Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4): 326-339.DOI: 10.13745/j.esf.sf.2023.11.33
Previous Articles Next Articles
LI Pei1(), ZHANG Chunxia2,3,*(
), LUO Hao1, LIU Zhicheng1, GAO Zhanwu1
Received:
2023-07-10
Revised:
2023-08-22
Online:
2024-07-25
Published:
2024-07-10
CLC Number:
LI Pei, ZHANG Chunxia, LUO Hao, LIU Zhicheng, GAO Zhanwu. The Late Miocene to Pliocene paleoenvironmental evolution process in Zhaotong Basin on the southeastern margin of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 2024, 31(4): 326-339.
Fig.1 Schematic diagram showing the location of Zhaotong Basin on the southeastern margin of the Tibetan Plateau (a), schematic geological map of the area surrounding borehole ZK1 in the Zhaotong Basin (b). Modified after [6].
深度/m | 岩性特征 | 层位 |
---|---|---|
0.0~5.8 | 灰色、灰白色砂质粉砂,灰色泥质粉砂夹褐黄色赤铁矿团块。团块呈不规则形状,一般小于4 cm,从上往下团块数量减少 | I |
5.8~22.4 | 深绿灰色黏土。夹两层螺化石层,其中18.86~19.06 m的化石含量相对较少,而且螺体都小于1 cm;19.5~19.7 m含大量螺化石,螺体为3~5 cm | II |
22.4~63.0 | 灰绿色粉砂质黏土。共夹一层劣质褐煤(32.1~32.25 m),一层泥质粉砂(32.5~32.6 m)和7层螺化石层。化石层分别为:①25.50~25.55 m;②24.30~24.35 m;③31.28~31.30 m;④31.95~32.05 m;⑤32.5~32.6 m;⑥42.5~43.3 m | III |
63.0~64.7 | 深褐色褐煤。含炭化木和水草化石 | IV |
64.7~72.1 | 黑褐色泥炭。中间夹有3层黑褐色碳质黏土层 | V |
72.1~104.5 | 深褐色褐煤。含炭化木和水草化石 | VI |
104.5~111.6 | 深灰-灰色黏土 | VII |
111.6~120 | 浅灰色灰岩(二叠纪灰岩) | VIII |
Table 1 Lithologic description and stratigraphic sequence of borehole ZK1
深度/m | 岩性特征 | 层位 |
---|---|---|
0.0~5.8 | 灰色、灰白色砂质粉砂,灰色泥质粉砂夹褐黄色赤铁矿团块。团块呈不规则形状,一般小于4 cm,从上往下团块数量减少 | I |
5.8~22.4 | 深绿灰色黏土。夹两层螺化石层,其中18.86~19.06 m的化石含量相对较少,而且螺体都小于1 cm;19.5~19.7 m含大量螺化石,螺体为3~5 cm | II |
22.4~63.0 | 灰绿色粉砂质黏土。共夹一层劣质褐煤(32.1~32.25 m),一层泥质粉砂(32.5~32.6 m)和7层螺化石层。化石层分别为:①25.50~25.55 m;②24.30~24.35 m;③31.28~31.30 m;④31.95~32.05 m;⑤32.5~32.6 m;⑥42.5~43.3 m | III |
63.0~64.7 | 深褐色褐煤。含炭化木和水草化石 | IV |
64.7~72.1 | 黑褐色泥炭。中间夹有3层黑褐色碳质黏土层 | V |
72.1~104.5 | 深褐色褐煤。含炭化木和水草化石 | VI |
104.5~111.6 | 深灰-灰色黏土 | VII |
111.6~120 | 浅灰色灰岩(二叠纪灰岩) | VIII |
Fig.2 Magnetostratigraphic age framework of borehole ZK1 in the Zhaotong Basin (modified after [2]). (a), (b) and (c) represent lithology, inclination and magnetic polarity zonation; (d) geomagnetic polarity timescale (GPTS) (adapted from [19]); (e) thirteen age control points of sediment from borehole ZK1 in the Zhaotong Basin based on the standard geomagnetic polarity timescale.
