Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 211-225.DOI: 10.13745/j.esf.sf.2023.12.19
Previous Articles Next Articles
WANG Rui1(), ZHANG Jingbo1, LUO Chenhao1, ZHOU Qiushi1, XIA Wenjie1, ZHAO Yun2
Received:
2023-10-26
Revised:
2023-12-14
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
WANG Rui, ZHANG Jingbo, LUO Chenhao, ZHOU Qiushi, XIA Wenjie, ZHAO Yun. Deep process and lithospheric architectural control of Cu-REE mineralization in continental collision zone: Insights from a case study of the Gangdese and Sanjiang collisional belts[J]. Earth Science Frontiers, 2024, 31(1): 211-225.
Fig.3 Schematic diagrams of shallow, moderate-angle, and steep-angle subduction of the Indian plate (panel A) and corresponding seismic profile images (panel B). Modified from [49].
Fig.4 Nd-Hf isotopic spatial distribution in Jurassic, Cretaceous, Paleocene-Eocene, and Miocene magmatic rocks in the Gangdese belt. Adapted from [19].
[1] |
RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533.
DOI URL |
[2] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[3] | 侯增谦, 孟祥金, 曲晓明, 等. 西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性: 源岩相变及深部过程约束[J]. 矿床地质, 2005, 24(3): 108-121. |
[4] | 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征, 岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1817. |
[5] |
ZHU D C, WANG Q, WEINBERG R F, et al. Interplay between oceanic subduction and continental collision in building continental crust[J]. Nature Communications, 2022, 13(1): 7141.
DOI |
[6] |
ZHU D C, WANG Q, WEINBERG R F, et al. Continental crustal growth processes recorded in the Gangdese batholith, southern Tibet[J]. Annual Review of Earth and Planetary Sciences, 2023, 51(1): 155-188.
DOI URL |
[7] |
WANG R, WEINBERG R F, ZHU D C, et al. The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen[J]. GSA Bulletin, 2022, 134(3/4): 681-690.
DOI URL |
[8] |
HOU Z, WANG R, ZHANG H, et al. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate[J]. Earth-Science Reviews, 2023, 243: 104482.
DOI URL |
[9] |
ALLÉGRE C J, COURTILLOT V, TAPPONNIER P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22.
DOI |
[10] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[11] | 莫宣学, 董国臣, 赵志丹, 等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290. |
[12] | 侯增谦, 赵志丹, 高永丰, 等. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 2006, 22(4): 761-774. |
[13] |
ZHU D C, ZHAO Z D, NIU Y, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
DOI URL |
[14] |
HOU Z, DUAN L, LU Y, et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110(6): 1541-1575.
DOI URL |
[15] | 莫宣学, 赵志丹, 邓晋福, 等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. |
[16] |
WANG R, ZHU D, WANG Q, et al. Porphyry mineralization in the Tethyan Orogen[J]. Science China Earth Sciences, 2020, 63(12): 2042-2067.
DOI |
[17] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294. |
[18] |
ZHU D C, WANG Q, CHUNG S L, et al. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma[J]. Geological Society, London, Special Publications, 2019, 483(1): 583-604.
DOI URL |
[19] |
LUO C H, WANG R, WEINBERG R F, et al. Isotopic spatial-temporal evolution of magmatic rocks in the Gangdese belt: implications for the origin of Miocene post-collisional giant porphyry deposits in southern Tibet[J]. GSA Bulletin, 2022, 134(1/2): 316-324.
DOI URL |
[20] | CHUNG S L, CHU M F, ZHANG Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196. |
[21] | JI W, WU F, LIU C, et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China Series D: Earth Sciences, 2009, 52(9): 1240-1261. |
[22] |
DING L. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865.
DOI URL |
[23] |
ZHAO Z, MO X, DILEK Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J]. Lithos, 2009, 113(1/2): 190-212.
DOI URL |
[24] |
ZHU D C, ZHAO Z D, NIU Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454.
DOI URL |
[25] |
ZHENG Y, WU F. The timing of continental collision between India and Asia[J]. Science Bulletin, 2018, 63(24): 1649-1654.
DOI PMID |
[26] |
DENG J, WANG Q, LI G, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299.
DOI URL |
[27] | HOU Z Q, MA H W, KHIN Z, et al. The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 2003, 98(1): 125-145. |
[28] | WANG R, LUO C H, XIA W J, et al. Role of alkaline magmatism in formation of porphyry deposits in nonarc settings: Gangdese and Sanjiang metallogenic belts[M]//SHOLEH A, WANG R. Tectonomagmatic influences on metallogeny and hydrothermal ore deposits: a tribute to Jeremy P. Richards (Volume II). Littleton: Society of Economic Geologists, 2021: 205-229. |
[29] | HOU Z Q, XU B, ZHANG H, et al. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 2023, 4(1): 293. |
[30] | HOU Z, XU B, ZHENG Y, et al. Mantle flow: the deep mechanism of large-scale growth in Tibetan Plateau[J]. Chinese Science Bulletin, 2021, 66(21): 2671-2690. |
[31] |
HOU Z, YANG Z, QU X, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/2/3): 25-51.
