Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 364-376.DOI: 10.13745/j.esf.sf.2021.7.19
Previous Articles Next Articles
SHI Kai1(), XU Lijuan1,2,*(
), SU Yuwen1, LIU Chunyang1, MA Haibo1, LIU Sheng’ao1,2
Received:
2020-09-09
Revised:
2021-06-18
Online:
2022-01-25
Published:
2022-02-22
Contact:
XU Lijuan
CLC Number:
SHI Kai, XU Lijuan, SU Yuwen, LIU Chunyang, MA Haibo, LIU Sheng’ao. Research progress on Cr isotopes in high temperature magmatic processes: A review[J]. Earth Science Frontiers, 2022, 29(1): 364-376.
Fig.2 Comparison of 52Cr signal intensities by TIMS measurements for samples (1 μg) treated by different chemical methods to minimize the influence of organic matter. Modified after [47].
Fig.5 Cr contents (left panels) and Cr isotopic distributions (right panels) in crustal and metamorphic rocks. Adapted from [10,20-22,35,50-51,60,67,70,73-86].
[1] |
ROSMAN K J R, TAYLOR P D P. Isotopic compositions of the elements 1997 (Technical Report)[J]. Pure and Applied Chemistry, 1998, 70(1):217-235.
DOI URL |
[2] |
BIRCK J L, ALLÈGRE C J. Evidence for the presence of 53Mn in the early solar system[J]. Geophysical Research Letters, 1985, 12(11):745-748.
DOI URL |
[3] |
LUGMAIR G W, SHUKOLYUKOV A. Early solar system timescales according to 53Mn-53Cr systematics[J]. Geochimica et Cosmochimica Acta, 1998, 62(16):2863-2886.
DOI URL |
[4] |
TRINQUIER A, BIRCK J L, ALLÈGRE C J. High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(12):1565-1574.
DOI URL |
[5] |
ROTARU M, BIRCK J L, ALLÈGRE C J. Clues to early Solar System history from chromium isotopes in carbonaceous chondrites[J]. Nature, 1992, 358(6386):465-470.
DOI URL |
[6] |
TRINQUIER A, BIRCK J L, ALLÈGRE C J. et al. 53Mn-53Cr systematics of the early Solar System revisited[J]. Geochimica et Cosmochimica Acta, 2008, 72(20):5146-5163.
DOI URL |
[7] |
NYQUIST L E, KLEINE T, SHIH C Y, et al. The distribution of short-lived radioisotopes in the early Solar System and the chronology of asteroid accretion, differentiation, and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2009, 73(17):5115-5136.
DOI URL |
[8] | QIN L P, RUMBLE D, ALEXANDER C M O, et al. The chromium isotopic composition of Almahata Sitta[J]. Meteoritics & Planetary Science, 2010, 45(10/11):1771-1777. |
[9] |
FREI R, GAUCHER C, POULTON S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J]. Nature, 2009, 461(7261):250-253.
DOI URL |
[10] |
FREI R, GAUCHER C, DØSSING L N, et al. Chromium isotopes in carbonates: a tracer for climate change and for reconstructing the redox state of ancient seawater[J]. Earth and Planetary Science Letters, 2011, 312(1/2):114-125.
DOI URL |
[11] |
CROWE S A, DØSSING L N, BEUKES N J, et al. Atmospheric oxygenation three billion years ago[J]. Nature, 2013, 501(7468):535-538.
DOI URL |
[12] |
PLANAVSKY N J, REINHARD C T, WANG X, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209):635-638.
DOI URL |
[13] |
ALLÈGRE C J, POIRIER J P, HUMLER E, et al. The chemical composition of the Earth[J]. Earth and Planetary Science Letters, 1995, 134(3/4):515-526.
DOI URL |
[14] |
FROST R L. Raman microscopy of selected chromate minerals[J]. Journal of Raman Spectroscopy, 2004, 35(2):153-158.
