Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 19-34.DOI: 10.13745/j.esf.sf.2020.9.14
Previous Articles Next Articles
BAI Shibiao1,2(), CUI Peng2,*(
), GE Yonggang2, WANG Hao3
Received:
2020-08-20
Revised:
2020-08-31
Online:
2021-03-25
Published:
2021-04-03
Contact:
CUI Peng
CLC Number:
BAI Shibiao, CUI Peng, GE Yonggang, WANG Hao. Geochronological analysis of fossil landslides and improvement of dating accuracy[J]. Earth Science Frontiers, 2021, 28(2): 19-34.
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
亚洲(喜马 拉雅山脉) | Yaral Pangbache TsergoRi | 10Be 10Be 10Be | 8.7±0.1 10.1±1.0 38.9±3.8 | 淡色花岗岩 淡色花岗岩 淡色花岗岩 | 砾石 砾石 砾石 | 0.97~0.98 0.98 0.92~0.96 | [55] | |||||
Rangatoli Dear | 10Be 10Be 26Al | 4.9±2.5 10.8±0.5 | 变质片岩、片麻 岩、石英岩 变质片岩、片麻 岩、石英岩 | 砾石 砾石 | 0.985~0.995 0.987~0.997 | [54] | ||||||
Milan | 10Be | 7.8±1.7 | 片岩 | 砾石 | 0.96~0.98 | [57] | ||||||
Darcha Patseo Kelang Serai Chilam | 10Be 10Be 10Be 10Be | 7.6±1.3 8.7±0.4 7.2±0.4 9.6±0.4 | 砂岩 千枚岩 砾岩和石英岩 火山岩 | 砾石 砾石 砾石 砾石 | 0.95~0.97 0.98~0.99 0.98~1 0.98 | [20] | ||||||
Satpara-Skardu GolGhone Katzarah DhakChauki Upper Henzul Baltit-Sumayar | 10Be 10Be 10Be 10Be 10Be 10Be | 3.6±0.1 3.6±0.1 6.8±0.1 5.5±0.1 7.2±0.2 3.8±0.2 | 花岗岩 花岗岩 花岗岩 石英脉 花岗闪长岩 花岗闪长岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | 1 1 1 1 1 1 | [56] | ||||||
Taheman Muztagh Bulunkou Yimake | 10Be 10Be 10Be 10Be | 6.8±0.2 14.3±0.8 2.0±0.1 7.1±0.6 | 片麻岩 片麻岩 片麻岩 片岩、石灰岩 | 砾石 砾石 砾石 砾石 | 1 1 0.952 4~0.967 8 1 | [22] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
亚洲(喜马 拉雅山脉) | Keylong Serai | 10Be | 7.51±0.1 | 石英脉 | 砾石 | [53] | ||||||
Yadong | 10Be 10Be 10Be 10Be 10Be 10Be | 14.2±1.3 13.3±1.3 13.1±1.3 13.9±1.3 13.1±1.2 12.0±1.1 | 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 | 砾石 砾石 砾石 砾石 砾石 卵石 | 0.974 1 0.974 1 0.974 1 0.992 7 0.991 9 0.991 9 | [58] | ||||||
亚洲 (天山) | Ukok | 10Be | 0.4±0.16 | 花岗岩 | 砾石 | 0.916~0.985 | [66] | |||||
Aksu | 10Be | 66±6.1 | 花岗岩 | 砾石 | 0.914~0.993 | |||||||
Alamyedin | 10Be | 12.8±1.4 | 花岗岩 | 砾石 | 0.933~0.496 | |||||||
Tianchi | 10Be | 13.6±1.4 | 安山岩、凝灰岩 | 砾石 | 0.98 | [65] | ||||||
亚洲 (中国香港) | Ap Lei Chau | 10Be、26Al | 11.0±1.3 | 凝灰岩 | 后壁、砾石 | 0.879~0.968 | [67] | |||||
Sunset Peak West | 10Be、26Al | 8.2±0.9 | 凝灰岩 | 后壁 | 0.851~0.987 | |||||||
Sham Wat | 10Be、26Al | 32.3±5.4 | 流纹岩 | 后壁、砾石 | 0.894~0.986 | |||||||
Tsing Yi | 10Be、26Al | 47.0±1.6 | 花岗岩 | 后壁、砾石 | 0.786~0.860 | |||||||
亚洲 (蒙古) | Jargalant | 10Be | 44.5±3.9 | 石英岩 | 后壁 | 0.995 | [62] | |||||
10Be | 193.5±17.5 | 石英岩 | 后壁 | 0.995 | ||||||||
亚洲 (中东) | Shehoret | 10Be | (3.6±0.8), (4.7±0.7) | 砂岩 | 后壁和砾石 | 0.51~1 | [49] | |||||
Kartal | 36Cl | (81±14), (58.8±8.8) | 石灰岩 | 后壁 | 0.99 | [50] | ||||||
Akdag | 36Cl | 1.3±0.1 | 石灰岩 | 砾石 | 0.990 4 | [51] | ||||||
36Cl | 1.0±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.1±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.962 7 | ||||||||
36Cl | 7.9±0.5 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 5.3±0.3 | 石灰岩 | 砾石 | 0.916 6 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.933 6 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.946 6 | ||||||||
36Cl | 2.9±0.2 | 石灰岩 | 砾石 | 0.950 0 | ||||||||
36Cl | 1.4±0.1 | 石灰岩 | 砾石 | 0.964 5 | ||||||||
36Cl | 1.6±0.1 | 石灰岩 | 砾石 | 0.971 7 | ||||||||
36Cl | 4.7±0.2 | 石灰岩 | 砾石 | 0.973 2 | ||||||||
36Cl | 9.3±0.5 | 石灰岩 | 砾石 | 0.966 5 | ||||||||
36Cl | 4.0±0.2 | 石灰岩 | 砾石 | 0.963 9 | ||||||||
36Cl | 7.1±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 9.3±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 6.9±0.3 | 石灰岩 | 砾石 | 0.946 7 | ||||||||
欧洲(阿尔 卑斯山) | Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 后壁、砾石 | 0.5~0.94 | [39] | |||||
Tapia Campos Rɩo Barrancas | 36Cl 36Cl 36Cl | 30.5±1.3 49±2.0 2.1±0.6 | 安山岩 石灰岩 安山岩 | 砾石 砾石 砾石 | 1 1 1 | [40] | ||||||
Marbrière Magagnosc Bar sur Loup Caire Baou des Noirs | 36Cl、10Be 36Cl 36Cl、10Be 36Cl 36Cl | 3.9±0.2 4.6±0.37 3.9±0.41 2.89±0.5 4.5±0.49 | 石灰岩、角岩 石灰岩 石灰岩、角岩 石灰岩 石灰岩 | 后壁 后壁 后壁 后壁 后壁 | 0.51 0.5 0.71~0.73 0.64 0.5~0.64 | [41] | ||||||
