岩型铁铜铅锌 | 古新世二长花岗岩、闪长玢岩,下白垩统捷嘎组灰岩 | 59.22(白云母Ar-Ar坪年龄) | 文献[ | |
2 | 帮布勒 | 铅锌约70万吨,银约170吨,铜约1 259吨;平均品位Pb 2.84%, Zn 3.30%,Ag 14.83 g/t,Cu 1.16% | 夕卡岩型铅锌银铜 | 晚白垩世石英斑岩,中二叠统下拉组灰岩,上石炭统—下二叠统拉嘎组砂岩、板岩 | 约77(锆石U-Pb) | 文献[ | |
3 | 隆格尔 | 铁矿石约4 039万吨;平均品位TFe 60.66%~62.67% | 夕卡岩型铁 | 晚白垩世闪长岩,早白垩世花岗闪长岩,中二叠统下拉组灰岩 | 93.71(金云母Ar-Ar坪年龄) | 文献[ | |
4 | 洛布勒 | 不详 | 夕卡岩型铁 | 早白垩世花岗闪长岩,下二叠统昂杰组灰岩 | 111.3(锆石U-Pb) | 文献[ | |
5 | 尼雄 | 铁矿石约13 800万吨;平均品位TFe 60% | 夕卡岩型铁 | 早白垩世花岗闪长岩、黑云母二长花岗岩,中二叠统下拉组灰岩,上二叠统敌布错组碎屑岩 | 112.3(金云母Ar-Ar坪年龄) | 文献[ | |
6 | 日阿 | 铜约6万吨;平均品位Cu 1.81% | 夕卡岩型铜 | 晚白垩世黑云母二长花岗岩、辉绿玢岩,中二叠统下拉组灰岩 | 87.69(金云母Ar-Ar坪年龄) | 文献[ | |
7 | 诺仓 | 铅锌约15万吨, 银约150吨,铜约788吨;平均品位Pb 3.94%, Zn 6.85%,Ag 111.63 g/t,Cu 0.76% | 夕卡岩型铅锌银铜 | 古新世二长花岗岩,下二叠统昂杰组灰岩、砂岩 | 59.83(白云母Ar-Ar坪年龄) | 姜军胜等, 未刊资料 | |
8 | 龙根 | 铅锌约19万吨, 银约123吨;平均品位Pb 5.23%, Zn 4.54%,Ag 62.17 g/t | 夕卡岩型铅锌银铜 | 古新世花岗斑岩,中二叠统下拉组灰岩、板岩 | 59.1(闪锌矿Rb-Sr) | 文献[ | |
9 | 查个勒 | 铅锌111万吨, 银128吨,铜6 545吨,钼4 733吨;平均品位Pb 2.05%,Zn 3.28%,Ag 6.13 g/t,Cu 0.70%,Mo 0.062% | 斑岩-夕卡岩型铅锌铜钼 | 古新世花岗斑岩,中二叠统下拉组灰岩、砂岩、板岩 | 61.49(辉钼矿Re-Os) | 文献[ | |
10 | 芽瓦夹格 | 不详 | 斑岩型铜金 | 晚三叠世石英二长斑岩 | 213.1、212.0(辉钼矿Re-Os) | 文献[ | |
11 | 北纳 | 不详 | 浅成低温热液型铅锌银铜 | 古新统典中组次火山岩、火山碎屑岩 | 约64.6(锆石U-Pb年龄) | 文献[ | |
12 | 打加错 | 铅锌约10万吨,银约350吨;平均品位Pb 3.23%, Zn 3.52%,Ag 99.29 g/t | 浅成低温热液型银铅锌铜 | 古新统典中组次火山岩、火山碎屑岩,下二叠统昂杰组灰岩、砂岩 | 61.04(辉钼矿Re-Os) | 姜晓佳等, 未刊资料 | |
13 | 查孜 | 铅锌约6万吨, 银约20吨;平均品位Pb 11.44%,Zn 4.40%,Ag 55.27 g/t | 热液型铅锌银 | 下二叠统昂杰组砂岩、板岩 | 不详 | ||
14 | 拔隆 | 银约750吨,铅锌约3.7万吨;平均品位Ag 250 g/t, Pb 2.03%, Zn 1.58% | 浅成低温热液型银锡铅锌 | 下白垩统则弄群火山碎屑岩 | 约126.5(锆石U-Pb年龄) | 文献[ | |
15 | 朱诺 | 铜308.9万吨,金44.4吨,银1 506.3吨,钼6.3万吨;平均品位Cu 0.57%,Mo 0.017%,Au 0.13 g/t,Ag 2.5 g/t | 斑岩型铜钼 | 中新世斑状二长花岗岩、二长花岗斑岩、花岗斑岩等 | 13.7(辉钼矿Re-Os) | 文献[ | |
编号 | 矿床名称 | 资源量/品位 | 矿化类型 | 赋矿围岩 | 成岩成矿年龄/Ma | 资料来源 | |
16 | 罗布真 | 金6 097 kg,4.79 g/t;银164吨,128.74 g/t;铅锌约5万吨,Pb 2.68%, Zn 1.21% | 浅成低温热液型银金铅锌 | 始新统帕那组火山岩,中新世花岗斑岩 | 50.1、17.1(锆石U-Pb年龄);21.1(石英脉Rb-Sr等时线) | 文献[ | |