DOI URL |
[15] |
BALL J W, NORDSTROM D K. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides[J]. Journal of Chemical & Engineering Data, 1998, 43(6):895-918.
DOI URL |
[16] |
QIN L P, WANG X L. Chromium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):379-414.
DOI URL |
[17] | 王相力, 卫炜. 铬稳定同位素地球化学[J]. 地学前缘, 2020, 27(3):78-103. |
[18] |
ELLIS A S, JOHNSON T M, BULLEN T D. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects[J]. Environmental Science & Technology, 2004, 38(13):3604-3607.
DOI URL |
[19] |
ZINK S, SCHOENBERG R, STAUBWASSER M. Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media[J]. Geochimica et Cosmochimica Acta, 2010, 74(20):5729-5745.
DOI URL |
[20] |
BONNAND P, JAMES R H, PARKINSON I J, et al. The chromium isotopic composition of seawater and marine carbonates[J]. Earth and Planetary Science Letters, 2013, 382(6):10-20.
DOI URL |
[21] |
SCHOENBERG R, ZINK S, STAUBWASSER M, et al. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS[J]. Chemical Geology, 2008, 249(3/4):294-306.
DOI URL |
[22] |
SHEN J, LIU J, QIN L P, et al. Chromium isotope signature during continental crust subduction recorded in metamorphic rocks[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(11):3840-3854.
DOI URL |
[23] |
BALL J W, BASSETT R L. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis[J]. Chemical Geology, 2000, 168(1/2):123-134.
DOI URL |
[24] |
YAMAKAWA A, YAMASHITA K, MAKISHIMA A, et al. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry[J]. Analytical Chemistry, 2009, 81(23):9787-9794.
DOI URL |
[25] |
QIN L P, ALEXANDER C M O, CARLSON R W, et al. Contributors to chromium isotope variation of meteorites[J]. Geochimica et Cosmochimica Acta, 2010, 74(3):1122-1145.
DOI URL |
[26] |
BIRCK J L, ALLÈGRE C J. Manganese-chromium isotope systematics and the development of the early Solar System[J]. Nature, 1988, 331(6157):579-584.
DOI URL |
[27] |
BONNAND P, PARKINSON I J, JAMES R H, et al. Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3):528-535.
DOI URL |
[28] |
BONNAND P, WILLIAMS H M, PARKINSON I J, et al. Stable chromium isotopic composition of meteorites and metal-silicate experiments: implications for fractionation during core formation[J]. Earth and Planetary Science Letters, 2016, 435:14-21.
DOI URL |
[29] | LARSEN K K, WIELANDT D, SCHILLER M, et al. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A, 2016, 1443:162-174. |
[30] |
SCHOENBERG R, MERDIAN A, HOLMDEN C, et al. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs[J]. Geochimica et Cosmochimica Acta, 2016, 183:14-30.
DOI URL |
[31] |
LIU C Y, XU L J, LIU C T, et al. High-precision measurement of stable cr isotopes in geological reference materials by a double-spike TIMS method[J]. Geostandards and Geoanalytical Research, 2019, 43(4):647-661.
DOI URL |
[32] |
JOHNSON T M, BULLEN T D. Mass-dependent fractionation of selenium and chromium isotopes in low-temperature environments[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1):289-317.
DOI URL |
[33] |
HALICZ L, YANG L, TEPLYAKOV N, et al. High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(12):1622-1627.
DOI URL |
[34] |
DØSSING L N, DIDERIKSEN K, STIPP S L S, et al. Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments[J]. Chemical Geology, 2011, 285(1/2/3/4):157-166.
DOI URL |
[35] |
FARKAŠ J, CHRASTNÝ V, NOVÁK M, et al. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time[J]. Geochimica et Cosmochimica Acta, 2013, 123:74-92.
DOI URL |
[36] |
LI C F, FENG L J, WANG X C, et al. Precise measurement of Cr isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(12):2375-2383.