La Clapière | 10Be 10Be 10Be | 7.1±0.5 10.3±0.5 2.3±0.5 | 片麻岩 片麻岩 片麻岩 | 后壁 后壁 后壁 | 0~0.26 0~0.26 0~0.26 | [36] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(阿尔 卑斯山) | Le Pra | 10Be | 7.68±0.64 11.12±1.01 | 变质岩 | 后壁 | 0.99~1 | [42] | |||||
Durance | 10Be | 1.832±0.326 | 片麻岩、花岗岩 | 砾石 | 0.66~0.98 | [38] | ||||||
Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 砾石、后壁 | 0.5~0.94 | [40] | ||||||
Séchilienne | 10Be | 6~8 | 变质岩 | 后壁 | 0.433~9.99 | [34] | ||||||
Velikivrh | 36Cl | 0.506±0.016 | 石灰岩 | 砾石 | 0.865~0.998 | [43] | ||||||
Val Viola | 10Be | 7.43±0.46 | 变质岩 | 砾石 | 0.944 | [38] | ||||||
Flims | 36Cl、10Be | 8.9±0.7 | 石灰岩、石英脉 | 砾石 | 0.501~0.997 | [35] | ||||||
Rauris Valley | 10Be | 11.8±1.1 | 片岩、石英岩 | 后壁、砾石 | 0.96~0.98 | [44] | ||||||
Fernpass | 36Cl | 4.1±1.3 | 石灰岩 | 后壁 | 0.801~0.803 | [45] | ||||||
Oesch 1 | 36Cl | 2.19±0.19 | 石灰岩 | 砾石 | 0.952 | [46] | ||||||
Oesch 2 | 36Cl | 2.36±0.16 | 石灰岩 | 砾石 | 0.960 | |||||||
Oesch 3 | 36Cl | 2.54±0.17 | 石灰岩 | 砾石 | 0.957 | |||||||
Oesch 4 | 36Cl | 2.22±0.16 | 石灰岩 | 砾石 | 0.914 | |||||||
Oesch 5 | 36Cl | 2.31±0.16 | 石灰岩 | 砾石 | 0.920 | |||||||
Oesch 7 | 36Cl | 2.14±0.14 | 石灰岩 | 砾石 | 0.958 | |||||||
Oesch 3 | 36Cl | 2.6±0.18 | 石灰岩 | 砾石 | 0.929 | |||||||
欧洲(不列 颠群岛) | Mullaghmore | 36Cl | 17.67±1.52 | 玄武岩 | 砾石 | 0.47~0.98 | [28] | |||||
Benbradagh | 36Cl | (13.13±2.27), (9.22±1.73) | 玄武岩 | 砾石 | 0.983~0.99 | |||||||
Donalds Hill | 36Cl | 17.89±1.79 | 玄武岩 | 砾石 | 0.975~0.992 | |||||||
Mullach Coire a’Chuir | 10Be | 1.534±0.165 | 片岩 | 砾石 | 0.968~0.974 | [27] | ||||||
Hell’s Glen | 10Be | 3.67±0.397 | 片岩 | 砾石 | 0.950~0.957 | |||||||
Beinn an Lochain | 10Be | 11.037±0.563 | 片岩 | 砾石 | 0.971 | |||||||
Coire Gabhail | 10Be | 1.682±0.22 | 片岩 | 砾石 | 0.921 | |||||||
Carn Ban | 10Be | 4.638±0.464 | 凝灰岩 | 砾石 | 0.964~0.98 | |||||||
Druim nan Uadhag | 10Be | 9.798±1.25 | 石英-长石 | 砾石 | 0.958~0.969 | |||||||
Carn Etchachan | 10Be | 12.758±0.518 | 花岗岩 | 砾石 | 0.986~0.989 | |||||||
Coire Beanaidh | 10Be | 13.354±1.215 | 花岗岩 | 砾石 | 0.994 | |||||||
Lairig Ghru | 10Be | 16.234±1.469 | 花岗岩 | 砾石 | 0.984~0.989 | |||||||
Strath Nethy | 10Be | 16.933±0.598 | 花岗岩 | 砾石 | 0.976 | |||||||
Carn Ghluasaid | 10Be | 11.995±0.466 | 片岩 | 砾石 | 0.987~0.995 | |||||||
Coire nan Arr | 10Be | 11.658+0.473 | 砂岩 | 砾石 | 0.988~0.99 | |||||||
Meall Chean-dearg | 10Be | 11.543±0.373 | 石英岩 | 砾石 | 0.978 | |||||||
The Storr | 10Be | 6.089±0.488 | 玄武岩 | 砾石 | 0.980~0.981 | |||||||
Beinn Alligin | 10Be | 4.115±0.202 | 砂岩 | 砾石 | 0.972 | |||||||
Baosbheinn | 10Be | 14.017±0.491 | 砂岩 | 砾石 | 0.983~0.984 | |||||||
Carn nan Gillian | 10Be | 7.338±0.536 | 麻粒岩 | 砾石 | 0.966~0.977 | |||||||
欧洲(克里 米亚山脉) | Foros and Yalta | 36Cl | 19.7±1.1 | 石灰岩 | 后壁 | 0.67 | [29] | |||||
36Cl | 14.1±0.9 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 15.1±1.1 | 石灰岩 | 后壁 | 0.85 | ||||||||
36Cl | 2.4±0.3 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 0.5±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 6.4±0.4 | 石灰岩 | 后壁 | 0.73 | ||||||||
36Cl | 17.3±1.4 | 石灰岩 | 后壁 | 0.82 | ||||||||
36Cl | 8.2±0.7 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 4.5±0.4 | 石灰岩 | 后壁 | 0.75 | ||||||||
36Cl | 4.7±0.5 | 石灰岩 | 后壁 | 0.86 | ||||||||
36Cl | 1.8±0.2 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 1.4±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 7.6±0.7 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 9.3±1.2 | 石灰岩 | 后壁 | 0.59 | ||||||||
36Cl | 4.8±0.4 | 石灰岩 | 后壁 | 0.66 | ||||||||
36Cl | 5.2±0.7 | 石灰岩 | 后壁 | 0.56 | ||||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(马耳 他群岛) | Anchor Bay | 36Cl | 21.7±1.4 | 石灰岩 | 后壁 | [30] | ||||||
36Cl | 9.2±0.5 | 石灰岩 | 后壁 | |||||||||
36Cl | 7.4±0.4 | 石灰岩 | 后壁 | |||||||||
Il-Qarraba | 36Cl | 10.2±0.6 | 石灰岩 | 后壁 | ||||||||
36Cl | 15.3±1.0 | 石灰岩 | 后壁 | |||||||||
欧洲(西喀尔 巴阡山脉) | Luksinec | 10Be | 4.0±0.3 | 砂岩 | 后壁 | 0.492 9 | [47] | |||||
10Be | 4.2±0.4 | 砂岩 | 后壁 | 0.492 9 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.662 5 | ||||||||
10Be | 4.1±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 4.7±0.4 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 5.8±0.4 | 砂岩 | 后壁 | 0.544 9 | ||||||||