17 | 恰功 | 铁矿石约4 400 万吨;平均品位TFe 33% | 夕卡岩型铁 | 古新世二长花岗斑岩,下白垩统塔克那组灰岩 | 67.42(锆石U-Pb年龄) | 文献[ | |
18 | 加多捕勒 | 不详 | 夕卡岩型铁铜 | 始新世黑云母二长花岗岩,中二叠统下拉组灰岩 | 50.9(锆石U-Pb) | 文献[ | |
19 | 斯弄多 | 铅锌约41万吨,银约400吨;平均品位Pb 6.68%, Zn 6.32%, Ag>50 g/t | 浅成低温热液型银铅锌 | 古新统典中组次火山岩、隐爆角砾岩,下二叠统昂杰组灰岩、砂岩,中二叠统下拉组灰岩 | 60.85、63.01(伊利石Ar-Ar坪年龄) | 文献[ | |
20 | 纳如松多 | 铅锌约45万吨, Ag≈136吨,铜约9 382吨;平均品位Pb+Zn 12% | 浅成低温热液型铅锌银 | 古新统典中组火山岩、隐爆角砾岩,古新世花岗斑岩 | 57.81(绢云母Ar-Ar坪年龄) | 文献[ |
Table 1 Principal characteristics of major deposits in the Ag-Sn-Cu polymetallic metallogenic belt of western Gangdese
编号 | 矿床名称 | 资源量/品位 | 矿化类型 | 赋矿围岩 | 成岩成矿年龄/Ma | 资料来源 | |
---|---|---|---|---|---|---|---|
1 | 哥布弄巴 | 铁矿石约10 802万吨 | 夕卡岩型铁铜铅锌 | 古新世二长花岗岩、闪长玢岩,下白垩统捷嘎组灰岩 | 59.22(白云母Ar-Ar坪年龄) | 文献[ | |
2 | 帮布勒 | 铅锌约70万吨,银约170吨,铜约1 259吨;平均品位Pb 2.84%, Zn 3.30%,Ag 14.83 g/t,Cu 1.16% | 夕卡岩型铅锌银铜 | 晚白垩世石英斑岩,中二叠统下拉组灰岩,上石炭统—下二叠统拉嘎组砂岩、板岩 | 约77(锆石U-Pb) | 文献[ | |
3 | 隆格尔 | 铁矿石约4 039万吨;平均品位TFe 60.66%~62.67% | 夕卡岩型铁 | 晚白垩世闪长岩,早白垩世花岗闪长岩,中二叠统下拉组灰岩 | 93.71(金云母Ar-Ar坪年龄) | 文献[ | |
4 | 洛布勒 | 不详 | 夕卡岩型铁 | 早白垩世花岗闪长岩,下二叠统昂杰组灰岩 | 111.3(锆石U-Pb) | 文献[ | |
5 | 尼雄 | 铁矿石约13 800万吨;平均品位TFe 60% | 夕卡岩型铁 | 早白垩世花岗闪长岩、黑云母二长花岗岩,中二叠统下拉组灰岩,上二叠统敌布错组碎屑岩 | 112.3(金云母Ar-Ar坪年龄) | 文献[ | |
6 | 日阿 | 铜约6万吨;平均品位Cu 1.81% | 夕卡岩型铜 | 晚白垩世黑云母二长花岗岩、辉绿玢岩,中二叠统下拉组灰岩 | 87.69(金云母Ar-Ar坪年龄) | 文献[ | |
7 | 诺仓 | 铅锌约15万吨, 银约150吨,铜约788吨;平均品位Pb 3.94%, Zn 6.85%,Ag 111.63 g/t,Cu 0.76% | 夕卡岩型铅锌银铜 | 古新世二长花岗岩,下二叠统昂杰组灰岩、砂岩 | 59.83(白云母Ar-Ar坪年龄) | 姜军胜等, 未刊资料 | |
8 | 龙根 | 铅锌约19万吨, 银约123吨;平均品位Pb 5.23%, Zn 4.54%,Ag 62.17 g/t | 夕卡岩型铅锌银铜 | 古新世花岗斑岩,中二叠统下拉组灰岩、板岩 | 59.1(闪锌矿Rb-Sr) | 文献[ | |
9 | 查个勒 | 铅锌111万吨, 银128吨,铜6 545吨,钼4 733吨;平均品位Pb 2.05%,Zn 3.28%,Ag 6.13 g/t,Cu 0.70%,Mo 0.062% | 斑岩-夕卡岩型铅锌铜钼 | 古新世花岗斑岩,中二叠统下拉组灰岩、砂岩、板岩 | 61.49(辉钼矿Re-Os) | 文献[ | |
10 | 芽瓦夹格 | 不详 | 斑岩型铜金 | 晚三叠世石英二长斑岩 | 213.1、212.0(辉钼矿Re-Os) | 文献[ | |