DOI URL |
[37] |
LI C F, FENG L J, WANG X C, et al. A low-blank two-column chromatography separation strategy based on a KMnO4 oxidizing reagent for Cr isotope determination in micro-silicate samples by thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10):1938-1945.
DOI URL |
[38] |
ZHU J M, WU G L, WANG X L, et al. An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:809-821.
DOI URL |
[39] |
SCHILLER M, KOOTEN E V, HOLST J C, et al. Precise measurement of chromium isotopes by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(8):1406-1416.
DOI URL |
[40] |
GUEGUEN B, REINHARD C T, ALGEO T J, et al. The chromium isotope composition of reducing and oxic marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 184:1-19.
DOI URL |
[41] | GILLEAUDEAU G J, FREI R, KAUFMAN A J, et al. Oxygenation of the Mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates[J]. Geochemical Perspectives Letters, 2016, 2:178-187. |
[42] |
RUDGE J F, REYNOLDS B C, BOURDON B. The double spike toolbox[J]. Chemical Geology, 2009, 265(3/4):420-431.
DOI URL |
[43] | 张群, 秦礼萍. 双稀释剂计算及校正方法[J]. 地球化学, 2017, 46(1):15-21. |
[44] | 朱建明, 谭德灿, 王静. 同位素双稀释剂技术的数值模拟与应用[J]. 岩石学报, 2018, 34(2):503-512. |
[45] |
KURITANI T, NAKAMURA E. Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes[J]. Chemical Geology, 2002, 186(1/2):31-43.
DOI URL |
[46] |
CHRASTNÝ V, ROHOVEC J, ČADKOVÁ E, et al. A new method for low-temperature decomposition of chromites and dichromium trioxide using bromic acid evaluated by chromium isotope measurements[J]. Geostandards and Geoanalytical Research, 2014, 38(1):103-110.
DOI URL |
[47] |
LIU J, QIN L P, XIA J X, et al. Cosmogenic effects on chromium isotopes in meteorites[J]. Geochimica et Cosmochimica Acta, 2019, 251:73-86.
DOI URL |
[48] |
WU G, ZHU J M, WANG X, et al. High-sensitivity measurement of Cr isotopes by double spike MC-ICP-MS at the 10 ng level[J]. Analytical Chemistry, 2020, 92(1):1463-1469.
DOI URL |
[49] |
HONDA M, IMAMURA M. Half-life of Mn53[J]. Physical Review C, 1971, 4(4):1182-1188.
DOI URL |
[50] |
FREI R, ROSING M T. Search for traces of the late heavy bombardment on Earth: results from high precision chromium isotopes[J]. Earth and Planetary Science Letters, 2005, 236(1/2):28-40.
DOI URL |
[51] | SOSSI P A, MOYNIER F, VAN ZUILEN K. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(43):10920-10925. |
[52] | GLAVIN D P, KUBNY A, JAGOUTZ E, et al. Mn-Cr isotope systematics of the D’Orbigny angrite[J]. Meteoritics & Planetary Science, 2004, 39(5):693-700. |
[53] |
MOYNIER F, YIN Q Z, SCHAUBLE E. Isotopic evidence of Cr partitioning into Earth’s core[J]. Science, 2011, 331(6023):1417-1420.
DOI URL |
[54] | QIN L, XIA J, CARLSON R W, et al. Chromium stable isotope composition of meteorites[C]. 46th Lunar Planet Science Conference. The Woodlands, 2015. |
[55] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[56] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
DOI URL |
[57] |
LI X F, LIU Y. A theoretical model of isotopic fractionation by thermal diffusion and its implementation on silicate melts[J]. Geochimica et Cosmochimica Acta, 2015, 154:18-27.
DOI URL |
[58] |
SHEN J, QIN L P, FANG Z Y, et al. High-temperature inter-mineral Cr isotope fractionation: a comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2018, 499:278-290.
DOI URL |
[59] |
MALLMANN G, O’NEILL H S C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9):1765-1794.