分带 | 黏土(<2 μm)含量/% | 粉砂(2~63 μm)含量/% | 砂(>63 μm)含量/% | 中值粒径/μm | 平均粒径/μm | |
---|---|---|---|---|---|---|
Unit I | 范围 | 7.0~37.8 | 60.3~93.1 | 0~34.1 | 4.4~52.4 | 8.9~47.4 |
平均值 | 17.4 | 75.6 | 6.9 | 10.1 | 19.4 | |
Unit II | 范围 | 4.1~32.8 | 45.7~93.3 | 0.01~21.6 | 4.0~29.2 | 9.9~49.7 |
平均值 | 13.7 | 81.1 | 5.22 | 10.0 | 17.85 | |
Unit III | 范围 | 6.5~36.5 | 28.6~68.8 | 2.6~65 | 3.2~104.8 | 9.3~140.0 |
平均值 | 17.5 | 54.7 | 28.6 | 29.8 | 49.4 |
Table 2 Variation range of clay, silt, sand content, median particle size, and average particle size in afferent zones of borehole ZK1
分带 | 黏土(<2 μm)含量/% | 粉砂(2~63 μm)含量/% | 砂(>63 μm)含量/% | 中值粒径/μm | 平均粒径/μm | |
---|---|---|---|---|---|---|
Unit I | 范围 | 7.0~37.8 | 60.3~93.1 | 0~34.1 | 4.4~52.4 | 8.9~47.4 |
平均值 | 17.4 | 75.6 | 6.9 | 10.1 | 19.4 | |
Unit II | 范围 | 4.1~32.8 | 45.7~93.3 | 0.01~21.6 | 4.0~29.2 | 9.9~49.7 |
平均值 | 13.7 | 81.1 | 5.22 | 10.0 | 17.85 | |
Unit III | 范围 | 6.5~36.5 | 28.6~68.8 | 2.6~65 | 3.2~104.8 | 9.3~140.0 |
平均值 | 17.5 | 54.7 | 28.6 | 29.8 | 49.4 |
Fig.6 Sedimentary facies division and field stratigraphic sedimentary structural characteristics in Zhaotong Basin during the Late Miocene to Pliocene
Fig.7 The various contents of grain size (a-c)、median grain size (d), the ratio of clay mineral content (Kao/(Sm+Ver(HIV)))[17] (e), the chemical weathering index of CIA and the ratio value of K/Al[18], global ice volume as indicated by marine oxygen isotope (h)[37], δ18O record (PDB) of palaeosol carbonate nodules from the Siwalik Group in northern Pakistan (i)[38]. Record: the gray dots in the figure represent the original data of sediment particle size parameters of ZK1 borehole, the curve is smoothed using a 5-point moving average, and the line segments are the trend lines of different stages obtained by linear regression.
[1] | CASANOVAS-VILAR I, ALBA D M, GARCÉS M, et al. Updated chronology for the Miocene hominoid radiation in western Eurasia[J]. Proceedings of the National Academy of Science, 2011, 108(14): 5554-5559. |
[2] | JI X P, JABLONSKIN G, SU D F, et al. Juvenile hominoid cranium from the terminal Miocene of Yunnan, China[J]. Chinese Science Bulletin, 2013, 58(31): 3771-3779. |
[3] | JABLONSKI N G, SU D F, FLYNN L J, et al. The site of Shuitangba (Yunnan, China) preserves a unique, terminal Miocene fauna[J]. Journal of Vertebrate Paleontology, 2014, 34(5): 1251-1257. |
[4] |
HARRISON T, JI X P, SU D. On the systematic status of the Late Neogene hominoids from Yunnan Province, China[J]. Journal of Human Evolution, 2002, 43(2): 207-227.
PMID |
[5] | CHANG L, GUO Z T, DENG C L, et al. Pollen evidence of the palaeoenvironments of Lufengpithecus lufengensis in the Zhaotong Basin, southeastern margin of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 95-104. |
[6] |
ZHANG C X, GUO Z T, DENG C L, et al. Clay mineralogy indicates a mildly warm and humid living environment for the Miocene hominoid from the Zhaotong Basin, Yunnan, China[J]. Scientific Reports, 2016, 6: 20012.
