Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (3): 104-122.DOI: 10.13745/j.esf.sf.2020.4.5
Previous Articles Next Articles
WANG Kun1(), LI Weiqiang2,*(
), LI Shilei2
Received:
2020-01-20
Revised:
2020-03-21
Online:
2020-05-20
Published:
2020-05-20
Contact:
LI Weiqiang
CLC Number:
WANG Kun, LI Weiqiang, LI Shilei. Stable potassium isotope geochemistry and cosmochemistry[J]. Earth Science Frontiers, 2020, 27(3): 104-122.
储库 Reservoirs | 储库占地球总质量比例[ Mass fraction | 钾含量/10-6 K concentration | 占地球全钾质量比例/% Fraction of total K | |
---|---|---|---|---|
河水[ River | 0 | 2.3 | 0 | |
海水[ Ocean | 0.023 | 399 | 0.049 | |
地壳 Crust | 0.435 | 12 930 | 30.3 | |
陆壳 Continental crust | 0.345 | 16 133 | 30.0 | |
陆上沉积物[ continental sediment | 0.013 | 17 765 | 1.2 | |
上地壳[ upper continental crust | 0.113 | 23 244 | 14.2 | |
中地壳[ middle continental crust | 0.114 | 19 093 | 11.7 | |
下地壳[ lower continental crust | 0.105 | 5 064 | 2.9 | |
洋壳[ Oceanic crust | 0.090 | 651 | 0.32 | |
洋中脊玄武岩[ mid-ocean ridge basalt | 1 237 | |||
洋岛玄武岩[ oceanic island basalt | 6 890 | |||
地幔 Mantle | 67.7 | 191 | 69.6 | |
上地幔[ upper mantle | 17.5 | 50 | 4.7 | |
下地幔[ lower mantle | 50.2 | 240 | 64.9 | |
地核[ Core | 32.3 | 0 | 0 |
Table 1 Potassium elemental concentrations in major Earth's reservoirs
储库 Reservoirs | 储库占地球总质量比例[ Mass fraction | 钾含量/10-6 K concentration | 占地球全钾质量比例/% Fraction of total K | |
---|---|---|---|---|
河水[ River | 0 | 2.3 | 0 | |
海水[ Ocean | 0.023 | 399 | 0.049 | |
地壳 Crust | 0.435 | 12 930 | 30.3 | |
陆壳 Continental crust | 0.345 | 16 133 | 30.0 | |
陆上沉积物[ continental sediment | 0.013 | 17 765 | 1.2 | |
上地壳[ upper continental crust | 0.113 | 23 244 | 14.2 | |
中地壳[ middle continental crust | 0.114 | 19 093 | 11.7 | |
下地壳[ lower continental crust | 0.105 | 5 064 | 2.9 | |
洋壳[ Oceanic crust | 0.090 | 651 | 0.32 | |
洋中脊玄武岩[ mid-ocean ridge basalt | 1 237 | |||
洋岛玄武岩[ oceanic island basalt | 6 890 | |||
地幔 Mantle | 67.7 | 191 | 69.6 | |
上地幔[ upper mantle | 17.5 | 50 | 4.7 | |
下地幔[ lower mantle | 50.2 | 240 | 64.9 | |
地核[ Core | 32.3 | 0 | 0 |
矿物名 Mineral | 化学式 Formula | 常见于 Occurrence | 钾含量 w(K)/% K concentration | 键的力常数[ (N·m-1) Force constant | 平均键长[ Mean bond length | 配位数 Coordination number | |
---|---|---|---|---|---|---|---|
硅酸盐 Silicates | 微斜长石 microcline | KAlSi3O8 | 花岗岩 Granite | 14.05 | 48.92 | 2.895 | 7 |
白榴石 leucite | KAlSi2O6 | 贫硅碱性岩 Alkalic rock | 17.91 | 35.31 | 2.955 | 6 | |
霞石 nepheline | Na3KAl4Si4O16 | 贫硅碱性岩 Alkalic rock | 6.69 | 51.9 | 2.992 | 9 | |
白云母 muscovite | KAl2(AlSi3O10)(OH)2 | 花岗岩 Granite | 9.82 | 59.93 | 2.871 | 6 | |
锂云母 lepidolite | KLi2AlSi4O10(OH)2 | 伟晶岩 Pegmatites | 10.12 | 43.59 | 3.022 | 6 | |
金云母 phlogopite | KMg3AlSi3O10(OH)2 | 接触变质岩 Metamorphic | 9.37 | 44.85 | 2.961 | 6 | |
碳酸盐 Carbonates | 碳酸钾 potassium carbonate | K2CO3 | 56.58 | 63.82 | 2.832 | 9 | |
碳酸氢钾 potassium bicarbonate | KHCO3 | 39.05 | 66.15 | 2.848 | 8 | ||
卤化物 Halide | 钾盐 sylvite | KCl | 蒸发岩 Evaporite | 52.45 | 44.06 | 3.144 | 6 |
硝酸盐 Nitrate | 硝石 niter | KNO3 | 土壤 Soil | 38.67 | 89.51 | 2.876 | 9 |
硫酸盐 Sulfate | 明矾石 alunite | KAl3(SO4)2(OH)6 | 低温热液矿 Sulfate ore | 9.44 | 112.32 | 2.825 | 12 |
硫化物 Sulfide | 陨硫铜钾矿 djerfisherite | K6CuFe24S26Cl | 陨石 Meteorite | 9.38 | 34.76 | 3.343 | 9 |
Table 2 Common K-bearing minerals and bond lengths
矿物名 Mineral | 化学式 Formula | 常见于 Occurrence | 钾含量 w(K)/% K concentration | 键的力常数[ (N·m-1) Force constant | 平均键长[ Mean bond length | 配位数 Coordination number | |
---|---|---|---|---|---|---|---|
硅酸盐 Silicates | 微斜长石 microcline | KAlSi3O8 | 花岗岩 Granite | 14.05 | 48.92 | 2.895 | 7 |
白榴石 leucite | KAlSi2O6 | 贫硅碱性岩 Alkalic rock | 17.91 | 35.31 | 2.955 | 6 | |
霞石 nepheline | Na3KAl4Si4O16 | 贫硅碱性岩 Alkalic rock | 6.69 | 51.9 | 2.992 | 9 | |
白云母 muscovite | KAl2(AlSi3O10)(OH)2 | 花岗岩 Granite | 9.82 | 59.93 | 2.871 | 6 | |
锂云母 lepidolite | KLi2AlSi4O10(OH)2 | 伟晶岩 Pegmatites | 10.12 | 43.59 | 3.022 | 6 | |
金云母 phlogopite | KMg3AlSi3O10(OH)2 | 接触变质岩 Metamorphic | 9.37 | 44.85 | 2.961 | 6 | |
碳酸盐 Carbonates | 碳酸钾 potassium carbonate | K2CO3 | 56.58 | 63.82 | 2.832 | 9 | |
碳酸氢钾 potassium bicarbonate | KHCO3 | 39.05 | 66.15 | 2.848 | 8 | ||
卤化物 Halide | 钾盐 sylvite | KCl | 蒸发岩 Evaporite | 52.45 | 44.06 | 3.144 | 6 |
硝酸盐 Nitrate | 硝石 niter | KNO3 | 土壤 Soil | 38.67 | 89.51 | 2.876 | 9 |
硫酸盐 Sulfate | 明矾石 alunite | KAl3(SO4)2(OH)6 | 低温热液矿 Sulfate ore | 9.44 | 112.32 | 2.825 | 12 |
硫化物 Sulfide | 陨硫铜钾矿 djerfisherite | K6CuFe24S26Cl | 陨石 Meteorite | 9.38 | 34.76 | 3.343 | 9 |
Fig.1 The K/U ratios in different chemical groups of chondrites and bulk planetary bodies (Earth, Mars, Moon,Vesta and Angrite Parent Body) normalized to the K/U ratio in CI chondrites. The ratios of the solar photosphere are also shown. All data are from the compilation of [44].
