Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 322-333.DOI: 10.13745/j.esf.sf.2021.9.56
Previous Articles Next Articles
Received:
2021-08-15
Revised:
2021-09-26
Online:
2022-09-25
Published:
2022-08-24
CLC Number:
ZHANG Xiao, ZHANG Xu. Two types of millennial-scale climate oscillations during the last Quaternary and their triggering mechanism[J]. Earth Science Frontiers, 2022, 29(5): 322-333.
[1] |
DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434): 218-220.
DOI URL |
[2] |
ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
DOI URL |
[3] |
SEVERINGHAUS J P, SOWERS T, BROOK E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice[J]. Nature, 1998, 391(6663): 141-146.
DOI URL |
[4] |
WOLFF E W, CHAPPELLAZ J, BLUNIER T, et al. Millennial-scale variability during the last glacial:the ice core record[J]. Quaternary Science Reviews, 2010, 29(21/22): 2828-2838.
DOI URL |
[5] |
ALLEY R B, MEESE D A, SHUMAN C A, et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event[J]. Nature, 1993, 362(6420): 527-529.
DOI URL |
[6] | CUFFEY K M, CLOW G D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition[J]. Journal of Geophysical Research: Oceans, 1997, 102(C12): 26383-26396. |
[7] |
CURRY W B, OPPO D W. Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic Deep Water production during the Last Glacial Cycle[J]. Paleoceanography, 1997, 12(1): 1-14.
DOI URL |
[8] |
DOKKEN T M, NISANCIOGLU K H, LI C, et al. Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas[J]. Paleoceanography, 2013, 28(3): 491-502.
DOI URL |
[9] |
RASMUSSEN T L, THOMSEN E. The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(1): 101-116.
DOI URL |
[10] |
SCHIEMANN R, DEMORY M E, SHAFFREY L C, et al. The resolution sensitivity of northern Hemisphere blocking in four 25-km atmospheric global circulation models[J]. Journal of Climate, 2017, 30(1): 337-358.
DOI URL |
[11] | THOMAS E R, WOLFF E W, MULVANEY R, et al. Anatomy of a Dansgaard-Oeschger warming transition: high-resolution analysis of the North Greenland Ice Core Project ice core[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D8): D08102. |
[12] | SCHULZ M, PAUL A, TIMMERMANN A. Relaxation oscillators in concert: a framework for climate change at millennial timescales during the Late Pleistocene[J]. Geophysical Research Letters, 2002, 29(24): 46-1. |
[13] |
ALLEY R B, CLARK P U. The Deglaciation of the northern Hemisphere: a global perspective[J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 149-182.
DOI URL |
[14] |
BUIZERT C, SCHMITTNER A. Southern Ocean control of glacial AMOC stability and Dansgaard-Oeschger interstadial duration[J]. Paleoceanography, 2015, 30(12): 1595-1612.
DOI URL |
[15] |
VOELKER A H L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database[J]. Quaternary Science Reviews, 2002, 21(10): 1185-1212.
DOI URL |
[16] |
CHIANG J C H. The tropics in paleoclimate[J]. Annual Review of Earth and Planetary Sciences, 2009, 37(1): 263-297.
DOI URL |
[17] |
WANG X F, AULER A S, EDWARDS R L, et al. Interhemispheric anti-phasing of rainfall during the last glacial period[J]. Quaternary Science Reviews, 2006, 25(23/24): 3391-3403.
DOI URL |
[18] | WANG X F, AULER A S, EDWARDS R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90 000 years[J]. Geophysical Research Letters, 2007, 34(23): L23701. |
[19] |
CHENG H, SINHA A, CRUZ F W, et al. Climate change patterns in Amazonia and biodiversity[J]. Nature Communications, 2013, 4: 1411.
DOI URL |
[20] |
KANNER L C, BURNS S J, CHENG H, et al. High-latitude forcing of the south American summer monsoon during the last glacial[J]. Science, 2012, 335(6068): 570-573.
DOI URL |
[21] |
WANG X F, AULER A S, EDWARDS R L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7018): 740-743.
DOI URL |
[22] |
CAMPOS M C, CHIESSI C M, PRANGE M, et al. A new mechanism for millennial scale positive precipitation anomalies over tropical South America[J]. Quaternary Science Reviews, 2019, 225: 105990.