DOI URL |
[60] |
SHEN J, XIA J X, QIN L P, et al. Stable chromium isotope fractionation during magmatic differentiation: insights from Hawaiian basalts and implications for planetary redox conditions[J]. Geochimica et Cosmochimica Acta, 2020, 278:289-304.
DOI URL |
[61] |
BRÖECKER M, ENDERS M. U-Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece)[J]. Geological Magazine, 1999, 136(2):111-118.
DOI URL |
[62] |
TERRY M P, ROBINSON P, RAVNA E J K. Kyanite eclogite thermobarometry and evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western Gneiss Region, Norway[J]. American Mineralogist, 2000, 85(11/12):1637-1650.
DOI URL |
[63] |
AGUE J J. Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist[J]. American Journal of Science, 2003, 303(9):753-816.
DOI URL |
[64] |
PAGE F Z, ARMSTRONG L S, ESSENE E J, et al. Prograde and retrograde history of the Junction School eclogite, California, and an evaluation of garnet-phengite-clinopyroxene thermobarometry[J]. Contributions to Mineralogy and Petrology, 2007, 153(5):533-555.
DOI URL |
[65] |
BROVARONE A V, GROPPO C, HETÉNYI G, et al. Coexistence of lawsonite-bearing eclogite and blueschist: phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs[J]. Journal of Metamorphic Geology, 2011, 29(5):583-600.
DOI URL |
[66] |
WANG H, WU Y B, GAO S, et al. Continental origin of eclogites in the North Qinling terrane and its tectonic implications[J]. Precambrian Research, 2013, 230:13-30.
DOI URL |
[67] |
WANG X L, PLANAVSKY N J, REINHARD C T, et al. Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration[J]. Chemical Geology, 2016, 423:19-33.
DOI URL |
[68] |
HUANG J, LIU J, ZHANG Y N, et al. Cr isotopic composition of the Laobao cherts during the Ediacaran-Cambrian transition in South China[J]. Chemical Geology, 2018, 482:121-130.
DOI URL |
[69] | 沈骥, 杨兵, 夏九星. 高温体系中Cr元素和同位素地球化学[J]. 中国科学技术大学学报, 2020, 50(9):1229-1248. |
[70] |
XIA J X, QIN L P, SHEN J, et al. Chromium isotope heterogeneity in the mantle[J]. Earth and Planetary Science Letters, 2017, 464:103-115.
DOI URL |
[71] |
JERRAM M, BONNAND P, KERR A C, et al. The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth[J]. Chemical Geology, 2020, 551:119761.
DOI URL |
[72] |
BONNAND P, DOUCELANCE R, BOYET M, et al. The influence of igneous processes on the chromium isotopic compositions of Ocean Island Basalts[J]. Earth and Planetary Science Letters, 2020, 532:116028.
DOI URL |
[73] |
FREI R, POIRÉ, D, FREI K M. Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): a chromium stable isotope perspective[J]. Chemical Geology, 2014, 381:110-124.
DOI URL |
[74] |
FREI R, POLAT A. Chromium isotope fractionation during oxidative weathering: implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada[J]. Precambrian Research, 2013, 224:434-453.
DOI URL |
[75] |
KOGISO T, TATSUMI Y, NAKANO S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts[J]. Earth and Planetary Science Letters, 1997, 148(1/2):193-205.
DOI URL |
[76] |
JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3/4):339-353.
DOI URL |
[77] | BACH W, PEUCKER-EHRENBRINK B, HART S R, et al. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B: implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):8904. |
[78] | BACH W, GARRIDO C J, PAULICK H, et al. Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15°N[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(9):Q09F26. |
[79] |
PAULICK H, BACH W, GODARD M, et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234(3/4):179-210.
DOI URL |
[80] |
WANNER C, EGGENBERGER U, KURZ D, et al. A chromate-contaminated site in southern Switzerland-Part 1: site characterization and the use of Cr isotopes to delineate fate and transport[J]. Applied Geochemistry, 2012, 27(3):644-654.
DOI URL |
[81] |
MARSCHALL H R, SCHUMACHER J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12):862-867.