11 | 北纳 | 不详 | 浅成低温热液型铅锌银铜 | 古新统典中组次火山岩、火山碎屑岩 | 约64.6(锆石U-Pb年龄) | 文献[ | |
12 | 打加错 | 铅锌约10万吨,银约350吨;平均品位Pb 3.23%, Zn 3.52%,Ag 99.29 g/t | 浅成低温热液型银铅锌铜 | 古新统典中组次火山岩、火山碎屑岩,下二叠统昂杰组灰岩、砂岩 | 61.04(辉钼矿Re-Os) | 姜晓佳等, 未刊资料 | |
13 | 查孜 | 铅锌约6万吨, 银约20吨;平均品位Pb 11.44%,Zn 4.40%,Ag 55.27 g/t | 热液型铅锌银 | 下二叠统昂杰组砂岩、板岩 | 不详 | ||
14 | 拔隆 | 银约750吨,铅锌约3.7万吨;平均品位Ag 250 g/t, Pb 2.03%, Zn 1.58% | 浅成低温热液型银锡铅锌 | 下白垩统则弄群火山碎屑岩 | 约126.5(锆石U-Pb年龄) | 文献[ | |
15 | 朱诺 | 铜308.9万吨,金44.4吨,银1 506.3吨,钼6.3万吨;平均品位Cu 0.57%,Mo 0.017%,Au 0.13 g/t,Ag 2.5 g/t | 斑岩型铜钼 | 中新世斑状二长花岗岩、二长花岗斑岩、花岗斑岩等 | 13.7(辉钼矿Re-Os) | 文献[ | |
编号 | 矿床名称 | 资源量/品位 | 矿化类型 | 赋矿围岩 | 成岩成矿年龄/Ma | 资料来源 | |
16 | 罗布真 | 金6 097 kg,4.79 g/t;银164吨,128.74 g/t;铅锌约5万吨,Pb 2.68%, Zn 1.21% | 浅成低温热液型银金铅锌 | 始新统帕那组火山岩,中新世花岗斑岩 | 50.1、17.1(锆石U-Pb年龄);21.1(石英脉Rb-Sr等时线) | 文献[ | |
17 | 恰功 | 铁矿石约4 400 万吨;平均品位TFe 33% | 夕卡岩型铁 | 古新世二长花岗斑岩,下白垩统塔克那组灰岩 | 67.42(锆石U-Pb年龄) | 文献[ | |
18 | 加多捕勒 | 不详 | 夕卡岩型铁铜 | 始新世黑云母二长花岗岩,中二叠统下拉组灰岩 | 50.9(锆石U-Pb) | 文献[ | |
19 | 斯弄多 | 铅锌约41万吨,银约400吨;平均品位Pb 6.68%, Zn 6.32%, Ag>50 g/t | 浅成低温热液型银铅锌 | 古新统典中组次火山岩、隐爆角砾岩,下二叠统昂杰组灰岩、砂岩,中二叠统下拉组灰岩 | 60.85、63.01(伊利石Ar-Ar坪年龄) | 文献[ | |
20 | 纳如松多 | 铅锌约45万吨, Ag≈136吨,铜约9 382吨;平均品位Pb+Zn 12% | 浅成低温热液型铅锌银 | 古新统典中组火山岩、隐爆角砾岩,古新世花岗斑岩 | 57.81(绢云母Ar-Ar坪年龄) | 文献[ |
Fig.4 (a) Simplified geological map of the Bangbule deposit, (b) a sketch of the mineralization zones in the mining district, and (c-g) photo of ore specimen or rocks from selected mineralization zone①
Fig.12 (a) Zonation model of mineralization and wallrock alteration in the world’s Ag-Sn polymetallic deposits (adapted from [66]), and (b) metallogenic model of the Balong deposit (adapted from [23])
Fig.14 Geochemical discrimination diagram (a, b), chondrite-normalized REE diagram (c), and primitive mantle-normalized incompatible element spidergram (d) for the three stages of Fe metallogenic intrusions in the western Gangdise belt. Modified from [34].