10Be | 6.5±0.4 | 砂岩 | 后壁 | 0.498 2 | ||||||||
10Be | 1.0±0.1 | 砂岩 | 后壁 | 0.760 4 | ||||||||
Malenovický kotel | 10Be | 3.9±0.4 | 砂岩 | 后壁 | 0.497 9 | |||||||
10Be | 2.4±0.3 | 砂岩 | 后壁 | 0.546 4 | ||||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.612 2 | ||||||||
10Be | 2.9±0.3 | 砂岩 | 后壁 | 0.690 6 | ||||||||
Malchor | 10Be | 6.0±0.5 | 砂岩 | 后壁 | 0.503 0 | |||||||
10Be | 9.7±1.2 | 砂岩 | 后壁 | 0.406 4 | ||||||||
10Be | 1.5±0.1 | 砂岩 | 后壁 | 0.622 7 | ||||||||
Kykulka | 10Be | 0.3±0.0 | 砂岩 | 后壁 | 0.670 9 | |||||||
10Be | 3.4±0.4 | 砂岩 | 后壁 | 0.602 7 | ||||||||
10Be | 3.3±0.3 | 砂岩 | 后壁 | 0.492 2 | ||||||||
Luksinec | 10Be | 1.4±0.1 | 砂岩 | 后壁 | 0.619 2 | |||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.662 9 | ||||||||
欧洲(伊比利亚 半岛北部) | Cristallere | 10Be | 1.106±0.540 | 热液石英 | 后壁 | 0.79~0.95 | [32] | |||||
欧洲(斯堪的 纳维亚) | Grøtlandsura | 10Be | 3.81±0.19 | 花岗岩 | 砾石 | 0.832~0.865 | [31] | |||||
Hølen | 10Be | 7.5±0.3 | 片岩 | 砾石 | 0.856~0.881 | |||||||
Russenes | 10Be | 4.29±0.28 | 片岩、花岗岩 | 砾石 | 0.775~0.847 | |||||||
欧洲(亚平宁山) | Lavini di Marco | 36Cl | (0.8±0.2), (1.5±0.2) | 石灰岩 | 砾石、后壁 | 0.543~0.984 | [48] | |||||
大洋洲(新西兰) | Lochnagar | 10Be | (6.3±0.3), (8.9±0.5) | 泥质片岩 | 砾石 | [68] | ||||||
北美洲 (博尔德山) | 3He | 26~33 | 火山岩 | 砾石 | 0.964~0.973 | [23] | ||||||
南美洲 (安第斯山脉) | Pangal Yes-MesonAlto Macul Potrerillos Salto del Soldado EsteroMaquis | 36Cl 10Be 36Cl 36Cl 36Cl 10Be | 7.7±0.3 4.6±0.6 80.4±2.6 23.8±0.9 9.8±0.7 112±14 | 火山岩 花岗闪长岩 火山岩 火山岩 火山岩 火山岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | | [25] | |||||
Las Conchas | 10Be | 13.55±0.9 | 石英岩、花岗岩 | 砾石 | [24] | |||||||
Tonco | 10Be | 15.0±2.0 | 石英岩、花岗岩 | 砾石 |
Table 1 Geochronology of landslides in different regions of the world by TCN dating
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
亚洲(喜马 拉雅山脉) | Yaral Pangbache TsergoRi | 10Be 10Be 10Be | 8.7±0.1 10.1±1.0 38.9±3.8 | 淡色花岗岩 淡色花岗岩 淡色花岗岩 | 砾石 砾石 砾石 | 0.97~0.98 0.98 0.92~0.96 | [55] | |||||
Rangatoli Dear | 10Be 10Be 26Al | 4.9±2.5 10.8±0.5 | 变质片岩、片麻 岩、石英岩 变质片岩、片麻 岩、石英岩 | 砾石 砾石 | 0.985~0.995 0.987~0.997 | [54] | ||||||
Milan | 10Be | 7.8±1.7 | 片岩 | 砾石 | 0.96~0.98 | [57] | ||||||
Darcha Patseo Kelang Serai Chilam | 10Be 10Be 10Be 10Be | 7.6±1.3 8.7±0.4 7.2±0.4 9.6±0.4 | 砂岩 千枚岩 砾岩和石英岩 火山岩 | 砾石 砾石 砾石 砾石 | 0.95~0.97 0.98~0.99 0.98~1 0.98 | [20] | ||||||
Satpara-Skardu GolGhone Katzarah DhakChauki Upper Henzul Baltit-Sumayar | 10Be 10Be 10Be 10Be 10Be 10Be | 3.6±0.1 3.6±0.1 6.8±0.1 5.5±0.1 7.2±0.2 3.8±0.2 | 花岗岩 花岗岩 花岗岩 石英脉 花岗闪长岩 花岗闪长岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | 1 1 1 1 1 1 | [56] | ||||||
Taheman Muztagh Bulunkou Yimake | 10Be 10Be 10Be 10Be | 6.8±0.2 14.3±0.8 2.0±0.1 7.1±0.6 | 片麻岩 片麻岩 片麻岩 片岩、石灰岩 | 砾石 砾石 砾石 砾石 | 1 1 0.952 4~0.967 8 1 | [22] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
亚洲(喜马 拉雅山脉) | Keylong Serai | 10Be | 7.51±0.1 | 石英脉 | 砾石 | [53] | ||||||
Yadong | 10Be 10Be 10Be 10Be 10Be 10Be | 14.2±1.3 13.3±1.3 13.1±1.3 13.9±1.3 13.1±1.2 12.0±1.1 | 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 | 砾石 砾石 砾石 砾石 砾石 卵石 | 0.974 1 0.974 1 0.974 1 0.992 7 0.991 9 0.991 9 | [58] | ||||||
亚洲 (天山) | Ukok | 10Be | 0.4±0.16 | 花岗岩 | 砾石 | 0.916~0.985 | [66] | |||||
Aksu | 10Be | 66±6.1 | 花岗岩 | 砾石 | 0.914~0.993 | |||||||
Alamyedin | 10Be | 12.8±1.4 | 花岗岩 | 砾石 | 0.933~0.496 | |||||||
Tianchi | 10Be | 13.6±1.4 | 安山岩、凝灰岩 | 砾石 | 0.98 | [65] | ||||||
亚洲 (中国香港) | Ap Lei Chau | 10Be、26Al | 11.0±1.3 | 凝灰岩 | 后壁、砾石 | 0.879~0.968 | [67] | |||||
Sunset Peak West | 10Be、26Al | 8.2±0.9 | 凝灰岩 | 后壁 | 0.851~0.987 | |||||||
Sham Wat | 10Be、26Al | 32.3±5.4 | 流纹岩 | 后壁、砾石 | 0.894~0.986 | |||||||
Tsing Yi | 10Be、26Al | 47.0±1.6 | 花岗岩 | 后壁、砾石 | 0.786~0.860 | |||||||
亚洲 (蒙古) | Jargalant | 10Be | 44.5±3.9 | 石英岩 | 后壁 | 0.995 | [62] | |||||
10Be | 193.5±17.5 | 石英岩 | 后壁 | 0.995 | ||||||||
亚洲 (中东) | Shehoret | 10Be | (3.6±0.8), (4.7±0.7) | 砂岩 | 后壁和砾石 | 0.51~1 | [49] | |||||
Kartal | 36Cl | (81±14), (58.8±8.8) | 石灰岩 | 后壁 | 0.99 | [50] | ||||||