DOI URL |
[32] |
ZHENG Y, SUN X, GAO S, et al. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt[J]. Journal of Asian Earth Sciences, 2015, 103: 23-39.
DOI URL |
[33] |
侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩 Cu-Mo-Au 矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20-44.
DOI |
[34] | YANG Z, COOKE D R. Porphyry copper deposits in China[M]//CHANG Z, GOLDFARB R J. Mineral deposits of China. Littleton: Society of Economic Geologists. 2019: 133-187. |
[35] | 侯增谦, 杨志明, 田世洪, 等. 川西冕宁-德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型[J]. 矿床地质, 2008, 27(2): 145-176. |
[36] |
LI J, SONG X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8296-8300.
DOI URL |
[37] |
GAO R, LU Z, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
DOI |
[38] |
ZHAO J, YUAN X, LIU H, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences, 2010, 107(25): 11229-11233.
DOI URL |
[39] | JARQUÍN E, WANG R, SUN W R, et al. Impact of slab tearing along the Yadong-Gulu rift on Miocene alkaline volcanism from the Lhasa Terrane to the Himalayas, southern Tibet[J]. Geological Society of America Bulletin, 2023. DOI: 10.1130/B36991.1. |
[40] | FOLEY S, FISCHER T. The carbon cycle in the continental lithosphere and the generation of alkaline mafic melts in cratonic and rift regions[C]// International kimberlite conference extended abstracts. Alberta, 2017: 11IKC-4654. |
[41] |
SONG W, XU C, SMITH M P, et al. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: protracted mineralization evolution over 1 b.y[J]. Geology, 2018, 46(4): 323-326.
DOI URL |
[42] | KAY S M, MPODOZIS C. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust[J]. GSA Today, 2001, 11(3): 4. |
[43] |
MUNGALL J E. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 2002, 30(10): 915.
DOI URL |
[44] |
BISSIG T, CLARK A H, LEE J K W, et al. Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au-Ag-Cu belt, Chile/Argentina[J]. Mineralium Deposita, 2003, 38(7): 844-862.
DOI URL |
[45] | KAY S M, MPODOZIS C, COIRA B. Neogene magmatism, tectonism, and mineral deposits of the Central Ande (22° to 33° S Latitude)[M]//SKINNER B J. Geology and ore deposits of the Central Andes. Littleton: Society of Economic Geologists, 1999: 27-59. |
[46] |
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
DOI URL |
[47] |
HOU Z, ZHENG Y, YANG Z, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48(2): 173-192.
DOI URL |
[48] |
HOU Z, YANG Z, LU Y, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
DOI URL |
[49] |
LI C, VAN DER HILST R D, MELTZER A S, et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 157-168.
DOI URL |
[50] |
ZHOU Q, WANG R. Shallow subduction of Indian slab and tectono-magmatic control on post-collisional porphyry mineralization in southeastern Tibet[J]. Ore Geology Reviews, 2023, 155: 105360.
DOI URL |
[51] |
HOU Z Q, GAO Y F, QU X M, et al. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155.
DOI URL |
[52] | 侯增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004, 20(2): 1-10. |
[53] | 侯增谦, 郑远川, 杨志明, 等. 大陆碰撞成矿作用: Ⅰ. 冈底斯新生代斑岩成矿系统[J]. 矿床地质, 2012, 31(4): 647-670. |
[54] |
RICHARDS J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3): 247-250.
DOI URL |
[55] |
LI J X, QIN K Z, LI G M, et al. Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust[J]. Lithos, 2011, 126(3-4): 265-277.
DOI URL |
[56] |
WANG X, ZHANG J, RUSHMER T, et al. Adakite-like potassic magmatism and crust-mantle interaction in a postcollisional setting: an experimental study of melting beneath the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12782-12798.
DOI URL |
[57] |
WANG R, COLLINS W J, WEINBERG R F, et al. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust-mantle mixing and metamorphism in the deep crust[J]. Contributions to Mineralogy and Petrology, 2016, 171(7): 62.
DOI URL |
[58] |
YANG Z M, LU Y J, HOU Z Q, et al. High-Mg Diorite from Qulong in Southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56(2): 227-254.
DOI URL |
[59] |
HAO L L, WANG Q, WYMAN D A, et al. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan Orogen[J]. Geology, 2019, 47(2): 187-190.
DOI URL |
[60] |
HAO L L, WANG Q, KERR A C, et al. Contribution of continental subduction to very light B isotope signatures in post-collisional magmas: evidence from southern Tibetan ultrapotassic rocks[J]. Earth and Planetary Science Letters, 2022, 584: 117508.