DOI URL |
[23] | STRÍKIS N M, CRUZ F W, BARRETO E A S, et al. South American monsoon response to iceberg discharge in the North Atlantic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3788-3793. |
[24] |
WANG Y J, CHENG H, EDWARDS R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
DOI URL |
[25] |
ZHOU H Y, ZHAO J X, FENG Y X, et al. Heinrich event 4 and Dansgaard/Oeschger events 5-10 recorded by high-resolution speleothem oxygen isotope data from central China[J]. Quaternary Research, 2014, 82(2): 394-404.
DOI URL |
[26] |
ZHAO K, WANG Y J, EDWARDS R L, et al. High-resolution stalagmite δ18O records of Asian monsoon changes in central and Southern China spanning the MIS 3/2 transition[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 191-198.
DOI URL |
[27] |
CAI Y J, AN Z S, CHENG H, et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]. Geology, 2006, 34(8): 621.
DOI URL |
[28] |
DEPLAZES G, LÜCKGE A, PETERSON L C, et al. Links between tropical rainfall and North Atlantic climate during the last glacial period[J]. Nature Geoscience, 2013, 6(3): 213-217.
DOI URL |
[29] | MULITZA S, PRANGE M, STUUT J B, et al. Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning[J]. Paleoceanography, 2008, 23(4): PA4206. |
[30] |
ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
DOI URL |
[31] | CAI Y J, FUNG I Y, EDWARDS R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252, 000 Y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959. |
[32] |
STOCKER T F. The seesaw effect[J]. Science, 1998, 282(5386): 61-62.
DOI URL |
[33] |
BARBANTE C, BARNOLA J M, BECAGLI S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116): 195-198.
DOI URL |
[34] |
LANDAIS A, MASSON-DELMOTTE V, STENNI B, et al. A review of the bipolar see-saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica[J]. Quaternary Science Reviews, 2015, 114: 18-32.
DOI URL |
[35] |
BLUNIER T, BROOK E J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period[J]. Science, 2001, 291(5501): 109-112.
DOI URL |
[36] |
PARRENIN F, MASSON-DELMOTTE V, KÖHLER P, et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming[J]. Science, 2013, 339(6123): 1060-1063.
DOI URL |
[37] |
BUIZERT C, ADRIAN B, AHN J, et al. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661-665.
DOI URL |
[38] | STOCKER T F, JOHNSEN S J. A minimum thermodynamic model for the bipolar seesaw[J]. Paleoceanography, 2003, 18(4): 1087. |
[39] |
PEDRO J B, JOCHUM M, BUIZERT C, et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling[J]. Quaternary Science Reviews, 2018, 192: 27-46.
DOI URL |
[40] |
MARKLE B R, STEIG E J, BUIZERT C, et al. Global atmospheric teleconnections during Dansgaard-Oeschger events[J]. Nature Geoscience, 2017, 10(1): 36-40.
DOI URL |
[41] |
CORRICK E C, DRYSDALE R N, HELLSTROM J C, et al. Synchronous timing of abrupt climate changes during the last glacial period[J]. Science, 2020, 369(6506): 963-969.
DOI URL |
[42] |
ROSEN J L, BROOK E J, SEVERINGHAUS J P, et al. An ice core record of near-synchronous global climate changes at the Bølling transition[J]. Nature Geoscience, 2014, 7(6): 459-463.
DOI URL |
[43] |
BROECKER W, BOND G, KLAS M, et al. Origin of the northern Atlantic's Heinrich events[J]. Climate Dynamics, 1992, 6(3/4): 265-273.
DOI URL |
[44] |
BOND G, HEINRICH H, BROECKER W, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period[J]. Nature, 1992, 360(6401): 245-249.
DOI URL |
[45] |
BOND G C, LOTTI R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation[J]. Science, 1995, 267(5200): 1005-1010.
DOI URL |
[46] |
GROUSSET F E, LABEYRIE L, SINKO J A, et al. Patterns of ice-rafted detritus in the glacial North Atlantic (40-55°N)[J]. Paleoceanography, 1993, 8(2): 175-192.
DOI URL |
[47] |
ZHOU Y X, MCMANUS J F, JACOBEL A W, et al. Enhanced iceberg discharge in the western North Atlantic during all Heinrich events of the last glaciation[J]. Earth and Planetary Science Letters, 2021, 564: 116910.
DOI URL |
[48] |
ROSELL-MELÉ A, MASLIN M A, MAXWELL J R, et al. Biomarker evidence for “Heinrich” events[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1671-1678.
DOI URL |
[49] |
BARD E, ROSTEK F, TURON J L, et al. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic[J]. Science, 2000, 289(5483): 1321-1324.