Akdag | 36Cl | 1.3±0.1 | 石灰岩 | 砾石 | 0.990 4 | [51] | ||||||
36Cl | 1.0±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.1±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.962 7 | ||||||||
36Cl | 7.9±0.5 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 5.3±0.3 | 石灰岩 | 砾石 | 0.916 6 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.933 6 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.946 6 | ||||||||
36Cl | 2.9±0.2 | 石灰岩 | 砾石 | 0.950 0 | ||||||||
36Cl | 1.4±0.1 | 石灰岩 | 砾石 | 0.964 5 | ||||||||
36Cl | 1.6±0.1 | 石灰岩 | 砾石 | 0.971 7 | ||||||||
36Cl | 4.7±0.2 | 石灰岩 | 砾石 | 0.973 2 | ||||||||
36Cl | 9.3±0.5 | 石灰岩 | 砾石 | 0.966 5 | ||||||||
36Cl | 4.0±0.2 | 石灰岩 | 砾石 | 0.963 9 | ||||||||
36Cl | 7.1±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 9.3±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 6.9±0.3 | 石灰岩 | 砾石 | 0.946 7 | ||||||||
欧洲(阿尔 卑斯山) | Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 后壁、砾石 | 0.5~0.94 | [39] | |||||
Tapia Campos Rɩo Barrancas | 36Cl 36Cl 36Cl | 30.5±1.3 49±2.0 2.1±0.6 | 安山岩 石灰岩 安山岩 | 砾石 砾石 砾石 | 1 1 1 | [40] | ||||||
Marbrière Magagnosc Bar sur Loup Caire Baou des Noirs | 36Cl、10Be 36Cl 36Cl、10Be 36Cl 36Cl | 3.9±0.2 4.6±0.37 3.9±0.41 2.89±0.5 4.5±0.49 | 石灰岩、角岩 石灰岩 石灰岩、角岩 石灰岩 石灰岩 | 后壁 后壁 后壁 后壁 后壁 | 0.51 0.5 0.71~0.73 0.64 0.5~0.64 | [41] | ||||||
La Clapière | 10Be 10Be 10Be | 7.1±0.5 10.3±0.5 2.3±0.5 | 片麻岩 片麻岩 片麻岩 | 后壁 后壁 后壁 | 0~0.26 0~0.26 0~0.26 | [36] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(阿尔 卑斯山) | Le Pra | 10Be | 7.68±0.64 11.12±1.01 | 变质岩 | 后壁 | 0.99~1 | [42] | |||||
Durance | 10Be | 1.832±0.326 | 片麻岩、花岗岩 | 砾石 | 0.66~0.98 | [38] | ||||||
Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 砾石、后壁 | 0.5~0.94 | [40] | ||||||
Séchilienne | 10Be | 6~8 | 变质岩 | 后壁 | 0.433~9.99 | [34] | ||||||
Velikivrh | 36Cl | 0.506±0.016 | 石灰岩 | 砾石 | 0.865~0.998 | [43] | ||||||
Val Viola | 10Be | 7.43±0.46 | 变质岩 | 砾石 | 0.944 | [38] | ||||||
Flims | 36Cl、10Be | 8.9±0.7 | 石灰岩、石英脉 | 砾石 | 0.501~0.997 | [35] | ||||||
Rauris Valley | 10Be | 11.8±1.1 | 片岩、石英岩 | 后壁、砾石 | 0.96~0.98 | [44] | ||||||
Fernpass | 36Cl | 4.1±1.3 | 石灰岩 | 后壁 | 0.801~0.803 | [45] | ||||||
Oesch 1 | 36Cl | 2.19±0.19 | 石灰岩 | 砾石 | 0.952 | [46] | ||||||
Oesch 2 | 36Cl | 2.36±0.16 | 石灰岩 | 砾石 | 0.960 | |||||||
Oesch 3 | 36Cl | 2.54±0.17 | 石灰岩 | 砾石 | 0.957 | |||||||
Oesch 4 | 36Cl | 2.22±0.16 | 石灰岩 | 砾石 | 0.914 | |||||||
Oesch 5 | 36Cl | 2.31±0.16 | 石灰岩 | 砾石 | 0.920 | |||||||
Oesch 7 | 36Cl | 2.14±0.14 | 石灰岩 | 砾石 | 0.958 | |||||||
Oesch 3 | 36Cl | 2.6±0.18 | 石灰岩 | 砾石 | 0.929 | |||||||
欧洲(不列 颠群岛) | Mullaghmore | 36Cl | 17.67±1.52 | 玄武岩 | 砾石 | 0.47~0.98 | [28] | |||||
Benbradagh | 36Cl | (13.13±2.27), (9.22±1.73) | 玄武岩 | 砾石 | 0.983~0.99 | |||||||
Donalds Hill | 36Cl | 17.89±1.79 | 玄武岩 | 砾石 | 0.975~0.992 | |||||||
Mullach Coire a’Chuir | 10Be | 1.534±0.165 | 片岩 | 砾石 | 0.968~0.974 | [27] | ||||||
Hell’s Glen | 10Be | 3.67±0.397 | 片岩 | 砾石 | 0.950~0.957 | |||||||
Beinn an Lochain | 10Be | 11.037±0.563 | 片岩 | 砾石 | 0.971 | |||||||
Coire Gabhail | 10Be | 1.682±0.22 | 片岩 | 砾石 | 0.921 | |||||||
Carn Ban | 10Be | 4.638±0.464 | 凝灰岩 | 砾石 | 0.964~0.98 | |||||||
Druim nan Uadhag | 10Be | 9.798±1.25 | 石英-长石 | 砾石 | 0.958~0.969 | |||||||
Carn Etchachan | 10Be | 12.758±0.518 | 花岗岩 | 砾石 | 0.986~0.989 | |||||||
Coire Beanaidh | 10Be | 13.354±1.215 | 花岗岩 | 砾石 | 0.994 | |||||||
Lairig Ghru | 10Be | 16.234±1.469 | 花岗岩 | 砾石 | 0.984~0.989 | |||||||
Strath Nethy | 10Be | 16.933±0.598 | 花岗岩 | 砾石 | 0.976 | |||||||
Carn Ghluasaid | 10Be | 11.995±0.466 | 片岩 | 砾石 | 0.987~0.995 | |||||||
Coire nan Arr | 10Be | 11.658+0.473 | 砂岩 | 砾石 | 0.988~0.99 | |||||||
Meall Chean-dearg | 10Be | 11.543±0.373 | 石英岩 | 砾石 | 0.978 | |||||||
The Storr | 10Be | 6.089±0.488 | 玄武岩 | 砾石 | 0.980~0.981 | |||||||
Beinn Alligin | 10Be | 4.115±0.202 | 砂岩 | 砾石 | 0.972 | |||||||
Baosbheinn | 10Be | 14.017±0.491 | 砂岩 | 砾石 | 0.983~0.984 | |||||||
Carn nan Gillian | 10Be | 7.338±0.536 | 麻粒岩 | 砾石 | 0.966~0.977 | |||||||
欧洲(克里 米亚山脉) | Foros and Yalta | 36Cl | 19.7±1.1 | 石灰岩 | 后壁 | 0.67 | [29] | |||||