Fig.15 Composite diagram showing high Ag, Sn, Pb, and Zn geochemical sketch map (1:50000) of a stream sediment in the Sangmola-Cuoding area, Cuoqin County, Tibet
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
DOI URL |
[2] |
ZHENG Y Y, SUN X, GAO S B, et al. Multiple mineralization events at the Jiru porphyry copper deposit, Southern Tibet: implications for Eocene and Miocene magma sources and resource potential[J]. Journal of Asian Earth Sciences, 2014, 79:842-857.
DOI URL |
[3] | 郑有业, 薛迎喜, 程力军, 等. 西藏驱龙超大型斑岩铜(钼)矿床: 发现、 特征及意义[J]. 地球科学: 中国地质大学学报, 2004, 29(1):103-108. |
[4] | 郑有业, 高顺宝, 程力军, 等. 西藏冲江大型斑岩铜(钼金)矿床的发现及意义[J]. 地球科学: 中国地质大学学报, 2004, 29(3):333-339. |
[5] | 郑有业, 高顺宝, 张大全, 等. 西藏朱诺斑岩铜矿床发现的重大意义及启示[J]. 地学前缘, 2006, 13(4):233-239. |
[6] | 郑有业, 张刚阳, 许荣科, 等. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J]. 科学通报, 2007, 52(21):2542-2548. |
[7] |
ZHENG Y Y, SUN X, GAO S B, et al. Metallogenesis and the minerogenetic series in the Gangdese[J]. Journal of Asian Earth Sciences, 2015, 103:23-39.
DOI URL |
[8] | 李光明, 杨家瑞, 丁俊. 西藏雅鲁藏布江成矿区矿产资源评价新进展[J]. 地质通报, 2003, 22(9):699-703. |
[9] | 李光明, 芮宗瑶. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J]. 大地构造与成矿学, 2004, 28(2):165-170. |
[10] | 唐菊兴, 黎风佶, 李志军, 等. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、 辉钼矿Re-Os年龄的证据[J]. 矿床地质, 2010, 29(3):461-475. |
[11] | 唐菊兴, 王立强, 郑文宝, 等. 冈底斯成矿带东段矿床成矿规律及找矿预测[J]. 地质学报, 2014, 88(12):2545-2555. |
[12] | 唐菊兴, 王勤, 杨欢欢, 等. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、 勘查方向与资源潜力[J]. 地球学报, 2017, 38(5):571-613. |
[13] |
HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110:1541-1575.
DOI URL |
[14] |
HOU Z Q, YANG ZM, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43:643-650.
DOI URL |
[15] |
SUN X, HOLLINGS P, LU Y J. Geology and origin of the Zhunuo porphyry copper deposit, Gangdese Belt, Southern Tibet[J]. Mineralium Deposita, 2021, 56:457-480.
DOI URL |
[16] |
WANG R, JEREMY P R, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese Belt, Southern Tibet[J]. Earth-Science Reviews, 2015, 150:68-94.
DOI URL |
[17] |
WANG R, WEINBERG R F, COLLINS W J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181:122-143.
DOI URL |
[18] |
YANG Z M, LU Y J, HOU Z Q, et al. High-Mg diorite from Qulong in southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collision orogens[J]. Journal of Petrology, 2015, 56:227-254.