DOI URL |
[50] |
CHAPPELL J. Sea level changes forced ice breakouts in the Last Glacial Cycle: new results from coral terraces[J]. Quaternary Science Reviews, 2002, 21(10): 1229-1240.
DOI URL |
[51] |
YOKOYAMA Y, ESAT T M, LAMBECK K. Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 579-587.
DOI URL |
[52] |
KEIGWIN L D, LEHMAN S J. Deep circulation change linked to Heinrich event 1 and Younger Dryas in a middepth North Atlantic Core[J]. Paleoceanography, 1994, 9(2): 185-194.
DOI URL |
[53] |
VIDAL L, LABEYRIE L, CORTIJO E, et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 13-27.
DOI URL |
[54] |
VIDAL L, LABEYRIE L, VAN WEERIN G T C E. Benthic δ18O records in the North Atlantic over the Last Glacial Period (60-10 kyr): evidence for brine formation[J]. Paleoceanography, 1998, 13(3): 245-251.
DOI URL |
[55] |
ELLIOT M, LABEYRIE L, DUPLESSY J C. Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60-10 ka)[J]. Quaternary Science Reviews, 2002, 21(10): 1153-1165.
DOI URL |
[56] |
MCMANUS J F, FRANCOIS R, GHERARDI J M. et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837.
DOI URL |
[57] |
OPPO D W, CURRY W B, MCMANUS J F. What do benthic δ13C and δ18O data tell us about Atlantic circulation during Heinrich Stadial 1?[J]. Paleoceanography, 2015, 30(4): 353-368.
DOI URL |
[58] |
CORTIJO E, LABEYRIE L, VIDAL L, et al. Changes in sea surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40° and 60°N[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 29-45.
DOI URL |
[59] |
SCHULZ, VON RAD, ERLENKEUSER, et al. Correlation between Arabian Sea and Greenland climate oscillations of the past 110 000 years[J]. Nature, 1998, 393(6680): 54-57.
DOI URL |
[60] |
ARZ H W, PÄTZOLD J, WEFER G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil[J]. Quaternary Research, 1998, 50(2): 157-166.
DOI URL |
[61] |
CACHO I, GRIMALT J O, PELEJERO C, et al. Dansgaard-oeschger and heinrich event imprints in alboran sea paleotemperatures[J]. Paleoceanography, 1999, 14(6): 698-705.
DOI URL |
[62] |
KANNER L C, BURNS S J, CHENG H. High-latitude processes in the northern and southern Hemispheres both influence the South American Summer Monsoon[J]. Science, 335: 570-573.
DOI URL |
[63] |
AHN J, BROOK E J. Atmospheric CO2 and climate from 65 to 30 ka B.P[J]. Geophysical Research Letters, 2007, 34(10): L10703.
DOI URL |
[64] |
PORTER S C, AN Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6529): 305-308.
DOI URL |
[65] | 吕连清, 方小敏, 鹿化煜, 等. 青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化[J]. 科学通报, 2004, 49(11):1091-1098. |
[66] | 贾楠, 孙立广, 袁林喜, 等. Heinrich 3事件的实证:浙江舟山群岛泥裂[J]. 地学前缘, 2009, 16(6):146-153. |
[67] |
DEPLAZES G, LÜCKGE A, STUUT J B W, et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography, 2014, 29(2): 99-114.
DOI URL |
[68] |
MULLER J, KYLANDER M, WÜST R A J, et al. Possible evidence for wet Heinrich phases in tropical NE Australia: the Lynch's Crater deposit[J]. Quaternary Science Reviews, 2008, 27(5/6): 468-475.
DOI URL |
[69] |
MULLER J, MCMANUS J F, OPPO D W, et al. Strengthening of the Northeast Monsoon over the Flores Sea, Indonesia, at the time of Heinrich event 1[J]. Geology, 2012, 40(7): 635-638.
DOI URL |
[70] |
KAGEYAMA M, MERKEL U, OTTO-BLIESNER B, et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study[J]. Climate of the Past, 2013, 9(2): 935-953.
DOI URL |
[71] |
LIU Z Y, LU Z Y, WEN X Y, et al. Evolution and forcing mechanisms of El Niño over the past 21 000 years[J]. Nature, 2014, 515(7528): 550-553.