36Cl | 14.1±0.9 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 15.1±1.1 | 石灰岩 | 后壁 | 0.85 | ||||||||
36Cl | 2.4±0.3 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 0.5±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 6.4±0.4 | 石灰岩 | 后壁 | 0.73 | ||||||||
36Cl | 17.3±1.4 | 石灰岩 | 后壁 | 0.82 | ||||||||
36Cl | 8.2±0.7 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 4.5±0.4 | 石灰岩 | 后壁 | 0.75 | ||||||||
36Cl | 4.7±0.5 | 石灰岩 | 后壁 | 0.86 | ||||||||
36Cl | 1.8±0.2 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 1.4±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 7.6±0.7 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 9.3±1.2 | 石灰岩 | 后壁 | 0.59 | ||||||||
36Cl | 4.8±0.4 | 石灰岩 | 后壁 | 0.66 | ||||||||
36Cl | 5.2±0.7 | 石灰岩 | 后壁 | 0.56 | ||||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(马耳 他群岛) | Anchor Bay | 36Cl | 21.7±1.4 | 石灰岩 | 后壁 | [30] | ||||||
36Cl | 9.2±0.5 | 石灰岩 | 后壁 | |||||||||
36Cl | 7.4±0.4 | 石灰岩 | 后壁 | |||||||||
Il-Qarraba | 36Cl | 10.2±0.6 | 石灰岩 | 后壁 | ||||||||
36Cl | 15.3±1.0 | 石灰岩 | 后壁 | |||||||||
欧洲(西喀尔 巴阡山脉) | Luksinec | 10Be | 4.0±0.3 | 砂岩 | 后壁 | 0.492 9 | [47] | |||||
10Be | 4.2±0.4 | 砂岩 | 后壁 | 0.492 9 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.662 5 | ||||||||
10Be | 4.1±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 4.7±0.4 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 5.8±0.4 | 砂岩 | 后壁 | 0.544 9 | ||||||||
10Be | 6.5±0.4 | 砂岩 | 后壁 | 0.498 2 | ||||||||
10Be | 1.0±0.1 | 砂岩 | 后壁 | 0.760 4 | ||||||||
Malenovický kotel | 10Be | 3.9±0.4 | 砂岩 | 后壁 | 0.497 9 | |||||||
10Be | 2.4±0.3 | 砂岩 | 后壁 | 0.546 4 | ||||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.612 2 | ||||||||
10Be | 2.9±0.3 | 砂岩 | 后壁 | 0.690 6 | ||||||||
Malchor | 10Be | 6.0±0.5 | 砂岩 | 后壁 | 0.503 0 | |||||||
10Be | 9.7±1.2 | 砂岩 | 后壁 | 0.406 4 | ||||||||
10Be | 1.5±0.1 | 砂岩 | 后壁 | 0.622 7 | ||||||||
Kykulka | 10Be | 0.3±0.0 | 砂岩 | 后壁 | 0.670 9 | |||||||
10Be | 3.4±0.4 | 砂岩 | 后壁 | 0.602 7 | ||||||||
10Be | 3.3±0.3 | 砂岩 | 后壁 | 0.492 2 | ||||||||
Luksinec | 10Be | 1.4±0.1 | 砂岩 | 后壁 | 0.619 2 | |||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.662 9 | ||||||||
欧洲(伊比利亚 半岛北部) | Cristallere | 10Be | 1.106±0.540 | 热液石英 | 后壁 | 0.79~0.95 | [32] | |||||
欧洲(斯堪的 纳维亚) | Grøtlandsura | 10Be | 3.81±0.19 | 花岗岩 | 砾石 | 0.832~0.865 | [31] | |||||
Hølen | 10Be | 7.5±0.3 | 片岩 | 砾石 | 0.856~0.881 | |||||||
Russenes | 10Be | 4.29±0.28 | 片岩、花岗岩 | 砾石 | 0.775~0.847 | |||||||
欧洲(亚平宁山) | Lavini di Marco | 36Cl | (0.8±0.2), (1.5±0.2) | 石灰岩 | 砾石、后壁 | 0.543~0.984 | [48] | |||||
大洋洲(新西兰) | Lochnagar | 10Be | (6.3±0.3), (8.9±0.5) | 泥质片岩 | 砾石 | [68] | ||||||
北美洲 (博尔德山) | 3He | 26~33 | 火山岩 | 砾石 | 0.964~0.973 | [23] | ||||||
南美洲 (安第斯山脉) | Pangal Yes-MesonAlto Macul Potrerillos Salto del Soldado EsteroMaquis | 36Cl 10Be 36Cl 36Cl 36Cl 10Be | 7.7±0.3 4.6±0.6 80.4±2.6 23.8±0.9 9.8±0.7 112±14 | 火山岩 花岗闪长岩 火山岩 火山岩 火山岩 火山岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | | [25] | |||||
Las Conchas | 10Be | 13.55±0.9 | 石英岩、花岗岩 | 砾石 | [24] | |||||||
Tonco | 10Be | 15.0±2.0 | 石英岩、花岗岩 | 砾石 |
[1] |
崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 2014,33(2):145-152.
DOI |
[2] |
WESTEN C J, ASCH T W J, ASCH T W J . Landslide hazard and risk zonation: why is it still so difficult?[J]. Bulletin of Engineering Geology and the Environment, 2006,65(2):167-184.
DOI URL |
[3] | 石菊松, 石玲, 吴树仁. 滑坡风险评估的难点和进展[J]. 地质论评, 2007,53(6):797-806. |
[4] | 许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010,56(6):860-874. |
[5] |
LOPEZ SAEZ J, CORONA C, STOFFEL M, et al. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps[J]. Geomorphology, 2012,138(1):189-202.
DOI URL |
[6] | 吴树仁, 石菊松, 王涛, 等. 滑坡风险评估理论与技术[M]. 北京: 科学出版社, 2012: 8-19. |
[7] | 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004,19(3):443-450. |
[8] | 洪婷, 白世彪, 王建. 树轮地貌学重建滑坡事件研究进展[J]. 地质论评, 2014,60(4):755-764. |
[9] |
LANG A, MOYA J, COROMINAS J, et al. Classic and new dating methods for assessing the temporal occurrence of mass movements[J]. Geomorphology, 1999,30(1/2):33-52.