DOI URL |
[82] |
SCHWARZENBACH E M, FRÜH-GREEN G L, BERNASCONI S M, et al. Sulfur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian ophiolites with oceanic serpentinites[J]. Geochimica et Cosmochimica Acta, 2012, 91:283-305.
DOI URL |
[83] |
SCHWARZENBACH E M, FRÜH-GREEN G L, BERNASCONI S M, et al. Serpentinization and carbon sequestration: a study of two ancient peridotite-hosted hydrothermal systems[J]. Chemical Geology, 2013, 351:115-133.
DOI URL |
[84] |
BERGER A, FREI R. The fate of chromium during tropical weathering: a laterite profile from Central Madagascar[J]. Geoderma, 2014, 213:521-532.
DOI URL |
[85] |
SIAL A N, CAMPOS M S, GAUCHER C, et al. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence[J]. Journal of South American Earth Sciences, 2015, 61:33-52.
DOI URL |
[86] |
D’ARCY J, GILLEAUDEAU G J, PERALTA S, et al. Redox fluctuations in the Early Ordovician oceans: an insight from chromium stable isotopes[J]. Chemical Geology, 2017, 448:1-12.
DOI URL |
[87] |
WATENPHUL A, SCHMIDT C, JAHN S. Cr(III) solubility in aqueous fluids at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 126:212-227.
DOI URL |
[88] |
WEI W, FREI R, CHEN T Y, et al. Marine ferromanganese oxide: a potentially important sink of light chromium isotopes?[J]. Chemical Geology, 2018, 495:90-103.
DOI URL |
[89] |
BAUER K W, COLE D B, ASAEL D, et al. Chromium isotopes in marine hydrothermal sediments[J]. Chemical Geology, 2019, 529:119286.
DOI URL |
[90] |
REINHARD C T, PLANAVSKY N J, WANG X L, et al. The isotopic composition of authigenic chromium in anoxic marine sediments: a case study from the Cariaco Basin[J]. Earth and Planetary Science Letters, 2014, 407:9-18.
DOI URL |
[91] |
BRUGGMANN S, SCHOLZ F, KLAEBE R M, et al. Chromium isotope cycling in the water column and sediments of the Peruvian continental margin[J]. Geochimica et Cosmochimca Acta, 2019, 257:224-242.
DOI URL |
[92] |
EARY L E, RAI D. Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide[J]. Environmental Science & Technology, 1987, 21(12):1187-1193.
DOI URL |
[93] |
FENDORF S E, ZASOSKI R J. Chromium(III) oxidation by δ-MnO2[J]. Environmental Science and Technology, 1992, 26:79-85.
DOI URL |
[94] | OZE C, BIRD D K, FENDORF S. Genesis of hexavalent chromium from natural sources in soil and groundwater[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(16):6544-6549. |
[95] |
VAN DER WEIJDEN C H, REITH M. Chromium(III)-chromium(VI) interconversions in seawater[J]. Marine Chemistry, 1982, 11(6):565-572.
DOI URL |
[96] |
JEANDEL C, MINSTER J F. Chromium behavior in the ocean: global versus regional processes[J]. Global Biogeochemical Cycles, 1987, 1(2):131-154.
DOI URL |
[97] |
PEREIRA N S, VÖEGELIN A R, PAULUKAT C, et al. Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic[J]. Geobiology, 2016, 14(1):54-67.
DOI URL |
[98] |
SCHEIDERICH K, AMINI M, HOLMDEN C, et al. Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples[J]. Earth and Planetary Science Letters, 2015, 423:87-97.
DOI URL |
[99] | NRIAGU J O, NIEBOER E. Chromium in the natural and human environments[M]. New York: Wiley, 1988. |
[100] |
PAULUKAT C, GILLEAUDEAU G J, CHERNYAVSKIY P, et al. The Cr-isotope signature of surface seawater: a global perspective[J]. Chemical Geology, 2016, 444:101-109.