DOI URL |
[72] | ZHU J, LIU Z Y, BRADY E C, et al. Investigating the direct meltwater effect in terrestrial oxygen-isotope paleoclimate records using an isotope-enabled earth system model[J]. Geophysical Research Letters, 2017, 44(24): 12501-12510. |
[73] | DRIJFHOUT S, GLEESON E, DIJKSTRA H A, et al. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19713-19718. |
[74] |
SIDORENKO D, RACKOW T, JUNG T, et al. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part I: model formulation and mean climate[J]. Climate Dynamics, 2015, 44(3/4): 757-780.
DOI URL |
[75] |
MARTIN T, PARK W, LATIF M. Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 114: 39-48.
DOI URL |
[76] |
PELTIER W R, VETTORETTI G. Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic[J]. Geophysical Research Letters, 2014, 41(20): 7306-7313.
DOI URL |
[77] |
VETTORETTI G, PELTIER W R. Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard-Oeschger warming events[J]. Geophysical Research Letters, 2016, 43(10): 5336-5344.
DOI URL |
[78] |
VETTORETTI G, PELTIER W R. Fast physics and slow physics in the nonlinear Dansgaard-Oeschger relaxation oscillation[J]. Journal of Climate, 2018, 31(9): 3423-3449.
DOI URL |
[79] |
ZHANG X, LOHMANN G, KNORR G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7514): 290-294.
DOI URL |
[80] |
ZHANG X, PRANGE M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability[J]. Quaternary Science Reviews, 2020, 242: 106443.
DOI URL |
[81] |
ZHANG X, PRANGE M, MERKEL U, et al. Spatial fingerprint and magnitude of changes in the Atlantic meridional overturning circulation during marine isotope stage 3[J]. Geophysical Research Letters, 2015, 42(6): 1903-1911.
DOI URL |
[82] |
BAGNIEWSKI W, MEISSNER K J, MENVIEL L. Exploring the oxygen isotope fingerprint of Dansgaard-Oeschger variability and Heinrich events[J]. Quaternary Science Reviews, 2017, 159: 1-14.
DOI URL |
[83] | 王绍武, 谢志辉. 千年尺度气候变率的研究[J]. 地学前缘, 2002, 9(1):143-153. |
[84] |
BURCKEL P, WAELBROECK C, GHERARDI J M, et al. Atlantic Ocean circulation changes preceded millennial tropical South America rainfall events during the last glacial[J]. Geophysical Research Letters, 2015, 42(2): 411-418.
DOI URL |
[85] |
HENRY L G, MCMANUS J F, CURRY W B, et al. North Atlantic Ocean circulation and abrupt climate change during the last glaciation[J]. Science, 2016, 353(6298): 470-474.
DOI URL |
[86] | CLEMENT A C, PETERSON L C. Mechanisms of abrupt climate change of the last glacial period[J]. Reviews of Geophysics, 2008, 46(4): RG4002. |
[87] | MARCOTT S A, CLARK P U, PADMAN L, et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events[J]. ACS Omega, 2011, 108(33): 13415-13419. |
[88] |
MANABE S, STOUFFER R J. Two stable equilibria of a coupled ocean-atmosphere model[J]. Journal of Climate, 1988, 1(9): 841-866.
DOI URL |
[89] |
RAHMSTORF S. Ocean circulation and climate during the past 120, 000 years[J]. Nature, 2002, 419(6903): 207-214.
DOI URL |
[90] |
MENVIEL L, TIMMERMANN A, FRIEDRICH T, et al. Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing[J]. Climate of the Past, 2014, 10(1): 63-77.
DOI URL |
[91] |
ZHANG X, PRANGE M, MERKEL U, et al. Instability of the Atlantic overturning circulation during marine isotope stage 3[J]. Geophysical Research Letters, 2014, 41(12): 4285-4293.
DOI URL |
[92] |
HU A, MEEHL G A, HAN W, et al. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability[J]. Proceedings of the National Academy of Sciences USA, 2012, 109(17): 6417-6422.
DOI URL |
[93] |
ZHANG X, KNORR G, LOHMANN G, et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state[J]. Nature Geoscience, 2017, 10(7): 518-523.
DOI URL |
[94] | EISENMAN I, BITZ C M, TZIPERMAN E. Rain driven by receding ice sheets as a cause of past climate change[J]. Paleoceanography, 2009, 24(4): PA4209. |
[95] |
TIMMERMANN A, GILDOR H, SCHULZ M, et al. Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses[J]. Journal of Climate, 2003, 16(15): 2569-2585.
DOI URL |
[96] |
JEAN L S. The Atlantic meridional overturning circulation and abrupt climate change[J]. Annual Review of Marine Science, 2017, 9(1): 83-104.