DOI URL |
[10] |
BULL W B. Accurate surface exposure dating with lichens[J]. Quaternary Research, 2018,90:1-9.
DOI URL |
[11] | 杨银科, 彭建兵, 刘聪. 滑坡年代学研究方法应用进展[J]. 灾害学, 2015,30(2):133-137. |
[12] | PÁNEK T. Recent progress in landslide dating: a global overview[J]. Progress in Physical Geography, 2015,39(2):168-198. |
[13] |
HALLET B, PUTKONEN J. Surface dating of dynamic landforms: young boulders on aging moraines[J]. Science, 1994,265(5174):937-940.
DOI URL |
[14] |
LAL D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991,104(2/3/4):424-439.
DOI URL |
[15] |
GOSSE J C, PHILLIPS F M. Terrestrial in situ cosmogenic nuclides: theory and application[J]. Quaternary Science Reviews, 2001,20(14):1475-1560.
DOI URL |
[16] | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the Earth surface sciences[M]. Cambridge: Cambridge University Press, 2007. |
[17] | 李英奎, HARBOR J, 刘耕年, 等. 宇宙核素地学研究的应用现状与存在问题[J]. 水土保持研究, 2005,12(4):146-152. |
[18] | 刘彧, 王世杰, 刘秀明. 宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012,27(4):386-397. |
[19] | 孔屏. 宇宙成因核素在地球科学中的应用[J]. 地学前缘, 2002,9(3):41-48. |
[20] |
DORTCH J M, OWEN L A, HANEBERG W C, et al. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India[J]. Quaternary Science Reviews, 2009,28(11/12):1037-1054.
DOI URL |
[21] | 袁兆德, 陈杰, 李文巧, 等. 帕米尔高原东部塔合曼大型滑坡体的10Be测年[J]. 第四纪研究, 2012,32(3):409-416. |
[22] |
YUAN Z D, CHEN J, OWEN L A, et al. Nature and timing of large landslides within an active orogen, eastern Pamir, China[J]. Geomorphology, 2013,182:49-65.
DOI URL |
[23] |
MARCHETTI D W, CERLING T E, DOHRENWEND J C, et al. Ages and significance of glacial and mass movement deposits on the west side of Boulder Mountain, Utah, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,252(3/4):503-513.
DOI URL |
[24] | HERMANNS R L, NIEDERMANN S, IVY-OCHS S, et al. Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina): evidence from surface exposure dating and stratigraphic analyses[J]. Landslides, 2004,1(2):113-122. |
[25] |
ANTINAO J L, GOSSE J. Large rockslides in the Southern Central Andes of Chile (32-34.5°S): tectonic control and significance for Quaternary landscape evolution[J]. Geomorphology, 2009,104(3/4):117-133.
DOI URL |
[26] |
PENNA I M, HERMANNS R L, NIEDERMANN S, et al. Multiple slope failures associated with neotectonic activity in the Southern Central Andes (37°-37°30'S), Patagonia, Argentina[J]. Geological Society of America Bulletin, 2011,123(9/10):1880-1895.
DOI URL |
[27] |
BALLANTYNE C K, STONE J O. Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands[J]. Geomorphology, 2013,186:150-161.
DOI URL |
[28] |
SOUTHALL D W, WILSON P, DUNLOP P, et al. Age evaluation and causation of rock-slope failures along the western margin of the Antrim Lava Group (ALG), Northern Ireland, based on cosmogenic isotope (36Cl) surface exposure dating[J]. Geomorphology, 2017,285:235-246.
DOI URL |
[29] |
PÁNEK T, LENART J, HRADECKÝ J, et al. Coastal cliffs, rock-slope failures and Late Quaternary transgressions of the Black Sea along southern Crimea[J]. Quaternary Science Reviews, 2018,181:76-92.
DOI URL |
[30] |
SOLDATI M, BARROWS T T, PRAMPOLINI M, et al. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea)[J]. Journal of Coastal Conservation, 2018,22:831-844.
DOI URL |
[31] |
FENTON C R, HERMANNS R L, BLIKRA L H, et al. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69° N, Norway[J]. Quaternary Geochronology, 2011,6(5):437-452.
DOI URL |
[32] |
LEBOURG T, ZERATHE S, FABRE R, et al. A Late Holocene deep-seated landslide in the northern French Pyrenees[J]. Geomorphology, 2014,208:1-10.
DOI URL |
[33] |
LE ROUX O, SCHWARTZ S, GAMOND J F, et al. CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics[J]. Earth and Planetary Science Letters, 2009,280(1/2/3/4):236-245.
DOI URL |
[34] |
SCHWARTZ S, ZERATHE S, JONGMANS D, et al. Cosmic ray exposure dating on the large landslide of Séchilienne (Western Alps): a synjournal to constrain slope evolution[J]. Geomorphology, 2017,278:329-344.
DOI URL |
[35] |
IVY-OCHS S, POSCHINGER A V, SYNAL H A, et al. Surface exposure dating of the Flims landslide, Graubünden, Switzerland[J]. Geomorphology, 2009,103(1):104-112.
DOI URL |
[36] |
BIGOT-CORMIER F, BRAUCHER R, BOURLÈS D, et al. Chronological constraints on processes leading to large active landslides[J]. Earth and Planetary Science Letters, 2005,235(1/2):141-150.
DOI URL |
[37] |
COSSART E, BRAUCHER R, FORT M, et al. Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages[J]. Geomorphology, 2008,95(1/2):3-26.
DOI URL |
[38] |
HORMES A, IVY-OCHS S, KUBIK P W, et al. 10Be exposure ages of a rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps[J]. Quaternary International, 2008,190(1):136-145.
DOI URL |
[39] |
DELUNEL R, HANTZ D, BRAUCHER R, et al. Surface exposure dating and geophysical prospecting of the Holocene Lauvitel rock slide (French Alps)[J]. Landslides, 2010,7(4):393-400.
DOI URL |
[40] |
COSTA C H, GONZÁLEZ DÍAZ E F. Age constraints and paleoseismic implication of rock avalanches in the northern Patagonian Andes, Argentina[J]. Journal of South American Earth Sciences, 2007,24(1):48-57.
DOI URL |
[41] |
ZERATHE S, LEBOURG T, BRAUCHER R, et al. Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by36Cl dating. Insight on an Alpine-scale landslide activity[J]. Quaternary Science Reviews, 2014,90:106-127.
DOI URL |
[42] |
SANCHEZ G, ROLLAND Y, CORSINI M, et al. Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps[J]. Geomorphology, 2010,117(1/2):1-13.
DOI URL |
[43] |
MERCHEL S, MRAK I, BRAUCHER R, et al. Surface exposure dating of the Veliki Vrh rock avalanche in Slovenia associated with the 1348 earthquake[J]. Quaternary Geochronology, 2014,22:33-42.