钾含量/10-6 K concentration | K/U 比值 | Rb/Sr 比值 | ||
---|---|---|---|---|
太阳光球 Solar photosphere | 63 837 | 0.467 | ||
碳质球粒陨石 Carbonaceous chondrites | CI | 544 | 67 160 | 0.316 |
CM | 370 | 30 833 | 0.160 | |
CO | 360 | 20 000 | 0.100 | |
CV | 360 | 21 176 | 0.081 | |
CR | 315 | 24 231 | 0.110 | |
CK | 290 | 19 333 | 0.090 | |
普通球粒陨石 Ordinary chondrites | H | 780 | 60 000 | 0.250 |
L | 920 | 61 333 | 0.209 | |
LL | 880 | 58 667 | 0.154 | |
顽火辉石球粒陨石 Enstatite chondrites | EH | 840 | 91 304 | 0.443 |
EL | 700 | 100 000 | 0.245 | |
地球 Earth | 225 | 14 803 | 0.053 | |
火星 Mars | 730 | 57 937 | 0.252 | |
月球 Moon | 83 | 2 515 | 0.009 3 | |
灶神星 Vesta | 83 | 3 773 | 0.010 5 | |
钛辉无球粒陨石 Angrite | 30 | 176 | 0.000 68 |
Table 3 Potassium elemental concentrations in meteorites and planetary materials. Adapted from[44].
钾含量/10-6 K concentration | K/U 比值 | Rb/Sr 比值 | ||
---|---|---|---|---|
太阳光球 Solar photosphere | 63 837 | 0.467 | ||
碳质球粒陨石 Carbonaceous chondrites | CI | 544 | 67 160 | 0.316 |
CM | 370 | 30 833 | 0.160 | |
CO | 360 | 20 000 | 0.100 | |
CV | 360 | 21 176 | 0.081 | |
CR | 315 | 24 231 | 0.110 | |
CK | 290 | 19 333 | 0.090 | |
普通球粒陨石 Ordinary chondrites | H | 780 | 60 000 | 0.250 |
L | 920 | 61 333 | 0.209 | |
LL | 880 | 58 667 | 0.154 | |
顽火辉石球粒陨石 Enstatite chondrites | EH | 840 | 91 304 | 0.443 |
EL | 700 | 100 000 | 0.245 | |
地球 Earth | 225 | 14 803 | 0.053 | |
火星 Mars | 730 | 57 937 | 0.252 | |
月球 Moon | 83 | 2 515 | 0.009 3 | |
灶神星 Vesta | 83 | 3 773 | 0.010 5 | |
钛辉无球粒陨石 Angrite | 30 | 176 | 0.000 68 |
Fig.2 The K/U ratios vs. Rb/Sr ratios in different chemical groups of chondrites and bulk planetary bodies (Earth,Mars,Moon,Vesta and Angrite Parent Body) normalized to the K/U ratio and Rb/Sr in CI chondrites. All data are from the compilation of [44].
研究者 | 树脂(mesh) Resin | 交换柱 Column | 内径/cm I.D. | 树脂量/mL Resin volume | 预洗溶剂 Cleaning | 洗脱溶剂 Eluting | 洗脱速率/ (mL·min-1) Elution rate | 钾收集量/mL Potassium fraction | 回收率/% Recovery | 本底 Blank | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strelow[ (1970) | Bio-Rad AG50W-X8 (200~400) | 硼玻璃 Borosilicate glass | 2.5 | 90 | 3 N HNO3 | 0.5 N HNO3 | 3±0.5 | 600~850 | 0.5~1 μg | |||||||||||
Humayun[ (1995) | Bio-Rad AG50W-X8 (100~200) | 耐热玻璃 或石英 Pyrex or quartz | 2.2 | 90 | 4 N HNO3 or 6 N HCl | 0.5 N HNO3 | 3~5 | 700~1 000 | ≥99.8 | 0.2% | ||||||||||
Wang等[ (2016) | Bio-Rad AG50W-X8 (100~200) | 石英 Quartz | 1 | 13 | 4 N HCl | 0.5 N HNO3 | 0.4~0.6 | 180~340 | >99 | 0.82 μg | ||||||||||
Li等[ (2016) | Bio-Rad AG50W-X12 (100~200) | 石英 Quartz | 0.4 | 1 | 4.5 N HNO3 | 1.5 N HNO3 | 5~17 | 99.4±2.1 | 3~8 ng | |||||||||||
研究者 | 树脂(mesh) Resin | 交换柱 Column | 内径/cm I.D. | 树脂量/mL Resin volume | 预洗溶剂 Cleaning | 洗脱溶剂 Eluting | 洗脱速率/ (mL·min-1) Elution rate | 钾收集量/mL Potassium fraction | 回收率/% Recovery | 本底 Blank | ||||||||||
Morgan等[ (2018) | Dionex CS-16 cation exchange column | 0.2% HNO3 | >99 | 0.06%~ 1.06% | ||||||||||||||||
Hu等[ (2018) | Bio-Rad AG50W-X8 (200~400) | Disposable Bio-Rad Poly-Prep polyethylene column | 6 N HCl | 0.5 N HNO3 | 14~36 | |||||||||||||||
Chen等[ (2019) | Bio-Rad AG50W-X8 (100~200) | Disposable Poly-Prep Econo-Pac polyethylene column | 1.5 | 17 | 6 N HCl | 0.7 N HNO3 | 88~195 | >99 | (0.26± 0.15) μg |
Table 4 Comparison of potassium ion-exchange separation procedures
研究者 | 树脂(mesh) Resin | 交换柱 Column | 内径/cm I.D. | 树脂量/mL Resin volume | 预洗溶剂 Cleaning | 洗脱溶剂 Eluting | 洗脱速率/ (mL·min-1) Elution rate | 钾收集量/mL Potassium fraction | 回收率/% Recovery | 本底 Blank | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strelow[ (1970) | Bio-Rad AG50W-X8 (200~400) | 硼玻璃 Borosilicate glass | 2.5 | 90 | 3 N HNO3 | 0.5 N HNO3 | 3±0.5 | 600~850 | 0.5~1 μg | |||||||||||
Humayun[ (1995) | Bio-Rad AG50W-X8 (100~200) | 耐热玻璃 或石英 Pyrex or quartz | 2.2 | 90 | 4 N HNO3 or 6 N HCl | 0.5 N HNO3 | 3~5 | 700~1 000 | ≥99.8 | 0.2% | ||||||||||
Wang等[ (2016) | Bio-Rad AG50W-X8 (100~200) | 石英 Quartz | 1 | 13 | 4 N HCl | 0.5 N HNO3 | 0.4~0.6 | 180~340 | >99 | 0.82 μg | ||||||||||
Li等[ (2016) | Bio-Rad AG50W-X12 (100~200) | 石英 Quartz | 0.4 | 1 | 4.5 N HNO3 | 1.5 N HNO3 | 5~17 | 99.4±2.1 | 3~8 ng | |||||||||||
研究者 | 树脂(mesh) Resin | 交换柱 Column | 内径/cm I.D. | 树脂量/mL Resin volume | 预洗溶剂 Cleaning | 洗脱溶剂 Eluting | 洗脱速率/ (mL·min-1) Elution rate | 钾收集量/mL Potassium fraction | 回收率/% Recovery | 本底 Blank | ||||||||||
Morgan等[ (2018) | Dionex CS-16 cation exchange column | 0.2% HNO3 | >99 | 0.06%~ 1.06% | ||||||||||||||||
Hu等[ (2018) | Bio-Rad AG50W-X8 (200~400) | Disposable Bio-Rad Poly-Prep polyethylene column | 6 N HCl | 0.5 N HNO3 | 14~36 | |||||||||||||||
Chen等[ (2019) | Bio-Rad AG50W-X8 (100~200) | Disposable Poly-Prep Econo-Pac polyethylene column | 1.5 | 17 | 6 N HCl | 0.7 N HNO3 | 88~195 | >99 | (0.26± 0.15) μg |