DOI URL |
[97] |
MUGLIA J, SKINNER L C, SCHMITTNER A. Weak overturning circulation and high southern Ocean nutrient utilization maximized glacial ocean carbon[J]. Earth and Planetary Science Letters, 2018, 496: 47-56.
DOI URL |
[98] |
JONKERS L, MOROS M, PRINS M A, et al. A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events[J]. Quaternary Science Reviews, 2010, 29(15/16): 1791-1800.
DOI URL |
[99] | KASPI Y, SAYAG R, TZIPERMAN E. A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events[J]. Paleoceanography, 2004, 19(3): PA3004. |
[100] | BRAUN H, DITLEVSEN P, CHIALVO D R. Solar forced Dansgaard-Oeschger events and their phase relation with solar proxies[J]. Geophysical Research Letters, 2008, 35(6): L06703. |
[101] |
CARL W. Abrupt climate change: an alternative view[J]. Quaternary Research, 2006, 65(2): 191-203.
DOI URL |
[102] |
BANDERAS R, ÁLVAREZ-SOLAS J, MONTOYA M. Role of CO2 and southern ocean winds in glacial abrupt climate change[J]. Climate of the Past, 2012, 8(3): 1011-1021.
DOI URL |
[103] |
ALLEY R B, ANANDAKRISHNAN S, JUNG P. Stochastic resonance in the North Atlantic[J]. Paleoceanography, 2001, 16(2): 190-198.
DOI URL |
[104] |
PETERSEN S V, SCHRAG D P, CLARK P U. A new mechanism for Dansgaard-Oeschger cycles[J]. Paleoceanography, 2013, 28(1): 24-30.
DOI URL |
[105] | REIN B, LÜCKGE A, REINHARDT L, et al. El Niño variability off Peru during the last 20 000 years[J]. Paleoceanography, 2005, 20(4): PA4003. |
[106] |
STOTT L, POULSEN C, LUND S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579): 222-226.
DOI URL |
[107] | LEDUC G, VIDAL L, CARTAPANIS O, et al. Modes of eastern equatorial Pacific thermocline variability: implications for ENSO dynamics over the last glacial period[J]. Paleoceanography, 2009, 24(3): PA3202. |
[108] |
CLEMENT A C, CANE M A, SEAGER R. An orbitally driven tropical source for abrupt climate change[J]. Journal of Climate, 2001, 14(11): 2369-2375.
DOI URL |
[109] |
MERKEL U, PRANGE M, SCHULZ M. ENSO variability and teleconnections during glacial climates[J]. Quaternary Science Reviews, 2010, 29(1/2): 86-100.
DOI URL |
[110] |
SEAGER R, HARNIK N, KUSHNIR Y, et al. Mechanisms of hemispherically symmetric climate variability[J]. Journal of Climate, 2003, 16(18): 2960-2978.
DOI URL |
[111] |
BALDINI J U L, BROWN R J, MCELWAINE J N. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?[J]. Scientific Reports, 2015, 5: 17442.
DOI URL |
[112] |
LI C, BORN A. Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events[J]. Quaternary Science Reviews, 2019, 203: 1-20.
DOI URL |
[113] |
BROWN N, GALBRAITH E D. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing[J]. Climate of the Past, 2016, 12(8): 1663-1679.
DOI URL |
[114] |
KLOCKMANN M, MIKOLAJEWICZ U, MAROTZKE J. Two AMOC states in response to decreasing greenhouse gas concentrations in the coupled climate model MPI-ESM[J]. Journal of Climate, 2018, 31(19): 7969-7984.
DOI URL |
[115] |
KLEPPIN H, JOCHUM M, OTTO-BLIESNER B, et al. Stochastic atmospheric forcing as a cause of Greenland climate transitions[J]. Journal of Climate, 2015, 28(19): 7741-7763.
DOI URL |
[116] |
KLUS A, PRANGE M, VARMA V, et al. Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM[J]. Climate Dynamics, 2019, 53(1/2): 97-113.
DOI URL |
[117] |
GALBRAITH E, LAVERGNE C. Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of Late Cenozoic ice ages[J]. Climate Dynamics, 2019, 52(1/2): 653-679.
DOI URL |
[118] |
KAWAMURA K, ABE-OUCHI A, MOTOYAMA H, et al. State dependence of climatic instability over the past 720 000 years from Antarctic ice cores and climate modeling[J]. Science Advances, 2017, 3(2): e1600446.