DOI URL |
[44] |
BICHLER M G, REINDL M, REITNER J M, et al. Landslide deposits as stratigraphical markers for a sequence-based glacial stratigraphy: a case study of a Younger Dryas system in the Eastern Alps[J]. Boreas, 2016,45(3):537-551.
DOI URL |
[45] |
PRAGER C, IVY-OCHS S, OSTERMANN M, et al. Geology and radiometric 14C-, 36Cl- and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria)[J]. Geomorphology, 2009,103(1):93-103.
DOI URL |
[46] |
KOPFLI P, GRÄMIGER L M, MOORE J R, et al. The Oeschinensee rock avalanche, Bernese Alps, Switzerland: a co-seismic failure 2300 years ago?[J]. Swiss Journal of Geosciences, 2018,111(1):205-219.
DOI URL |
[47] |
BREZNY M, PANEK T, LENART J, et al. Be-10 dating reveals pronounced Mid-to Late Holocene activity of deep-seated landslides in the highest part of the Czech Flysch Carpathians[J]. Quaternary Science Reviews, 2018,195:180-194.
DOI URL |
[48] |
MARTIN S, CAMPEDEL P, IVY-OCHS S, et al. Lavini Di Marco (Trentino, Italy): 36Cl exposure dating of a polyphase rock avalanche[J]. Quaternary Geochronology, 2014,19:106-116.
DOI URL |
[49] |
RINAT Y, MATMON A, ARNOLD M, et al. Holocene rockfalls in the southern Negev Desert, Israel and their relation to Dead Sea fault earthquakes[J]. Quaternary Research, 2014,81(2):260-273.
DOI URL |
[50] |
YILDIRIM C, SARIKAYA M A, ÇINER A. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault Zone[J]. Tectonics, 2016,35(6):1446-1464.
DOI URL |
[51] |
BAYRAKDAR C, GORUM T, ÇILĞIN Z, et al. Chronology and geomorphological activity of the Akdag Rock Avalanche (SW Turkey)[J]. Frontiers in Earth Science, 2020,8:295.
DOI URL |
[52] |
HEWITT K. Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia[J]. Geomorphology, 2009,103(1):66-79.
DOI URL |
[53] |
MITCHELL W A, MCSAVENEY M J, ZONDERVAN A, et al. The Keylong Serai rock avalanche, NW Indian Himalaya: geomorphology and palaeoseismic implications[J]. Landslides, 2007,4(3):245-254.
DOI URL |
[54] |
BARNARD P L, OWEN L A, SHARMA M C, et al. Natural and human-induced landsliding in the Garhwal Himalaya of northern India[J]. Geomorphology, 2001,40(1/2):21-35.
DOI URL |
[55] |
BARNARD P L, OWEN L A, FINKEL R. Quaternary fans and terraces in the Khumbu Himal south of Mount Everest: their characteristics, age and formation[J]. Journal of the Geological Society, 2006,163(2):383-399.
DOI URL |
[56] |
HEWITT K, GOSSE J, CLAGUE J J. Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya[J]. Geological Society of America Bulletin, 2011,123(9):1836-1850.
DOI URL |
[57] |
BARNARD P L, OWEN L A, FINKEL R C. Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya[J]. Sedimentary Geology, 2004,165(3/4):199-221.
DOI URL |
[58] |
PENG X, CHEN Y X, LIU B B, et al. Timing and features of a late MIS 2 rock avalanche in the Eastern Himalayas, constrained by 10Be exposure dating[J]. Geomorphology, 2018,318:58-68.
DOI URL |
[59] |
ZENG Q L, YUAN G X, DAVIES T, et al. 10Be dating and seismic origin of Luanshibao rock avalanche in SE Tibetan Plateau and implications on Litang active fault[J]. Landslides, 2020,17(5):1091-1104.
DOI URL |
[60] | 崔豫. 川西理塘毛垭坝盆地乱石包高速远程滑坡的10Be暴露年代研究[D]. 南京:南京师范大学, 2019. |
[61] | 舒杰. 藏东南旺北村滑坡10Be和26Al暴露年代研究[D]. 南京: 南京师范大学, 2018. |
[62] |
OH J S, SEONG Y B, STROM A, et al. Bouldery deposits along the Kherlen fault, Central Khentey, Mongolia: implications for paleoseismology[J]. Natural Hazards, 2020,103:189-209.
DOI URL |
[63] | 舒杰, 白世彪, 崔豫, 等. 白龙江中游凤安山滑坡26Al 暴露年代研究[J]. 地质力学学报, 2017,23(6):914-922. |
[64] | 陈倩. 黄河上游戈龙布滑坡后壁宇生核素暴露年代研究[D]. 南京: 南京师范大学, 2017. |
[65] |
YI C, ZHU L, BAE SEONG Y, et al. A lateglacial rock avalanche event, Tianchi Lake, Tien Shan, Xinjiang[J]. Quaternary International, 2006,154/155:26-31.
DOI URL |
[66] |
SANHUEZA-PINO K, KORUP O, HETZEL R, et al. Glacial advances constrained by 10Be exposure dating of bedrock landslides, Kyrgyz Tien Shan[J]. Quaternary Research, 2011,76(3):295-304.
DOI URL |
[67] | SEWELL R J, BARROWS T T. Exposure dating (10Be, 26Al) of natural terrain landslides in Hong Kong, China[J]. Special Paper of the Geological Society of America, 2006,415:131-146. |
[68] | SWEENEY C, BRIDEAU M A, AUGUSTINUS P, et al. Lochnagar landslide-dam, Central Otago, New Zealand: geomechanics and timing of the event[C]. 19th NZGS Geotechnical Symposium. Queenstown, 2013. |
[69] |
赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013,32(5):683-693.
DOI |
[70] | 卢演俦. 沉积物的光释光(OSL)测年简介[J]. 地质地球化学, 1990,18(1):36-40. |
[71] | 张克旗, 吴中海, 吕同艳, 等. 光释光测年法: 综述及进展[J]. 地质通报, 2015,34(1):183-203. |
[72] |
WANG P, ZHANG B, QIU W, et al. Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, East Tibet[J]. Journal of Asian Earth Sciences, 2011,40:865-872.
DOI URL |
[73] |
MA J X, CHEN J, CUI Z J, et al. Sedimentary evidence of outburst deposits induced by the Diexi paleolandslide-dammed lake of the upper Minjiang River in China[J]. Quaternary International, 2018,464:460-481.
DOI URL |
[74] |
CHEN J, DAI F, LV T, et al. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013,298:107-113.
DOI URL |
[75] |
WANG P F, CHEN J, DAI F C, et al. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: implications to Holocene tectonic perturbations[J]. Geomorphology, 2014,217:193-203.