研究者 | 仪器 Resin | 单/双聚焦 Single/ Double- focusing | 去除氩气干扰 Ar-removing | 射频功率 RF power/W | 质量分辨率 Mass resolution | 进样系统 Introduction | 主要标样 Bracketing standard | 其他标样 Other standards |
---|---|---|---|---|---|---|---|---|
Wang等[ (2016) | GV Instruments IsoProbe P | 单 Single | 碰撞池 collision cell | 1 350 | 低分辨率 约400 | “干”等离子体 Dry plasma APEX IR+ACM | Merck KGaA Suprapur 99.995% potassium nitrate (KNO3) | Bulk Silicate Earth(BSE) |
Li等[ (2016) | GV Instruments IsoProbe P | 单 Single | 碰撞池 collision cell | 1 350 | 低分辨率 约400 | “湿”等离子体 雾化室 Wet plasma spray chamber | NIST SRM 3141a K standard solution | in-house standard UW-K |
Morgan等[ (2018) | Thermo Scientific Neptune Plus | 双 Double | “冷”等离子体 cold plasma | 500~600 | 高分辨率 约10 000 | “湿”等离子体 雾化室 Wet plasma spray chamber | NIST SRM 999b 99.977% potassium chloride (KCl) | NIST SRM 70b NIST SRM 918 NIST SRM 985 |
Hu等[ (2018) | Nu Instruments Nu Plasma II | 双 Double | “冷”等离子体 cold plasma | 700~1 125 | 高分辨率 约10 000 | “干”等离子体 Dry plasma DSN-100 | NIST SRM 3141a K standard solution | NIST SRM 999c SRM 918b SRM 193 |
Chen等[ (2019) | Thermo Scientific Neptune Plus | 双 Double | “冷”等离子体 cold plasma | 600 | 高分辨率 约10 000 | “干”等离子体 Dry plasma APEX Ω | NIST SRM 3141a K standard solution | Merck KGaA Suprapur |
Table 5 Comparison of high-precision potassium isotope analysis methods
研究者 | 仪器 Resin | 单/双聚焦 Single/ Double- focusing | 去除氩气干扰 Ar-removing | 射频功率 RF power/W | 质量分辨率 Mass resolution | 进样系统 Introduction | 主要标样 Bracketing standard | 其他标样 Other standards |
---|---|---|---|---|---|---|---|---|
Wang等[ (2016) | GV Instruments IsoProbe P | 单 Single | 碰撞池 collision cell | 1 350 | 低分辨率 约400 | “干”等离子体 Dry plasma APEX IR+ACM | Merck KGaA Suprapur 99.995% potassium nitrate (KNO3) | Bulk Silicate Earth(BSE) |
Li等[ (2016) | GV Instruments IsoProbe P | 单 Single | 碰撞池 collision cell | 1 350 | 低分辨率 约400 | “湿”等离子体 雾化室 Wet plasma spray chamber | NIST SRM 3141a K standard solution | in-house standard UW-K |
Morgan等[ (2018) | Thermo Scientific Neptune Plus | 双 Double | “冷”等离子体 cold plasma | 500~600 | 高分辨率 约10 000 | “湿”等离子体 雾化室 Wet plasma spray chamber | NIST SRM 999b 99.977% potassium chloride (KCl) | NIST SRM 70b NIST SRM 918 NIST SRM 985 |
Hu等[ (2018) | Nu Instruments Nu Plasma II | 双 Double | “冷”等离子体 cold plasma | 700~1 125 | 高分辨率 约10 000 | “干”等离子体 Dry plasma DSN-100 | NIST SRM 3141a K standard solution | NIST SRM 999c SRM 918b SRM 193 |
Chen等[ (2019) | Thermo Scientific Neptune Plus | 双 Double | “冷”等离子体 cold plasma | 600 | 高分辨率 约10 000 | “干”等离子体 Dry plasma APEX Ω | NIST SRM 3141a K standard solution | Merck KGaA Suprapur |
名称 Name | 类型 Type | δ41KNIST3141a/‰ | 2 SD | n | 实验室 Laboratory | 方法 Method | |
---|---|---|---|---|---|---|---|
基性岩 Mafic | |||||||
BCR-1 | basalt | USGS | -0.42 | 0.06 | 8 | U of Washington | cold plasma |
BCR-1 | -0.49 | 0.11 | 8 | WUSTL | cold plasma | ||
BCR-1 | -0.40 | 0.04 | 12 | U of Washington | cold plasma | ||
BCR-1 | -0.42 | 0.05 | 6 | U of Washington | cold plasma | ||
BCR-1 | -0.41 | 0.05 | 5 | U of Washington | cold plasma | ||
BCR-1 | -0.40 | 0.09 | 6 | U of Washington | cold plasma | ||
BCR-1 | -0.40 | 0.05 | 6 | U of Washington | cold plasma | ||
BCR-2 | -0.47 | 0.30 | 12 | Harvard | collision cell | ||
BCR-2 | -0.64 | 0.15 | 4 | Wisconsin | collision cell | ||
BCR-2 | -0.51 | 0.19 | 4 | Wisconsin | collision cell | ||
BCR-2 | -0.55 | 0.13 | 4 | Princeton | cold plasma | ||
Recommended | -0.42 | 0.02 | 75 | ||||
BHVO-1 | basalt | USGS | -0.47 | 0.35 | 84 | Harvard | collision cell |
BHVO-1 | -0.43 | 0.06 | 5 | U of Washington | cold plasma | ||
BHVO-1 | -0.36 | 0.04 | 12 | U of Washington | cold plasma | ||
BHVO-1 | -0.43 | 0.09 | 7 | U of Washington | cold plasma | ||
BHVO-1 | -0.42 | 0.08 | 5 | U of Washington | cold plasma | ||
BHVO-1 | -0.45 | 0.04 | 5 | U of Washington | cold plasma | ||
BHVO-2 | -0.50 | 0.19 | 4 | Wisconsin | collision cell | ||
BHVO-2 | -0.46 | 0.14 | 13 | WUSTL | cold plasma | ||
BHVO-2 | -0.52 | 0.24 | 2 | Princeton | cold plasma | ||
Recommended | -0.42 | 0.02 | 137 | ||||
W-1 | diabase | USGS | -0.39 | 0.05 | 5 | U of Washington | cold plasma |
W-1 | -0.39 | 0.05 | 4 | U of Washington | cold plasma | ||
W-1 | -0.39 | 0.07 | 7 | U of Washington | cold plasma | ||
W-2a | -0.55 | 0.21 | 2 | Princeton | cold plasma | ||
Recommended | -0.39 | 0.03 | 18 | ||||
中性岩 Intermediate | |||||||
AGV-1 | andesite | USGS | -0.46 | 0.37 | 11 | Harvard | collision cell |
AGV-1 | -0.45 | 0.05 | 12 | U of Washington | cold plasma | ||
AGV-1 | -0.43 | 0.22 | 10 | WUSTL | cold plasma | ||
AGV-1 | -0.45 | 0.12 | 7 | U of Washington | cold plasma | ||
AGV-2 | -0.56 | 0.11 | 5 | Princeton | cold plasma | ||
AGV-2 | -0.48 | 0.18 | 4 | Wisconsin | collision cell | ||
AGV-2 | -0.47 | 0.12 | 4 | Wisconsin | collision cell | ||
Recommended | -0.47 | 0.04 | 53 | ||||