DOI PMID |
[7] | ZHAO L C, WANG Y F, LIU C J, et al. Climatic implications of fruit and seed assemblage from Miocene of Yunnan, southwestern China[J]. Quaternary International, 2004, 117(1): 81-89. |
[8] | XU J X, FERGUSON D K, LI C S, et al. Climatic and ecological implications of Late Pliocene Palynoflora from Longling, Yunnan, China[J]. Quaternary International, 2004, 117(1): 91-103. |
[9] | KOU X Y, FERGUSON D K, XU J X, et al. The reconstruction of paleovegetation and paleoclimate in the Late Pliocene of West Yunnan, China[J]. Climatic Change, 2006, 77(3): 431-448. |
[10] | XU J X, FERGUSON D K, LI C S, et al. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China[J]. Review of Palaeobotany and Palynology, 2008, 148(1): 36-59. |
[11] | XIA K, SU T, LIU Y S, et al. Quantitative climate reconstructions of the Late Miocene Xiaolongtan megaflora from Yunnan, Southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 80-86. |
[12] | JACQUESF M B, GUO S X, SU T, et al. Quantitative reconstruction of the Late Miocene monsoon climates of Southwest China: a case study of the Lincang flora from Yunnan Province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3/4): 318-327. |
[13] | ZHANG Q Q, FERGUSON D K, MOSBRUGGER V, et al. Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 363/364: 23-36 |
[14] | XING Y W, UTESCHER T, JACQUES F M B, et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene: evidence from plant macrofossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 358/359/360: 19-26. |
[15] | BIASATTI D, WANG Y, GAO F, et al. Paleoecologies and paleoclimates of Late Cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes[J]. Journal of Asian Earth Sciences, 2012, 44: 48-61. |
[16] | SU T, JACQUES F M B, SPICER R A, et al. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the Late Pliocene Longmen megaflora[J]. Climate of the Past, 2013, 9(4): 1911-1920. |
[17] | LI P, ZHANG C X, GUO Z T, et al. Clay mineral assemblages in the Zhaotong Basin of southwestern China: implications for the Late Miocene and Pliocene evolution of the South Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 90-100. |
[18] | LI P, ZHANG C X, KELLEY J, et al. Late Miocene climate cooling contributed to the disappearance of hominoids in Yunnan Region, southwestern China[J]. Geophysical Research Letters, 2020, 47(11): e87741. |
[19] | XIAO J L, FAN J W, ZHOU L, et al. A model for linking grain-size component to lake level status of a modern clastic lake[J]. Journal of Asian Earth Sciences, 2013, 69: 149-158. |
[20] | LU Y, FANG X M, FRIEDRICH O, et al. Characteristic grain-size component: a useful process-related parameter for grain-size analysis of lacustrine clastics?[J]. Quaternary International, 2018, 479: 90-99. |
[21] | YANG L Y, ZHANG W L, FANG X M, et al. Aridification recorded by lithofacies and grain size in a continuous Pliocene-Quaternary lacustrine sediment record in the western Qaidam Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556: 109903. |
[22] | 王爱宽, 秦勇, 兰凤娟, 等. 云南昭通盆地新近系褐煤地球化学特征[C]// 煤层气勘探开发理论与技术: 2010年全国煤层气学术研讨会论文集. 苏州, 2010: 130-135. |
[23] | 屈念念, 李家斌. 云南昭通盆地重磁特征及其地质意义[J]. 中国地质调查, 2016, 3(4): 37-42. |
[24] | 罗星云, 张永宏. 云南新近纪聚煤盆地特征及成因类型[J]. 中国煤炭地质, 2013, 25(9): 10-17. |
[25] | 王建中. 昭通盆地上第三系褐煤煤层气资源勘探前景初步评价[J]. 中国煤层气, 2010, 7(2): 3-6. |
[26] | 姜能人, 孙荣. 对昭通盆地晚新生代地层的一些看法[J]. 云南地质, 1986, 3: 74-83. |
[27] | HILGEN F J, LOURENS L J, VAN DAM J A, et al. The Neogene period[M]// GRADSTEINF M, OGGJ G. The geologic time scale. Amsterdam: Elsevier, 2012: 923-978. |
[28] | FRIEDMAN G M, SANDERS J E. Principles of sedimentary deposits[M]. New York: John Wiley and Sons, 1978. |
[29] | 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003. |