DOI URL |
[61] |
ZHANG J, WANG R, HONG J. Amphibole fractionation and its potential redox effect on arc crust: evidence from the Kohistan arc cumulates[J]. American Mineralogist, 2022, 107(9): 1779-1788.
DOI URL |
[62] |
DAVIDSON J, TURNER S, HANDLEY H, et al. Amphibole“sponge” in arc crust?[J]. Geology, 2007, 35(9): 787.
DOI URL |
[63] |
CHEN N, MAO J, ZHANG Z, et al. Arc magmatic evolution and porphyry copper deposit formation under compressional regime: a geochemical perspective from the Toquepala arc in Southern Peru[J]. Earth-Science Reviews, 2023, 240: 104383.
DOI URL |
[64] |
WANG R, RICHARDS J P, HOU Z Q, et al. Increasingmagmatic oxidation state from Paleocene to Miocene in the eastern Gangdese belt, Tibet: implication for collision-related porphyry Cu-Mo Au mineralization[J]. Economic Geology, 2014, 109(7): 1943-1965.
DOI URL |
[65] |
XU L L, ZHU J J, HUANG M L, et al. Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a postcollisional setting: examples from the Sanjiang region, SW China[J]. Mineralium Deposita, 2023, 58(1): 161-196.
DOI |
[66] |
HOU Z, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6): 563-566.
DOI URL |
[67] |
WANG R, RICHARDS J P, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 2015, 150: 68-94.
DOI URL |
[68] |
WANG R, WEINBERG R F, COLLINS W J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181: 122-143.
DOI URL |
[69] |
CHANG J, AUDÉTAT A. Post-subduction porphyry Cu magmas in the Sanjiang region of southwestern China formed by fractionation of lithospheric mantle-derived mafic magmas[J]. Geology, 2023, 51(1): 64-68.
DOI URL |
[70] |
ZHANG J, CHANG J, WANG R, et al. Can post-subduction porphyry Cu magmas form by partial melting of typical lower crustal amphibole-rich cumulates? Petrographic and experimental constraints from samples of the Kohistan and Gangdese arc roots[J]. Journal of Petrology, 2022, 63(11): egac101.
DOI URL |
[71] |
XU B, HOU Z Q, GRIFFIN W L, et al. Recycled volatiles determine fertility of porphyry deposits in collisional settings[J]. American Mineralogist, 2021, 106(4): 656-661.
DOI URL |
[72] |
ZHENG Y C, LIU S A, WU C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 47(2): 135-138.
DOI URL |
[73] |
ZHANG D, AUDÉTAT A. What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides[J]. Economic Geology, 2017, 112(2): 221-244.
DOI URL |
[74] |
CHIARADIA M, CARICCHI L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment[J]. Scientific Reports, 2017, 7(1): 44523.
DOI |
[75] |
LEE C T A, TANG M. How to make porphyry copper deposits[J]. Earth and Planetary Science Letters, 2020, 529: 115868.
DOI URL |
[76] |
XIA W J, WANG R, JENNER F. Sulfide resorption contributes to porphyry deposit formation in collisional settings[J]. Ore geology reviews, 2023, 163: 105804.
DOI URL |
[77] |
WIESER P E, JENNER F, EDMONDS M, et al. Chalcophile elements track the fate of sulfur at Kīlauea volcano, Hawai’i[J]. Geochimica et Cosmochimica Acta, 2020, 282, 245-275.
DOI URL |
[78] |
LI J X, LI G M, EVANS N J, et al. Primary fluid exsolution in porphyry copper systems: evidence from magmatic apatite and anhydrite inclusions in zircon[J]. Mineralium Deposita, 2021, 56(2): 407-415.
DOI |
[79] |
ZHAO J, QIN K, XIAO B, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36: 390-409.
DOI URL |
[80] |
HUANG M L, GAO J F, BI X W, et al. The role of early sulfide saturation in the formation of the Yulong porphyry Cu-Mo deposit: evidence from mineralogy of sulfide melt inclusions and platinum-group element geochemistry[J]. Ore Geology Reviews, 2020, 124: 103644.
DOI URL |
[1] | ZHAO Yuandong,CHE Jiying,XU Fengming,ZHU Qun,WANG Kuiliang. Late Jurassic adakitic granites in northeastern Xingan block: geochronology and geochemical characteristics and tectonic significance. [J]. Earth Science Frontiers, 2018, 25(6): 240-253. |
[2] | ZHANG Zeming,DING Huixia,DONG Xin,TIAN Zuolin. The Gangdese arc magmatism: from Neo-Tethyan subduction to Indo-Asian collision. [J]. Earth Science Frontiers, 2018, 25(6): 78-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||