名称 Name | 类型 Type | δ41KNIST3141a/‰ | 2 SD | n | 实验室 Laboratory | 方法 Method | |
酸性岩 Felsic | |||||||
G-2 | granite | USGS | -0.42 | 0.32 | 12 | Harvard | collision cell |
G-2 | -0.45 | 0.05 | 6 | U of Washington | cold plasma | ||
G-2 | -0.46 | 0.17 | 19 | WUSTL | cold plasma | ||
G-2 | -0.47 | 0.04 | 10 | U of Washington | cold plasma | ||
G-2 | -0.45 | 0.07 | 5 | U of Washington | cold plasma | ||
G-2 | -0.48 | 0.04 | 4 | U of Washington | cold plasma | ||
G-2 | -0.46 | 0.08 | 6 | U of Washington | cold plasma | ||
G-2 | -0.46 | 0.05 | 6 | U of Washington | cold plasma | ||
Recommended | -0.47 | 0.02 | 68 | ||||
GS-N | granite | ANRT | -0.43 | 0.25 | 13 | WUSTL | cold plasma |
GS-N | -0.46 | 0.06 | 4 | U of Washington | cold plasma | ||
GS-N | -0.48 | 0.12 | 4 | U of Washington | cold plasma | ||
GS-N | -0.46 | 0.04 | 6 | U of Washington | cold plasma | ||
Recommended | -0.46 | 0.03 | 27 | ||||
GSP-1 | granodiorite | USGS | -0.41 | 0.24 | 13 | Harvard | collision cell |
GSP-1 | -0.50 | 0.04 | 10 | U of Washington | cold plasma | ||
GSP-1 | -0.44 | 0.13 | 10 | WUSTL | cold plasma | ||
GSP-1 | -0.48 | 0.12 | 7 | U of Washington | cold plasma | ||
GSP-1 | -0.49 | 0.06 | 6 | U of Washington | cold plasma | ||
GSP-2 | -0.48 | 0.11 | 3 | Princeton | cold plasma | ||
GSP-2 | -0.50 | 0.12 | 4 | Wisconsin | collision cell | ||
GSP-2 | -0.51 | 0.22 | 5 | Wisconsin | collision cell | ||
Recommended | -0.49 | 0.03 | 58 | ||||
QLO-1 | quartz latite | USGS | -0.40 | 0.13 | 11 | WUSTL | cold plasma |
QLO-1 | -0.39 | 0.07 | 5 | U of Washington | cold plasma | ||
QLO-1 | -0.58 | 0.14 | 4 | Princeton | cold plasma | ||
Recommended | -0.43 | 0.06 | 20 | ||||
RGM-1 | rhyolite | USGS | -0.35 | 0.16 | 16 | WUSTL | cold plasma |
RGM-1 | -0.38 | 0.10 | 6 | U of Washington | cold plasma | ||
RGM-1 | -0.37 | 0.10 | 6 | U of Washington | cold plasma | ||
RGM-1 | -0.37 | 0.06 | 4 | U of Washington | cold plasma | ||
Recommended | -0.37 | 0.04 | 32 | ||||
沉积岩 Sedimentary | |||||||
MAG-1 | marine mud | USGS | -0.44 | 0.14 | 13 | WUSTL | cold plasma |
MAG-1 | -0.38 | 0.08 | 6 | U of Washington | cold plasma | ||
MAG-1 | -0.39 | 0.04 | 6 | U of Washington | cold plasma | ||
Recommended | -0.39 | 0.03 | 25 | ||||
SCo-1 | shale | USGS | -0.43 | 0.16 | 16 | WUSTL | cold plasma |
SCo-1 | -0.36 | 0.06 | 4 | U of Washington | cold plasma | ||
SCo-1 | -0.34 | 0.07 | 6 | U of Washington | cold plasma | ||
SCo-1 | -0.37 | 0.05 | 7 | U of Washington | cold plasma | ||
Recommended | -0.36 | 0.03 | 33 | ||||
SGR-1 | oil shale | USGS | -0.25 | 0.05 | 5 | U of Washington | cold plasma |
SGR-1 | -0.26 | 0.16 | 10 | WUSTL | cold plasma | ||
SGR-1 | -0.27 | 0.04 | 12 | U of Washington | cold plasma | ||
SGR-1 | -0.31 | 0.09 | 4 | U of Washington | cold plasma | ||
SGR-1b | -0.25 | 0.09 | 4 | Princeton | cold plasma | ||
Recommended | -0.26 | 0.03 | 35 |
Table 6 Potassium isotope compositions of geological reference materials
名称 Name | 类型 Type | δ41KNIST3141a/‰ | 2 SD | n | 实验室 Laboratory | 方法 Method | |
---|---|---|---|---|---|---|---|
基性岩 Mafic | |||||||
BCR-1 | basalt | USGS | -0.42 | 0.06 | 8 | U of Washington | cold plasma |
BCR-1 | -0.49 | 0.11 | 8 | WUSTL | cold plasma | ||
BCR-1 | -0.40 | 0.04 | 12 | U of Washington | cold plasma | ||
BCR-1 | -0.42 | 0.05 | 6 | U of Washington | cold plasma | ||
BCR-1 | -0.41 | 0.05 | 5 | U of Washington | cold plasma | ||
BCR-1 | -0.40 | 0.09 | 6 | U of Washington | cold plasma | ||
BCR-1 | -0.40 | 0.05 | 6 | U of Washington | cold plasma | ||
BCR-2 | -0.47 | 0.30 | 12 | Harvard | collision cell | ||
BCR-2 | -0.64 | 0.15 | 4 | Wisconsin | collision cell | ||
BCR-2 | -0.51 | 0.19 | 4 | Wisconsin | collision cell | ||
BCR-2 | -0.55 | 0.13 | 4 | Princeton | cold plasma | ||
Recommended | -0.42 | 0.02 | 75 | ||||
BHVO-1 | basalt | USGS | -0.47 | 0.35 | 84 | Harvard | collision cell |
BHVO-1 | -0.43 | 0.06 | 5 | U of Washington | cold plasma | ||
BHVO-1 | -0.36 | 0.04 | 12 | U of Washington | cold plasma | ||
BHVO-1 | -0.43 | 0.09 | 7 | U of Washington | cold plasma | ||
BHVO-1 | -0.42 | 0.08 | 5 | U of Washington | cold plasma | ||
BHVO-1 | -0.45 | 0.04 | 5 | U of Washington | cold plasma | ||
BHVO-2 | -0.50 | 0.19 | 4 | Wisconsin | collision cell | ||
BHVO-2 | -0.46 | 0.14 | 13 | WUSTL | cold plasma | ||
BHVO-2 | -0.52 | 0.24 | 2 | Princeton | cold plasma | ||
Recommended | -0.42 | 0.02 | 137 | ||||
W-1 | diabase | USGS | -0.39 | 0.05 | 5 | U of Washington | cold plasma |
W-1 | -0.39 | 0.05 | 4 | U of Washington | cold plasma | ||
W-1 | -0.39 | 0.07 | 7 | U of Washington | cold plasma | ||
W-2a | -0.55 | 0.21 | 2 | Princeton | cold plasma | ||
Recommended | -0.39 | 0.03 | 18 | ||||
中性岩 Intermediate | |||||||
AGV-1 | andesite | USGS | -0.46 | 0.37 | 11 | Harvard | collision cell |