DOI URL |
[19] | YANG Z M, COOKE D R. Porphyry copper deposits in China[J]. Society of Economic Geologists Special Publication, 2019, 22:133-187. |
[20] |
ZHENG Y C, FU Q, HOU Z Q, et al. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa Terrane, Southern Tibet[J]. Ore Geology Reviews, 2015, 70:510-532.
DOI URL |
[21] |
WU S, ZHENG Y Y, SUN X. Subduction metasomatism and collision-related metamorphic dehydration controls on the fertility of porphyry copper ore-forming high Sr/Y magma in Tibet[J]. Ore Geology Reviews, 2016, 73:83-103.
DOI URL |
[22] | 高顺宝. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向[D]. 武汉: 中国地质大学(武汉), 2015. |
[23] | 高顺宝, 郑有业, 姜晓佳, 等. 冈底斯西段首例银锡多金属矿床的发现、 成因及意义[J]. 地球科学, 2020, 45(12):4463-4480. |
[24] | 刘英超, 纪现华, 侯增谦, 等. 一个与岩浆作用有关的独立铅锌成矿系统的建立: 以西藏纳如松多铅锌矿床为例[J]. 岩石矿物学杂志, 2015, 34(4):539-556. |
[25] | 唐菊兴, 丁帅, 孟展, 等. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床: 以斯弄多银多金属矿为例[J]. 地球学报, 2016, 37(4):461-470. |
[26] | 丁帅. 西藏冈底斯成矿带斯弄多浅成低温热液型银铅锌矿床成岩与成矿作用研究[D]. 成都: 成都理工大学, 2017. |
[27] | 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3):521-533. |
[28] |
ZHU D C, ZHAO Z D, NIU Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255.
DOI URL |
[29] |
JI W Q, WU F Y, CHUNG S L, et al. Zircon U-Pb chronology and Hf isotopic constraints on the petrogenesis of gangdese batholiths, Southern Tibet[J]. Chemical Geology, 2009, 262:229-245.
DOI URL |
[30] |
JI W Q, WU F Y, LIU C Z, et al. Geochronology and petrogenesis of granitic rocks in Gangdese Batholith, Southern Tibet[J]. Science in China Series D-Earth Sciences, 2009, 52:1240-1261.
DOI URL |
[31] |
WEN D R, LIU D Y, CHUNG S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252:191-201.
DOI URL |
[32] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4):49-67.
DOI URL |
[33] | DONG G C, MO X X, ZHAO Z D, et al. Geochronologic constraints by SHRIMP II zircon U-Pb dating on magma underplating in the Gangdise belt following India-Eurasia Collision[J]. Acta Geologica Sinica(English Edition), 2005, 79(6):787-794. |
[34] |
GAO S B, ZHENG Y Y, JIANG J S, et al. Geochemistry and geochronology of the Gebunongba iron polymetallic deposit in the Gangdese belt(Tibet) and its implications[J]. Journal of Earth Science, 2019, 30(2):296-308.
DOI URL |
[35] | 田坎, 郑有业, 高顺宝, 等. 西藏冈底斯西段帮布勒Pb-Zn-Cu矿床晚白垩世岩浆岩成因及意义[J]. 地球科学, 2019, 44(6):1905-1922. |
[36] | 高顺宝, 郑有业, 田坎, 等. 西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示: 地球化学、 锆石U-Pb及金云母Ar-Ar同位素定年约束[J/OL]. 地球科学, 2020, Online(2020-08-05)[2020-12-25]. https://kns.cnki.net/kcms/detail/42.1874.P.20200804.1926.020.html. |
[37] | 于玉帅, 周云, 鲍波, 等. 拉萨地块措勤-隆格尔地区铁矿床成岩时代、 岩石成因及构造环境指示[J]. 地球科学, 2019, 44(6):1888-1904. |
[38] | 于玉帅, 高原, 杨竹森, 等. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩石学报, 2011, 27(7):1949-1960. |
[39] | 于玉帅, 杨竹森, 刘英超, 等. 西藏措勤尼雄矿田滚纠铁矿金云母矿物学特征及40Ar-39Ar年代学[J]. 岩石矿物学杂志, 2012, 31(5):681-690. |
[40] | 辛洪波, 曲晓明. 藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代[J]. 矿床地质, 2006(4):477-482. |
[41] | GAO S B, CHEN X, CHENG S S, et al. Syn-collisional magmatism at the Longgen Pb-Zn deposit, western Nyainqentanglha belt, Tibet: petrogenesis and implications for regional polymetallic metallogeny[J]. Ore Geology Reviews, 2020, 126:1-15. |
[42] | 高顺宝, 郑有业, 田立明, 等. 西藏查个勒铜铅锌矿成岩成矿时代及意义[J]. 地球科学: 中国地质大学学报, 2012, 37(3):507-514. |
[43] | GAO S B, CHEN X, ZHANG Y C, et al. Timing and genetic link of porphyry Mo and skarn Pb-Zn mineralization in the Chagele deposit, Western Nyainqentanglha Belt, Tibet[J/OL]. Ore Geology Reviews, 2020, Online (2020-12-15)[2021-02-01]. https://www.sciencedirect.com/science/article/pii/S0169136820311148. |
[44] | 刘洪, 李光明, 黄瀚霄, 等. 西藏冈底斯成矿带发现晚三叠世斑岩型铜矿[J]. 中国地质, 2019, 46(5):1238-1240. |
[45] |
LIU J, ZHENG Y Y, GAO S B, et al. Zircon U-Pb dating, geochemistry, and Sr-Nd-Pb-Hf isotopes of the subvolcanic intrusion from Beina Pb-Zn-(Ag) deposit in the southern Lhasa terrane, Tibet: implications for petrogenesis and mineralization[J]. Geological Journal, 2019, 54:2064-2083.