DOI URL |
[101] |
GORING-HARFORD H J, KLAR J K, PEARCE C R, et al. Behaviour of chromium isotopes in the eastern sub-tropical Atlantic Oxygen Minimum Zone[J]. Geochimica et Cosmochimica Acta, 2018, 236:41-59.
DOI URL |
[102] |
RICKLI J, JANSSEN D J, HASSLER C, et al. Chromium biogeochemistry and stable isotope distribution in the Southern Ocean[J]. Geochimica et Cosmochimica Acta, 2019, 262:188-206.
DOI URL |
[103] |
BONNAND P, BRUAND E, MATZEN A K, et al. Redox control on chromium isotope behaviour in silicate melts in contact with magnesiochromite[J]. Geochimica et Cosmochimica Acta, 2020, 288:282-300.
DOI URL |
[104] |
BONNAND P, PARKINSON I J, ANAND M. Mass dependent fractionation of stable chromium isotopes in mare basalts: implications for the formation and the differentiation of the Moon[J]. Geochimica et Cosmochimica Acta, 2016, 175(20):208-221.
DOI URL |
[105] |
ZHU K, SOSSI P A, SIEBERT J, et al. Tracking the volatile and magmatic history of Vesta from chromium stable isotope variations in eucrite and diogenite meteorites[J]. Geochimica et Cosmochimica Acta, 2019, 266:598-610.
DOI URL |
[106] |
BAI Y, SU B X, XIAO Y, et al. Diffusion-driven chromium isotope fractionation in ultramafic cumulate minerals: elemental and isotopic evidence from the Stillwater Complex[J]. Geochimica et Cosmochimica Acta, 2019, 263:167-181.
DOI URL |
[1] | WANG Guiling, LIN Wenjing. The thermal status of China’s land areas and heat-control factors [J]. Earth Science Frontiers, 2024, 31(6): 1-18. |
[2] | LI Zhuoqi, XU Cheng, WEI Chunwan. Outgassing processes of carbon in deep Earth: A review [J]. Earth Science Frontiers, 2024, 31(6): 304-319. |
[3] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[4] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[5] | ZHU Maolin, LIU Zhen, LIU Huimin, ZHANG Pengfei, ZHAO Zhen. Development characteristics and controlling factors of bedrock weathering crust reservoirs in the northern belt of the Dongying sag [J]. Earth Science Frontiers, 2024, 31(3): 324-336. |
[6] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[7] | LI Shuguang, WANG Yang, LIU Sheng’ao. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability [J]. Earth Science Frontiers, 2024, 31(1): 15-27. |
[8] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[9] | CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array [J]. Earth Science Frontiers, 2024, 31(1): 170-180. |
[10] | WANG Rui, ZHANG Jingbo, LUO Chenhao, ZHOU Qiushi, XIA Wenjie, ZHAO Yun. Deep process and lithospheric architectural control of Cu-REE mineralization in continental collision zone: Insights from a case study of the Gangdese and Sanjiang collisional belts [J]. Earth Science Frontiers, 2024, 31(1): 211-225. |
[11] | ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust [J]. Earth Science Frontiers, 2024, 31(1): 28-45. |
[12] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[13] | ZHANG Qi, ZHAI Mingguo, WEI Chunjing, ZHOU Ligang, HUANG Guangyu, CHEN Wanfeng, JIAO Shoutao, TANG Jun, LIU Rui, YUAN Jie, WANG Zhen, WANG Yue, YUAN Fanglin. A new granitization theory: Discussion on the four-stage granitization theory [J]. Earth Science Frontiers, 2023, 30(6): 406-435. |
[14] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[15] | JIANG Xiaohuan, HUANG Rong, ZHU Lupei, LU Zhanwu, LUO Yinhe, ZHANG Rongtang, XU Hao. Crustal structure beneath a seismic linear array in the Western Junggar, northwestern China by RF-RTM imaging [J]. Earth Science Frontiers, 2023, 30(5): 358-368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||