AGV-1 | -0.45 | 0.05 | 12 | U of Washington | cold plasma | ||
AGV-1 | -0.43 | 0.22 | 10 | WUSTL | cold plasma | ||
AGV-1 | -0.45 | 0.12 | 7 | U of Washington | cold plasma | ||
AGV-2 | -0.56 | 0.11 | 5 | Princeton | cold plasma | ||
AGV-2 | -0.48 | 0.18 | 4 | Wisconsin | collision cell | ||
AGV-2 | -0.47 | 0.12 | 4 | Wisconsin | collision cell | ||
Recommended | -0.47 | 0.04 | 53 | ||||
名称 Name | 类型 Type | δ41KNIST3141a/‰ | 2 SD | n | 实验室 Laboratory | 方法 Method | |
酸性岩 Felsic | |||||||
G-2 | granite | USGS | -0.42 | 0.32 | 12 | Harvard | collision cell |
G-2 | -0.45 | 0.05 | 6 | U of Washington | cold plasma | ||
G-2 | -0.46 | 0.17 | 19 | WUSTL | cold plasma | ||
G-2 | -0.47 | 0.04 | 10 | U of Washington | cold plasma | ||
G-2 | -0.45 | 0.07 | 5 | U of Washington | cold plasma | ||
G-2 | -0.48 | 0.04 | 4 | U of Washington | cold plasma | ||
G-2 | -0.46 | 0.08 | 6 | U of Washington | cold plasma | ||
G-2 | -0.46 | 0.05 | 6 | U of Washington | cold plasma | ||
Recommended | -0.47 | 0.02 | 68 | ||||
GS-N | granite | ANRT | -0.43 | 0.25 | 13 | WUSTL | cold plasma |
GS-N | -0.46 | 0.06 | 4 | U of Washington | cold plasma | ||
GS-N | -0.48 | 0.12 | 4 | U of Washington | cold plasma | ||
GS-N | -0.46 | 0.04 | 6 | U of Washington | cold plasma | ||
Recommended | -0.46 | 0.03 | 27 | ||||
GSP-1 | granodiorite | USGS | -0.41 | 0.24 | 13 | Harvard | collision cell |
GSP-1 | -0.50 | 0.04 | 10 | U of Washington | cold plasma | ||
GSP-1 | -0.44 | 0.13 | 10 | WUSTL | cold plasma | ||
GSP-1 | -0.48 | 0.12 | 7 | U of Washington | cold plasma | ||
GSP-1 | -0.49 | 0.06 | 6 | U of Washington | cold plasma | ||
GSP-2 | -0.48 | 0.11 | 3 | Princeton | cold plasma | ||
GSP-2 | -0.50 | 0.12 | 4 | Wisconsin | collision cell | ||
GSP-2 | -0.51 | 0.22 | 5 | Wisconsin | collision cell | ||
Recommended | -0.49 | 0.03 | 58 | ||||
QLO-1 | quartz latite | USGS | -0.40 | 0.13 | 11 | WUSTL | cold plasma |
QLO-1 | -0.39 | 0.07 | 5 | U of Washington | cold plasma | ||
QLO-1 | -0.58 | 0.14 | 4 | Princeton | cold plasma | ||
Recommended | -0.43 | 0.06 | 20 | ||||
RGM-1 | rhyolite | USGS | -0.35 | 0.16 | 16 | WUSTL | cold plasma |
RGM-1 | -0.38 | 0.10 | 6 | U of Washington | cold plasma | ||
RGM-1 | -0.37 | 0.10 | 6 | U of Washington | cold plasma | ||
RGM-1 | -0.37 | 0.06 | 4 | U of Washington | cold plasma | ||
Recommended | -0.37 | 0.04 | 32 | ||||
沉积岩 Sedimentary | |||||||
MAG-1 | marine mud | USGS | -0.44 | 0.14 | 13 | WUSTL | cold plasma |
MAG-1 | -0.38 | 0.08 | 6 | U of Washington | cold plasma | ||
MAG-1 | -0.39 | 0.04 | 6 | U of Washington | cold plasma | ||
Recommended | -0.39 | 0.03 | 25 | ||||
SCo-1 | shale | USGS | -0.43 | 0.16 | 16 | WUSTL | cold plasma |
SCo-1 | -0.36 | 0.06 | 4 | U of Washington | cold plasma | ||
SCo-1 | -0.34 | 0.07 | 6 | U of Washington | cold plasma | ||
SCo-1 | -0.37 | 0.05 | 7 | U of Washington | cold plasma | ||
Recommended | -0.36 | 0.03 | 33 | ||||
SGR-1 | oil shale | USGS | -0.25 | 0.05 | 5 | U of Washington | cold plasma |
SGR-1 | -0.26 | 0.16 | 10 | WUSTL | cold plasma | ||
SGR-1 | -0.27 | 0.04 | 12 | U of Washington | cold plasma | ||
SGR-1 | -0.31 | 0.09 | 4 | U of Washington | cold plasma | ||
SGR-1b | -0.25 | 0.09 | 4 | Princeton | cold plasma | ||
Recommended | -0.26 | 0.03 | 35 |
[1] | PALME H, LODDERS K, JONES A. Solar system abundances of the elements[M]// Treatise on geochemistry(Volume 2). 2nd ed. Amsterdam, Netherlands: Elsevier Science, 2014: 15-36. |
[2] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry(Volume 4). 2nd ed. Amsterdam, Netherlands: Elsevier Science, 2014: 1-51. |
[3] | MILLERO F J. Physico-chemical controls on seawater[M]// Treatise on geochemistry(Volume 8). 2nd ed. Amsterdam, Netherlands: Elsevier Science, 2014: 1-18. |
[4] | GARNER E L, MURPHY T J, GRAMLICH J W, et al. Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium[J]. Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, 1975, 79(6):713-725. |
[5] | MCDOUGALL I, HARRISON T M. Geochronology and thermochronology by the 40Ar/39Ar method[M]. London: Oxford University Press, 1999: 1-269. |
[6] | DICKIN A P. Radiogenic isotope geology[M]. Cambridge: Cambridge University Press, 2018: 1-512. |
[7] |
MARSHALL B D, DEPAOLO D J. Precise age determinations and petrogenetic studies using the K-Ca method[J]. Geochimica et Cosmochimica Acta, 1982, 46(12):2537-2545.
DOI URL |
[8] | HUMAYUN M. Potassium isotope cosmochemistry: implications for volatile depletion and origins of the Earth, Moon and Meteorites[D]. Chicago: The University of Chicago, 1994: 1-235. |
[9] |
HUMAYUN M, CLAYTON R N. Precise determination of the isotopic composition of potassium: application to terrestrial rocks and lunar soils[J]. Geochimica et Cosmochimica Acta, 1995, 59(10):2115-2130.