DOI URL |
[46] |
SUN X, ZHENG Y Y, LI M, et al. Genesis of Luobuzhen Pb-Zn veins: implications for porphyry Cu systems and exploration targeting at Luobuzhen-Dongshibu in western Gangdese belt, southern Tibet[J]. Ore Geology Reviews, 2017, 82:252-267.
DOI URL |
[47] |
HUANG H X, LIU H, LI G M, et al. Zircon U-Pb, molybdenite Re-Os and quartz vein Rb-Sr geochronology of the Luobuzhen Au-Ag and Hongshan Cu deposits, Tibet, China: implications for the Oligocene-Miocene porphyry-epithermal metallogenic system[J]. Minerals, 2019, 9(8): 476:1-16.
DOI URL |
[48] | 李应栩, 谢玉玲, 陈伟, 等. 西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义[J]. 岩石学报, 2011, 27(7):2023-2033. |
[49] | 于玉帅, 杨竹森, 多吉, 等. 西藏加多捕勒铁铜矿成矿岩体时代与成因: 锆石U-Pb年龄、 Hf同位素与稀土元素证据[J]. 矿床地质, 2011, 30(3):420-434. |
[50] | 纪现华, 孟祥金, 杨竹森, 等. 西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义[J]. 地质与勘探, 2014, 50(2):281-290. |
[51] | 杨勇, 罗泰义, 黄智龙, 等. 西藏纳如松多银铅矿S、 Pb同位素组成:对成矿物质来源的指示[J]. 矿物学报, 2010, 30(3):311-318. |
[52] | 刘洪, 张林奎, 黄瀚霄, 等. 冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化[J]. 地球科学, 2019, 44(6):1935-1956. |
[53] | 李奋其, 刘伟, 张士贞, 等. 冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征[J]. 地质学报, 2012, 86(10):1592-1603. |
[54] | 刘洪, 李光明, 黄瀚霄, 等. 冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究[J]. 矿床地质, 2019, 38(3):631-643. |
[55] |
CHEN X, ZHENG Y Y, GAO S B, et al. Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny[J]. Gondwana Research, 2020, 85:103-123.
DOI URL |
[56] | 高顺宝, 郑有业, 田立明, 等. 西藏隆格尔地区铁铅锌矿的发现意义及启示[J]. 矿物学报, 2011 (增刊):779-780. |
[57] | 姜军胜. 冈底斯西段林子宗群火山岩区铅锌多金属矿床成因及成矿潜力分析[D]. 武汉: 中国地质大学(武汉), 2018. |
[58] | 李文昌, 尹光候, 刘学龙, 等. 中甸矿集区普朗—红山铜多金属成矿亚带北段帕纳牛场斑岩体40Ar-39Ar年龄及锑矿化[J]. 地质与勘探, 2010, 46(2):267-271. |
[59] |
LI W K, YANG Z M, CAO K, et al. Redox-controlled generation of the giant porphyry Cu-Au deposit at Pulang, southwest China[J]. Contributions to Mineralogy and Petrology, 2019, 174(12):1-34.