DOI URL |
[119] |
BAKKER P, SCHMITTNER A, LENAERTS J T M, et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting[J]. Geophysical Research Letters, 2016, 43(23): 12252-12260.
DOI URL |
[120] |
CHEN X Y, TUNG K K. Global surface warming enhanced by weak Atlantic overturning circulation[J]. Nature, 2018, 559(7714): 387-391.
DOI URL |
[121] |
SMEED D A, JOSEY S A, BEAULIEU C, et al. The north Atlantic Ocean is in a state of reduced overturning[J]. Geophysical Research Letters, 2018, 45(3): 1527-1533.
DOI URL |
[122] |
VALDES P. Built for stability[J]. Nature Geoscience, 2011, 4(7): 414-416.
DOI URL |
[1] | TIAN Zhiping, ZHANG Ran, JIANG Dabang. Mid-Holocene climate in China and the East Asian monsoon: Insights from PMIP4 simulations [J]. Earth Science Frontiers, 2022, 29(5): 355-371. |
[2] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[3] | LEI Ziyan, GE Qian, CHEN Dong, ZHANG Yongcong, HAN Xibin, YE Liming, BIAN Yeping, XU Dong. Provenance of sediments in the Amundsen Sea, West Antarctic since the mid-Holocene and paleoclimate reconstruction [J]. Earth Science Frontiers, 2022, 29(4): 179-190. |
[4] | YANG Jiayi, JIANG Fuqing, YAN Yu, ZHENG Hao, CHANG Fengming. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene [J]. Earth Science Frontiers, 2022, 29(4): 73-83. |
[5] | ZHANG Lanlan, QIU Zhuoya, XIANG Rong, YANG Yiping, CHENG Muhong. Productivity evolution in the southeastern Bay of Bengal since the last glaciation: Insight from biogenic silica records [J]. Earth Science Frontiers, 2022, 29(4): 136-143. |
[6] | ZHANG Zongyan, LIU Xiang, LI Xiang, KE Xue, ZHANG Jianyu, XU Yadong. Palynological study of the Late Oligocene-Early Pleistocene in Leizhou Peninsula, Guangdong [J]. Earth Science Frontiers, 2022, 29(2): 303-316. |
[7] | LI Xiaobo, ZHANG Yan, TONG Yabo. Preliminary analysis on the paleogeography and paleoenvironment in the eastern Yanliao area during the Jurassic-Cretaceous tectonic transition [J]. Earth Science Frontiers, 2021, 28(2): 391-411. |
[8] | WANG Tong, ZHU Xiaomin, DONG Yanlei, YANG Daoqing, SU Bin, TAN Mingxuan, LIU Yu, WU Wei, ZHANG Yaxiong. Signals of depositional response to the deep time paleoclimate in continental depression lakes: Insight from the Anjihaihe Formation in the northwestern Junggar Basin [J]. Earth Science Frontiers, 2021, 28(1): 60-76. |
[9] | QU Huaxiang,HUANG Baoqi. Paleoclimate change reflected by element ratios of terrigenous sediments from deep-sea oxygen isotope MIS6 to MIS5 at MD12-3432 station in northern South China Sea [J]. Earth Science Frontiers, 2019, 26(3): 236-242. |
[10] | CHEN Weiyu,CHEN Yanjing,LI Qiugen,LI Jianrong,LI Kaiyue,SHU Sunping,CHEN Xi,TONG Zida. Detrital zircon U-Pb ages of the Sijizhuang glacial diamictites of the Hutuo Group in Wutai Shan, Shanxi Province and implication for the Great Oxidation Event [J]. Earth Science Frontiers, 2018, 25(5): 1-18. |
[11] | LEI Huarui,JIANG Zaixing,ZHOU Hongke. Analysis of paleoclimate evolution of the hyperthermal period in the early Paleogene: taking the Dongying depression as an example. [J]. Earth Science Frontiers, 2018, 25(4): 176-184. |
[12] | WANG Junhui,JIANG Zaixing,XIAN Benzhong,ZHANG Chunming,LIU Lian. Advances in paleowind strength reconstruction techniques: use of transporting capacity analysis. [J]. Earth Science Frontiers, 2018, 25(2): 309-. |
[13] | . [J]. Earth Science Frontiers, 2017, 24(5): 416-426. |
[14] | . [J]. Earth Science Frontiers, 2017, 24(4): 114-123. |
[15] | . [J]. Earth Science Frontiers, 2017, 24(3): 341-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||