DOI URL |
[10] | MORGAN L E, LLOYD N S, ELLAM R M, et al. Potassium stable isotopic compositions measured by high-resolution MC-ICP-MS[C]. AGU Fall Meeting Abstracts, 2012. |
[11] |
MORGAN L E, SANTIAGO-RAMOS D P, DAVIDHEISER-KROLL B, et al. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:175-186.
DOI URL |
[12] |
WANG K, JACOBSEN S B. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts[J]. Geochimica et Cosmochimica Acta, 2016, 178:223-232.
DOI URL |
[13] |
LI W Q, BEARD B L, LI S L. Precise measurement of stable potassium isotope ratios using a single focusing collision cell Multi-Collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31:1023-1029.
DOI URL |
[14] |
HU Y, CHEN X Y, XU Y K, et al. High-precision analysis of potassium isotopes by HR-MC-ICPMS[J]. Chemical Geology, 2018, 493:100-108.
DOI URL |
[15] |
CHEN H, TIAN Z, TULLER-ROSS B, et al. High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight[J]. Journal of Analytical Atomic Spectrometry, 2019, 34:160-171.
DOI URL |
[16] |
PARENDO C A, JACOBSEN S B, WANG K. K isotopes as a tracer of seafloor hydrothermal alteration[J]. Proceedings of the National Academy of Sciences, 2017, 114(8):1827-1831.
DOI URL |
[17] |
LI S, LI W, BEARD B L, et al. K isotopes as a tracer for continental weathering and geological K cycling[J]. Proceedings of the National Academy of Sciences, 2019, 116(18):8740-8745.
DOI URL |
[18] |
WANG K, JACOBSEN S B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon[J]. Nature, 2016, 538(7626):487-490.
DOI URL |
[19] |
SUN Y, TENG F Z, HU Y, et al. Tracing subducted oceanic slabs in the mantle by using potassium isotopes[J]. Geochimica et Cosmochimica Acta, 2020, 278:353-360.
DOI URL |
[20] |
TENG F Z, DAUPHAS N, WATKINS J M. Non-traditional stable isotopes: retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):1-26.
DOI URL |
[21] |
MURRELL M T, BURNETT D S. Partitioning of K, U, and Th between sulfide and silicate liquids: implications for radioactive heating of planetary cores[J]. Journal of Geophysical Research, 1986, 91(8):8126-8136.
DOI URL |
[22] | MCDONOUGH W F. Compositional model for the Earth's core[M]// Treatise on geochemistry(Volume 3). 2nd ed. Amsterdam, Netherlands: Elsevier Science, 2014: 559-577. |
[23] |
MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253.
DOI URL |
[24] |
CORGNE A, KESHAV S, FEI Y, et al. How much potassium is in the Earth's core? New insights from partitioning experiments[J]. Earth and Planetary Science Letters, 2007, 256(3/4):567-576.
DOI URL |
[25] |
PHILPOTTS J A, SCHNETZLER C C. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis[J]. Geochimica et Cosmochimica Acta, 1970, 34(3):307-322.
DOI URL |
[26] |
HART S R, DUNN T. Experimental cpx/melt partitioning of 24 trace elements[J]. Contributions to Mineralogy and Petrology, 1993, 113(1):1-8.
DOI URL |
[27] | YODER C F. Astrometric and geodetic properties of Earth and the Solar system[M]// Global Earth physics: a handbook of physical constants, Volume 1. Washington DC: American Geophysical Union, 1995: 1-31. |
[28] | SCHUBERT G, TURCOTTE D L, OLSON P. Mantle convection in the Earth and Planets[M], Cambridge: Cambridge University Press, 2001: 1-912. |
[29] | PETERSON B T, DEPAOLO D J. Mass and composition of the continental crust estimated using the CRUST2.0 Model[C]. AGU Fall Meeting Abstracts, 2007. |
[30] | LIVINGSTONE D A. Chemical composition of rivers and lakes[M]// United States Geological Survey. Professional Paper 440-G, 1973: 1-64. |
[31] | CULKIN F, COX R A. Sodium, potassium, magnesium, calcium and strontium in sea water[J]. Deep-Sea Research, 1966, 13:789-804. |
[32] |
WEDEPOHL K H. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7):1217-1232.
DOI URL |
[33] | WHITE W M, KLEIN E M. Composition of the oceanic crust[M]// Treatise on geochemistry(Volume 4). 2nd ed. Amsterdam, Netherlands: Elsevier Science, 2014: 457-496. |
[34] | TAYLOR S R, MCLENNAN S M. Encyclopedia of physical science and technology[M]. Amsterdam, Netherlands: Elsevier Science, 2003: 697-719. |
[35] |
WORKMAN R K, HART S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1/2):53-72.
DOI URL |
[36] |
LI Y, WANG W, WU Z, et al. First-principles investigation of equilibrium K isotope fractionation among K-bearing minerals[J]. Geochimica et Cosmochimica Acta, 2019, 264:30-42.
DOI URL |
[37] |
GOLDBERG E D. Chemical and mineralogical aspects of deep-sea sediments[J]. Physics and Chemistry of the Earth, 1961, 4:281-302.
DOI URL |
[38] | COCCO G, FANFANI L, ZANAZZI P F, et al. Potassium[M]//Handbook of geochemistry. New York: Springer Verlag, 1978: 19-A-1-19-A-9. |
[39] |
SARDANS J, PEÑUELAS J. Potassium: a neglected nutrient in global change[J]. Global Ecology and Biogeography, 2015, 24(3):261-275.
DOI URL |
[40] |
SZCZERBA M W, BRITTO D T, KRONZUCKER H J. K+ transport in plants: physiology and molecular biology[J]. Journal of Plant Physiology, 2009, 166(5):447-466.
DOI URL |
[41] | UZMAN A, JOHNSON J. Fundamentals of biochemistry life at the molecular level fourth edition[M]. Hoboken NJ: Wiley, 2012: 1-1200. |
[42] | LODDERS K, FEGLEY B. Chemistry of the solar system[M]. Cambridge UK: Royal Society of Chemistry Publishing, 2011: 1-476. |
[43] |
LODDERS K. Solar system abundances and condensation temperatures of the elements[J]. The Astrophysical Journal, 2003, 591(2):1220-1247.
DOI URL |
[44] | LODDERS K, FEGLEY B. The planetary scientist's companion[M], New York: Oxford University Press, 1998: 1-400. |
[45] | ASTON F W. The constitution of the alkali metals[J]. Nature, 1921, 107(2681):72. |
[46] |
DEMPSTER A J. Positive-ray analysis of potassium, calcium and zinc[J]. Physical Review, 1922, 20(6):631-638.
DOI URL |
[47] |
NIER A O. Evidence for the existence of an isotope of potassium of mass 40[J]. Physical Review, 1935, 48(3):283-284.
DOI URL |
[48] |
BREWER A K, KUECK P D. The relative abundance of the isotopes of lithium, potassium and rubidium[J]. Physical Review, 1934, 46(10):894-897.
DOI URL |
[49] |
BREWER A K. The abundance ratio of the isotopes of potassium in mineral and plant sources[J]. Journal of the American Chemical Society, 1936, 58(2):365-370.