DOI URL |
[60] | 孟祥金, 侯增谦, 高永丰, 等. 西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J]. 地质论评, 2003(6):660-666. |
[61] | 刘洪, 张林奎, 黄瀚霄, 等. 西藏冈底斯西段鲁尔玛晚三叠世二长闪长岩的成因[J]. 地球科学, 2019, 44(7):2339-2356. |
[62] | 张洪瑞, 侯增谦, 杨志明. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29(1):113-133. |
[63] | 邓军, 王庆飞, 李龚健. 复合造山和复合成矿系统: 三江特提斯例析[J]. 岩石学报, 2016, 32(8):2225-2247. |
[64] | 曹康, 许继峰, 陈建林, 等. 云南普朗超大型斑岩铜矿床含矿斑岩成因及其成矿意义[J]. 矿床地质, 2014, 33(2):307-322. |
[65] | 王力圆, 郑有业, 高顺宝, 等. 中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义[J]. 岩石学报, 2016, 32(5):1543-1555. |
[66] |
SILLITOE R H, STEELE G B, THOMPSON J F H, et al. Advanced argillic lithocaps in the Bolivian tin-silver belt[J]. Mineralium Deposita, 1998, 33:539-546.
DOI URL |
[67] | 张晓倩, 朱弟成, 赵志丹, 等. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义[J]. 岩石学报, 2010, 26(6):1793-1804. |
[68] | 范淑芳. 西藏措勤县尼雄矿田矽卡岩型铁、 铜矿床成矿岩体成因关系研究[D]. 北京: 中国地质科学院, 2015. |
[69] | 曲晓明, 辛洪波, 徐文艺, 等. 藏西措勤含铜双峰岩系的发现及其意义[J]. 岩石学报, 2006(3):707-716. |
[70] | YE L. Chronology and geochemistry of magmatic rocks in Namling-Yangbajing at Lhasa Terrane, Tibet. Bachelor Thesis[D]. Beijing: China University of Geosciences(Beijing), 2013. |
[71] | 高一鸣, 陈毓川, 唐菊兴, 等. 西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义[J]. 地质通报, 2011, 30(7):1027-1036. |
[72] | 李奋其, 高明, 唐文清, 等. 西藏亚贵拉含钼岩体锆石LA-ICP-MS年龄和地质意义[J]. 中国地质, 2010, 37(6):1566-1574. |
[73] | 付强, 杨竹森, 郑远川, 等. 加拉普铁矿区花岗闪长岩锆石U-Pb年龄、 Hf同位素及地球化学研究[J]. 矿床地质, 2013, 32(3):564-578. |
[74] | 付强, 黄克贤, 郑远川, 等. 西藏蒙亚啊铅锌矿床矽卡岩型矿体白云母Ar-Ar年代学研究及其地球动力学意义[J]. 地质学报, 2015, 89(3):569-582. |
[75] | 杨毅, 多吉, 刘鸿飞, 等. 西藏列廷冈铁多金属矿床辉钼矿Re-Os定年及其地质意义[J]. 中国地质. 2014, 41(5):1554-1564. |
[76] | 杨毅, 多吉, 德西央宗, 等. 西藏列廷冈铁多金属矿侵入岩锆石U-Pb定年、 Hf同位素组成及其地质意义[J]. 岩石矿物学杂志, 2015, 34(3):281-294. |
[77] |
ZHAO J X, QIN K Z, LI G M, et al. Collision-related genesis of the Sharang porphyry molybdenum deposit, Tibet: evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes[J]. Ore Geology Reviews, 2014, 56:312-326.
DOI URL |
[78] |
MAO J W, PIRAJNO F, XIANG J F, et al. Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt: characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43:264-293.
DOI URL |
[79] | 张志辉, 项新葵, 刘永红, 等. 武宁县大湖塘钨矿石门寺矿段蚀变矿物及与成矿关系初步探讨[J]. 矿床地质, 2012, 31(增刊):399-400. |
[80] | 张志辉, 贾文彬, 巩小栋, 等. 江西省武宁县大湖塘钨矿田发现及意义[J]. 矿床地质, 2014, 33(增刊):65-66. |
[81] |
LI H F, TANG J X, HU G Y, et al. Fluid inclusions, isotopic characteristics and geochronology of the Sinongduo epithermal Ag-Pb-Zn deposit, Tibet, China[J]. Ore Geology Reviews, 2019, 107:692-706
DOI URL |
[82] |
NADEAU O, STIX J, WILLIAMS-JONES A E. Links between arc volcanoes and porphyry-epithermal ore deposits[J]. Geology, 2016, 44(1):11-14.