[30] | VISHER G S. Grain size distributions and depositional processes[J]. SEPM Journal of Sedimentary Research, 1969, 39(3): 1074-1106. |
[31] | PASSEGA R, BYRAMJEE R. Grain-size image of clastic deposits[J]. Sedimentology, 1969, 13(3): 233-252. |
[32] | ZHANG C, XIAO G, GUO Z, et al. Evidence of late Early Miocene aridification intensification in the Xining Basin caused by the northeastern Tibetan Plateau uplift[J]. Global and Planetary Change, 2015, 128: 31-46. |
[33] | ZHANG C, PATERSON G, HU B, et al. Elevation dependent weathering and padogenesis of the Emeishan Basalt in the northeastern Yunnan, China[C]// International Quaternary Conference Abstact. 2015: T02409. |
[34] | HOKE G D, JING L Z, HREN M T, et al. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 2014, 394: 270-278. |
[35] | DECELLES P G, QUADE J, KAPP P, et al. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 2007, 253(3): 389-401. |
[36] | LIU X D, SUN H, MIAO Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14. |
[37] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[38] | QUADE J, CERLING T E, BOWMAN J R. Development of Asian monsoon revealed by marked ecological shift during the Latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246): 163-166. |
[39] | ZHANG P Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897. |
[40] | QUADE J, CATER J M L, OJHA T P, et al. Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols[J]. Geological Society of America Bulletin, 1995, 107(12): 1381-1397. |
[41] |
BADGLEY C, BARRY J C, MORGAN M E, et al. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12145-12149.
DOI PMID |
[42] | HOORN C, OHJA T, QUADE J. Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163(3): 133-161. |
[43] | SANYAL P, BHATTACHARYA S K, KUMAR R, et al. Mio-Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 205(1): 23-41. |
[44] | SANYAL P, BHATTACHARYA S K, PRASAD M. Chemical diagenesis of Siwalik sandstone: isotopic and mineralogical proxies from Surai Khola section, Nepal[J]. Sedimentary Geology, 2005, 180(1): 57-74. |
[45] | CLIFT P D, HODGES K V, HESLOP D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12): 875-880. |
[1] | XING Zhifeng, ZHANG Xiangyun, LI Wanying, QI Yong’an, ZHENG Wei, WU Panpan, ZHANG Lijun. Paleoenvironmental characteristics in the late stage of biosphere recovery in the southern margin of the North China Plate after PTME—evidence from the Middle Triassic Ermaying Formation [J]. Earth Science Frontiers, 2023, 30(5): 491-509. |
[2] | TAN Ning, ZHANG Zhongshi, GUO Zhengtang, WANG Huijun. Modeling study of the impact of tropical seaway changes on East Asian climate [J]. Earth Science Frontiers, 2022, 29(5): 310-321. |
[3] | GUAN Yulong, CHEN Liang, JIANG Zhaoxia, LI Sanzhong, XIAO Chunfeng, CHEN Long. Source-sink processes, paleoenvironment and paleomonsoon evolution in the Northeast Indian Ocean [J]. Earth Science Frontiers, 2022, 29(5): 102-118. |
[4] | YANG Jiayi, JIANG Fuqing, YAN Yu, ZHENG Hao, CHANG Fengming. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene [J]. Earth Science Frontiers, 2022, 29(4): 73-83. |
[5] | DONG Hongkun, WAN Shiming, LIU Chang, ZHAO Debo, ZENG Zhigang, LI Anchun. Mineralogical and geochemical constraints on the origin of rhythmic layering of Late Miocene reddish-brown and greenish-gray sediments in the northern South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 42-54. |
[6] | QIN Feng, YANG Jian, LI Jin-Feng, LIU Hai-Meng, WANG Yu-Fei. Preliminary studies of the Pliocene climate and elevation of Zhangcun, Shanxi, China. [J]. Earth Science Frontiers, 2010, 17(5): 345-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||