DOI URL |
[50] | LASNITZKI A, BREWER A K. A study of the isotopic constitution of potassium in various rat tissues[J]. The Biochemical Journal, 1941, 35(1/2):144-51. |
[51] | LASNITZKI A, BREWER A K. The isotopic constitution of potassium in normal tissue and cancer from human subjects[J]. Cancer Research, 1942, 2(7):494-496. |
[52] | LASNITZKI A, BREWER A K. Isotopic constitution of potassium in normal and tumour tissue[J]. Nature, 1938, 142:538-539. |
[53] | LASNITZKI A, BREWER A K. Increase of heavy potassium in plasma[J]. Nature, 1940, 146:807. |
[54] | LASNITZKI A, BREWER A K. The isotopic constitution of potassium in animal tumors and muscle from tumor-bearing animals[J]. Cancer Research, 1941, 1(10):776-778. |
[55] |
BREWER A K. The isotope effect in the evaporation of lithium, potassium and rubidium ions[J]. The Journal of Chemical Physics, 1936, 4(6):350-353.
DOI URL |
[56] |
TAYLOR T I, UREY H C. Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites[J]. The Journal of Chemical Physics, 1938, 6(8):429-438.
DOI URL |
[57] |
COOK K L. The relative abundance of the isotopes of potassium in pacific kelps and in rocks of different geologic age[J]. Physical Review, 1943, 64(9/10):278-293.
DOI URL |
[58] |
MEIJA J, COPLEN T B, BERGLUND M, et al. Isotopic compositions of the elements 2013 (IUPAC technical report)[J]. Pure and Applied Chemistry, 2016, 88(3):293-306.
DOI URL |
[59] | BARNES I L, GARNER E L, GRAMLICH J W, et al. Isotopic abundance ratios and concentrations of selected elements in some Apollo 15 and Apollo 16 samples[J]. Proceedings of the Lunar Science Conference, 1973, 4:1197-1207. |
[60] |
BEGEMANN F, STEGMANN W. Implications from the absence of a41K anomaly in an Allende inclusion[J]. Nature, 1976, 259(5544):549-550.
DOI URL |
[61] | BHATTACHARJEE P K, VENKATASUBRAMANIAN V S. A mass spectrometric study of 39K/41K abundance variations by dual collection and digital measurement technique[J]. Journal of the Indian Institute of Science, 1977, 59(10):113. |
[62] |
BURNETT D S, LIPPOLT H J, WASSERBURG G J. The relative isotopic abundance of40K in terrestrial and meteoritic samples[J]. Journal of Geophysical Research, 1966, 71(4):1249-1269.
DOI URL |
[63] | CHURCH S E, TILTON G R, WRIGHT J E. Volatile element depletion and 39K/41K fractionation in lunar soils[C]// Abstracts of the Lunar and Planetary Science Conference. 1976, 7:146-148. |
[64] |
SCHREINER G D L, WELKE H J H F D. Variations in 39K/41K ratio and movement of potassium in heated and stressed xenoliths[J]. Geochimica et Cosmochimica Acta, 1971, 35(7):719-726.
DOI URL |
[65] |
STEGMANN W, BEGEMANN F. Allende meteorite-old age but normal isotopic composition of potassium[J]. Nature, 1979, 282(5736):290-291.
DOI URL |
[66] | GARNER E L, MACHLAN L A, BARNES I L. The isotopic composition of lithium, potassium, and rubidium in some Apollo 11, 12, 14, 15, and 16 samples[C]// Proceedings of Sixth Lunar Science Conference. 1975, 6:1845-1855. |
[67] |
HUMAYUN M, CLAYTON R N. Potassium isotope cosmochemistry: genetic implications of volatile element depletion[J]. Geochimica et Cosmochimica Acta, 1995, 59(10):2131-2148.
DOI URL |
[68] | HUMAYUN M, KOEBERL C. Potassium isotopic composition of Australasian tektites[J]. Meteoritics & Planetary Science, 2004, 39(9):1509-1516. |
[69] | HERZOG G F, ALEXANDER C M O, BERGER E L, et al. Potassium isotope abundances in Australasian tektites and microtektites[J]. Meteoritics & Planetary Science, 2008, 43(10):1641-1657. |
[70] | ALEXANDER C M O, GROSSMAN J N. Alkali elemental and potassium isotopic compositions of Semarkona chondrules[J]. Meteoritics & Planetary Science, 2005, 40(4):541. |
[71] | ALEXANDER C M O, GROSSMAN J N, WANG J, et al. The lack of potassium-isotopic fractionation in Bishunpur chondrules[J]. Meteoritics & Planetary Science, 2000, 35(4):859-868. |
[72] |
RICHTER F M, BRUCE WATSON E, CHAUSSIDON M, et al. Isotope fractionation of Li and K in silicate liquids by Soret diffusion[J]. Geochimica et Cosmochimica Acta, 2014, 138:136-145.
DOI URL |
[73] | RICHTER F M, MENDYBAEV R A, CHRISTENSEN J N, et al. Laboratory experiments bearing on the origin and evolution of olivine-rich chondrules[J]. Meteoritics & Planetary Science, 2011, 46(8):1152-1178. |
[74] |
YU Y, HEWINS R H, ALEXANDER C M O, et al. Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts[J]. Geochimica et Cosmochimica Acta, 2003, 67(4):773-786.
DOI URL |
[75] |
WIELANDT D, BIZZARRO M. A TIMS-based method for the high precision measurements of the three-isotope potassium composition of small samples[J]. Journal of Analytical Atomic Spectrometry, 2011, 26:366-377.
DOI URL |
[76] |
NAUMENKO M O, MEZGER K, NÄGLER T F, et al. High precision determination of the terrestrial 40K abundance[J]. Geochimica et Cosmochimica Acta, 2013, 122:353-362.
DOI URL |
[77] | MORGAN L E, LLOYD N, ELLAM R, et al. Potassium stable isotopic compositions measured by high-resolution MC-ICP-MS[C] Goldschmidt Conference, 2013. |
[78] |
STRELOW E W E, VON TOERIEN F, WEINERT C H S W. Accurate determination of traces of sodium and potassium in rocks by ion exchange followed by atomic absorption spectroscopy[J]. Analytica Chimica Acta, 1970, 50(3):399-405.
DOI URL |
[79] |
FELDMANN I, JAKUBOWSKI N, STUEWER D. Application of a hexapole collision and reaction cell in ICP-MS part I: instrumental aspects and operational optimization[J]. Fresenius' Journal of Analytical Chemistry, 1999, 365(5):415-421.
DOI URL |
[80] |
FELDMANN I, JAKUBOWSKI N, THOMAS C, et al. Application of a hexapole collision and reaction cell in ICP-MS part II: analytical figures of merit and first applications[J]. Fresenius' Journal of Analytical Chemistry, 1999, 365(5):422-428.
DOI URL |
[81] |
BOURG I C, RICHTER F M, CHRISTENSEN J N, et al. Isotopic mass dependence of metal cation diffusion coefficients in liquid water[J]. Geochimica et Cosmochimica Acta, 2010, 74(8):2249-2256.
DOI URL |
[82] |
LI W. Vital effects of K isotope fractionation in organisms: observations and a hypojournal[J]. Acta Geochimica, 2017, 36(3):374-378.
DOI URL |
[83] |
LI W, KWON K D, LI S, et al. Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: laboratory experiments and theoretical calculations[J]. Geochimica et Cosmochimica Acta, 2017, 214:1-13.
DOI URL |
[84] |
JIANG S J, HOUK R S, STEVENS M A. Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 1988, 60(11):1217-1221.