DOI URL |
[83] | SIDOROV A A, VOLKOV A V, SAVVA N E. Volcanism and epithermal deposits[J]. Journal of Volcanology and Seismobogy, 2015, 9(6):349-357. |
[84] | 黄瀚霄, 李光明, 刘洪, 等. 西藏冈底斯成矿带西段罗布真浅成低温热液型金银多金属矿床地质特征及发现意义[J]. 矿床地质, 2019, 38(5):1117-1128. |
[85] | 侯增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004(2):239-248. |
[86] |
RICHARDS J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3):247-250.
DOI URL |
[87] |
RICHARDS J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40:1-26.
DOI URL |
[88] |
CHUNG S L, CHU M F, JI J Q, et al. The nature and timing of crustal thickening in southern Tibet: geochemical and zircon Hf isotopic constraints from post collisional adakites[J]. Tectonophysics, 2009, 477:36-48.
DOI URL |
[89] |
LEE C T A. Copper conundrums[J]. Nature Geoscience, 2014, 7:10-11.
DOI URL |
[90] |
HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36:2-24.
DOI URL |
[91] |
COLUMBA M C, CUNNINGHAM C G. Geologic model for the mineral deposits of the La Joya district, Oruro, Bolivia[J]. Economic Geology, 1993, 88:701-708.
DOI URL |
[92] |
BARTOS P J. The pallacos of Cerro Rico de Potosi, Bolivia: a new deposit type[J]. Economic Geology, 2000, 95:645-654.
DOI URL |
[93] |
RICE C M, STEELE G B. Duration of magmatic, hydrothermal, and supergene activity at Cerrorico de Potosi, Bolivia[J]. Economic Geology, 2005, 100:1647-1656.
DOI URL |
[94] | 曹毅, 聂凤军, 刘翼飞, 等. 玻利维亚塞德里克银矿床研究新进展[J]. 地质科技情报, 2013, 32(5):87-94. |
[95] | 李真真, 秦克章, 赵俊兴, 等. 锡-银多金属成矿系统的基本特征、 研究进展与展望[J]. 岩石学报, 2019, 35(7):1979-1998. |
[96] | 赵鹏大, 孟宪国. 地质异常与矿产预测[J]. 地球科学: 中国地质大学学报, 1993, 18(1):39-47. |
[97] | 赵鹏大, 池顺都, 陈永清. 查明地质异常: 成矿预测的基础[J]. 高校地质学报, 1996, 2(4):361-373. |
[98] | 赵鹏大. 数字地质与矿产资源评价[J]. 地质学刊, 2012, 36(3):225-228. |
[99] | 郑有业, 陈仁义, 庞迎春, 等. “协优”成矿预测方法的理论探索与实践[J]. 地球科学: 中国地质大学学报, 2009, 34(3):511-524. |
[1] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[2] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[3] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[4] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[5] | HE Jinzhong, DING Zhenju, ZHU Yongxin, ZHEN Hongxu, ZHANG Wanren, LIU Jie. The metallogenic series in West Qinling, Gansu Province, and their quantitative estimation [J]. Earth Science Frontiers, 2024, 31(3): 218-234. |
[6] | CHENG Qiuming. Long-range effects of mid-ocean ridge dynamics on earthquakes, magmatic activities, and mineralization events in plate subduction zones [J]. Earth Science Frontiers, 2024, 31(1): 1-14. |
[7] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[8] | BI Xianmei, MO Xuanxue, LIU Yanbin. Very low-grade metamorphic rocks in southern Tibet and their significance on geological processes and resources [J]. Earth Science Frontiers, 2024, 31(1): 201-210. |
[9] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[10] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[11] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[12] | LI Jiankang, LI Peng, HUANG Zhibiao, ZHOU Fangchun, ZHANG Liping, HUANG Xiaoqiang. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China—an overview [J]. Earth Science Frontiers, 2023, 30(5): 1-25. |
[13] | RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites [J]. Earth Science Frontiers, 2023, 30(5): 106-114. |
[14] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[15] | ZHANG Jin, ZHANG Beihang, ZHAO Heng, YUN Long, QU Junfeng, WANG Zhenyi, YANG Yaqi, ZHAO Shuo. Late Cenozoic deformation characteristics and mechanism of the Beishan-Alxa region [J]. Earth Science Frontiers, 2023, 30(5): 334-357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||