DOI URL |
[85] | MORGAN L E, TAPPA M, ELLAM R, et al. Potassium isotopic compositions of NIST potassium standards and 40Ar/39Ar mineral standards[C]. AGU Fall Meeting Abstracts, 2013. |
[86] | MORGAN L E, HIGGINS J, DAVIDHEISER-KROLL B, et al. Potassium isotope geochemistry and magmatic processes[C]. Goldschmidt Conference, 2014. |
[87] |
JIANG Y, CHEN H, BRUCE F Jr, et al. Implications of K, Cu and Zn isotopes for the formation of tektites[J]. Geochimica et Cosmochimica Acta, 2019, 259:170-187.
DOI URL |
[88] |
HUANG T Y, TENG F Z, RUDNICK R L, et al. Heterogeneous potassium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2020, 278:122-136.
DOI URL |
[89] |
XU Y K, HU Y, CHEN X Y, et al. Potassium isotopic compositions of international geological reference materials[J]. Chemical Geology, 2019, 513:101-107.
DOI URL |
[90] |
ZHAO C, LODDERS K, BLOOM H, et al. Potassium isotopic compositions of enstatite meteorites[J]. Meteoritics & Planetary Science, 2019. DOI: 10.111/maps.13358
DOI |
[91] |
TIAN Z, CHEN H, FEGLEY B, et al. Potassium isotopic compositions of howardite-eucrite-diogenite meteorites[J]. Geochimica et Cosmochimica Acta, 2019, 266:611-632.
DOI URL |
[92] |
CHEN H, MESHIK A P, PRAVDIVTSEVA O V, et al. Potassium isotope fractionation during high-temperature evaporation determined from the Trinity nuclear test[J]. Chemical Geology, 2019, 522:84-92.
DOI URL |
[93] |
TULLER-ROSS B, SAVAGE P S, CHEN H, et al. Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite[J]. Chemical Geology, 2019, 525:37-45.
DOI URL |
[94] |
TULLER-ROSS B, MARTY B, CHEN H, et al. Potassium isotope systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2019, 259:144-154.
DOI URL |
[95] |
SANTIAGO RAMOS D P, MORGAN L E, LLOYD N S, et al. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids[J]. Geochimica et Cosmochimica Acta, 2018, 236:99-120.
DOI URL |
[96] |
CHRISTENSEN J N, QIN L, BROWN S T, et al. Potassium and calcium isotopic fractionation by plants (Soybean[Glycine max], Rice[ Oryza sativa], and Wheat [Triticum aestivum])[J]. ACS Earth and Space Chemistry, 2018, 2(7):745-752.
DOI URL |
[97] |
LI W, LI S, BEARD B L. Geological cycling of potassium and the K isotopic response: insights from loess and shales[J]. Acta Geochimica, 2019, 38(4):508-516.
DOI URL |
[98] |
CLEMENTZ M T, HOLDEN P, KOCH P L. Are calcium isotopes a reliable monitor of trophic level in marine settings?[J]. International Journal of Osteoarchaeology, 2003, 13(1/2):29-36.
DOI URL |
[99] | UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947, 5:562-581. |
[100] |
LI Y, WANG W, HUANG S, et al. First-principles investigation of the concentration effect on equilibrium fractionation of K isotopes in feldspars[J]. Geochimica et Cosmochimica Acta, 2018, 245:374-384.
DOI URL |
[101] | HU Y, TENG F Z, PLANK T. Potassium isotopic inputs to subduction zones[C]. Goldschmidt Abstracts, 2018. |
[102] |
LIU H, WANG K, WEI D, et al. Extremely light K in subducted low-T altered oceanic crust: implications for K recycling in subduction zone[J]. Geochimica et Cosmochimica Acta, 2020, 277:206-223.
DOI URL |
[103] |
LI W, ZHAO S, WANG X, et al. Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes[J]. Science China: Earth Sciences, 2019, 63:1-13.
DOI URL |
[104] |
PANIELLO R C, DAY J M D, MOYNIER F. Zinc isotopic evidence for the origin of the Moon[J]. Nature, 2012, 490(7420):376-379.
DOI URL |
[105] |
HERZOG G F, MOYNIER F, ALBAREDE F, et al. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt[J]. Geochimica et Cosmochimica Acta, 2009, 73(19):5884-5904.
DOI URL |
[106] |
SHARP Z D, SHEARER C K, MCKEEGAN K D, et al. The chlorine isotope composition of the Moon and implications for an anhydrous mantle[J]. Science, 2010, 329:1050-1053.
DOI URL |
[107] |
PRINGLE E A, MOYNIER F. Rubidium isotopic composition of the Earth, meteorites, and the Moon: evidence for the origin of volatile loss during planetary accretion[J]. Earth and Planetary Science Letters, 2017, 473:62-70.
DOI URL |
[108] |
BLOOM H E, LODDERS K, CHEN H, et al. Potassium isotope compositions of carbonaceous and ordinary chondrites: implications on the origin of volatile depletion in the early solar system[J]. Geochimica et Cosmochimica Acta, 2020, 277:111-131.
DOI URL |
[109] | KU Y, JACOBSEN S B. Potassium isotope variations in chondrites[C]. Lunar and Planetary Science Conference, 2019. |
[110] |
WARREN P H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites[J]. Earth and Planetary Science Letters, 2011, 311(1/2):93-100.
DOI URL |
[111] |
WARREN P H. Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials[J]. Geochimica et Cosmochimica Acta, 2011, 75(22):6912-6926.
DOI URL |
[112] |
SCOTT E R D, KROT A N, SANDERS I S. Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk[J]. The Astrophysical Journal, 2018, 854(2):164.
DOI URL |
[113] | KRUIJER T S, BURKHARDT C, BUDDE G, et al. Age of Jupiter inferred from the distinct genetics and formation times of meteorites[J]. Proceedings of the National Academy of Sciences, 2017, 114(26):6712-6716. |
[114] | KOEBERL C. The geochemistry and cosmochemistry of impacts[C]// Treatise on geochemistry(Volume 2). 2nd ed. Amsterdam, Netherlands: Elsevier Science, 2014: 73-118. |
[115] |
TAYLOR S R. The Moon re-examined[J]. Geochimica et Cosmochimica Acta, 2014, 141:670-676.
DOI URL |
[1] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[2] | ZHANG Huafeng, ZHANG Shaoying. Geological signatures of the Baiyun pyrophyllite deposit in Wutai, Shanxi Province: implication for prospecting of Cu-Au ores in deep [J]. Earth Science Frontiers, 2020, 27(5): 126-135. |
[3] | LI Yinchuan, DONG Ge, LEI Fang, WEI Haizhen. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study [J]. Earth Science Frontiers, 2020, 27(3): 14-28. |
[4] | SHU Yong-Feng. Geochemistry of hydrothermal mineralization: Taking gold deposit as an example. [J]. Earth Science Frontiers, 2010, 17(2): 45-52. |
[5] | FAN Hai-Feng WEN Han-Cha HU Rui-Zhong ZHANG Hu-Xu. A study of the stable isotopes of the disperse elements(Ge, Cd, Tl). [J]. Earth Science Frontiers, 2009, 16(4): 344-353. |
[6] | HONG Ji-Lian DIAO Zhi-Qi LIU Cong-Jiang ZHANG Wei. Progress in geochemical research of lithium isotope during continental weathering. [J]. Earth Science Frontiers, 2008, 15(6): 332-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||