DOI URL |
CHEN J, LI X, YANG Z F. Baota landslide in the Three Gorges area and its OSL dating[J]. Environmental Geology, 2008,54(2):417-425. | |
[77] | 杜建军, 黎敦朋, 马寅生, 等. 18.7万年前的高速远程古滑坡:来自陕西华县莲花寺滑坡体上覆黄土光释光(OSL)测年的证据[J]. 第四纪研究, 2013,33(5):1005-1015. |
[78] | 殷志强, 程国明, 胡贵寿, 等. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究[J]. 工程地质学报, 2010,18(1):41-51. |
[79] | 周保, 彭建兵, 赖忠平, 等. 黄河上游特大型滑坡群发特性的年代学研究[J]. 第四纪研究, 2014,34(2):346-353. |
[80] |
GUO X, SUN Z, LAI Z, et al. Optical dating of landslide-dammed lake deposits in the upper Yellow River, Qinghai-Tibetan Plateau, China[J]. Quaternary International, 2016,392:233-238.
DOI URL |
[81] |
DONG G H, ZHANG F Y, MA M M, et al. Ancient landslide-dam events in the Jishi Gorge, upper Yellow River valley, China[J]. Quaternary Research, 2014,81(3):445-451.
DOI URL |
[82] |
ZHANG Y Z, HUANG C C, PANG J L, et al. OSL dating of the massive landslide-damming event in the Jishixia Gorge, on the upper Yellow River, NE Tibetan Plateau[J]. The Holocene, 2015,25(5):745-757.
DOI URL |
[83] | 赵瑞欣, 周保, 李滨. 黄河上游龙羊峡至积石峡段巨型滑坡OSL测年[J]. 地质通报, 2013,32(12):1943-1951. |
[84] | 殷志强, 程国明, 李小林, 等. 中更新世早中期以来黄河上游与三峡库区滑坡形成机理与气候变化关系研究[J]. 第四纪研究, 2010,30(1):37-45. |
[85] | 夏银珍, 刘维明, 赖忠平, 等. 大渡河石广东古滑坡堰塞湖沉积物光释光年代研究[J]. 地球环境学报, 2017,8(5):419-426. |
[86] | 杨丽娟, 李华亮, 易顺华. 陕西五曲湾滑坡发育特征和14C测龄[J]. 灾害学, 2010,25(3):49-52. |
[87] | 吴玮江, 叶伟林, 孟兴民, 等. 武都汉林沟流域古滑坡年龄的14C厘定[J]. 地球科学进展, 2011,26(12):1276-1281. |
[88] | 李昂, 侯圣山, 王立朝, 等. 临夏盆地巴谢河流域典型滑坡多期次活动年代学证据[J]. 中国地质灾害与防治学报, 2018,29(2):61-65. |
[89] | 蒋瑶, 吴中海, 刘艳辉, 等. 青海玉树活动断裂带的多期古地震滑坡及其年龄[J]. 地质通报, 2014,33(4):503-516. |
[90] |
NICOLUSSI K, SPÖETL C, THURNER A, et al. Precise radiocarbon dating of the giant Köfels landslide (Eastern Alps, Austria)[J]. Geomorphology, 2015,243:87-91.
DOI URL |
[91] |
BERTOLINI G, CASAGLI N, ERMINI L, et al. Radiocarbon data on lateglacial and Holocene landslides in the northern Apennines[J]. Natural Hazards, 2004,31:645-662.
DOI URL |
[92] |
GEERTSEMA M, CLAGUE J J. 1000-year record of landslide dams at Halden Creek, northeastern British Columbia[J]. Landslides, 2006,3:217-227.
DOI URL |
[93] |
DUMAN T Y. The largest landslide dam in Turkey: Tortum landslide[J]. Engineering Geology, 2009,104(1/2):66-79.
DOI URL |
[94] |
PÁNEK T, HRADECKÝ J, ŠILHÁN K, et al. Time constraints for the evolution of a large slope collapse in Karstified mountainous terrain of the southwestern Crimean Mountains, Ukraine[J]. Geomorphology, 2009,108(3/4):171-181.
DOI URL |
[95] | 彭红霞, 吴昆, 邓清禄, 等. 滑坡相关方解石MC-ICPMS 230Th/238U年代学初探:以三峡库区黄土坡滑坡为例[J]. 第四纪研究, 2018,38(3):695-704. |
[96] | 殷志强, 许强, 赵无忌, 等. 黄河上游夏藏滩巨型滑坡演化过程及形成机制[J]. 第四纪研究, 2016,36(2):474-483. |
[97] |
HERMANNS R L, SCHELLENBERGER A. Quaternary tephrochronology helps define conditioning factors and triggering mechanisms of rock avalanches in NW Argentina[J]. Quaternary International, 2008,178(1):261-275.
DOI URL |
[98] |
HERMANNS R L, TRAUTH M H, NIEDERMANN S, et al. Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina[J]. Journal of Geology, 2000,108(1):35-52.
DOI URL |
[99] | MERCIER D, COSSART E, DECAULNE A, et al. The Höfðahólar rock avalanche (sturzström): chronological constraint of paraglacial landsliding on an Icelandic hillslope[J]. The Holocene, 2013,23(3):431-445. |
[100] | ABBOTT P L. Natural disasters[M]. New York: McGraw-Hill, 2007. |
[101] | GILLESPIE A R, BIERMAN P R. Precision of terrestrial exposure ages and erosion rates estimated from analysis of cosmogenic isotopes produced in situ[J]. Journal of Geophysical Research: Solid Earth, 1995,1002(B12):24637-24650. |
[102] |
ZERATHE S, BRAUCHER R, LEBOURG T, et al. Dating chert (diagenetic silica) using in-situ produced 10Be: possible complications revealed through a comparison with 36Cl applied to coexisting limestone[J]. Quaternary Geochronology, 2013,17:81-93.
DOI URL |
[103] |
HILGER P, GOSSE J C, HERMANNS R L. How significant is inheritance when dating rockslide boulders with terrestrial cosmogenic nuclide dating? A case study of an historic event[J]. The Landslides, 2019,16(4):729-738.
DOI URL |
[104] | 徐孝彬, 王建, YIOU F, 等. 地貌学与第四纪研究的新手段:陆地宇生核素研究[J]. 地理科学, 2002,22(5):587-591. |
[105] |
DUNNE J, ELMORE D, MUZIKAR P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces[J]. Geomorphology, 1999,27(1/2):3-11.
DOI URL |
[106] | 计凤桔, 李建平, 刘明达. 滑带土TL测年初探[J]. 核技术, 1993,16(4):232-235. |
[107] | 崔之久. 混杂堆积与环境[M]. 石家庄: 河北科学技术出版社, 2013. |
[108] |
ZHENG Y E, ZHOU L P, ZHANG J F. Optical dating of the upper 22 m of cored sediments from Daihai Lake, northern China[J]. Quaternary Geochronology, 2010,5(2/3):228-232.
DOI URL |
[109] |
LUKAS S, PREUSSER F, ANSELMETTI F S, et al. Testing the potential of luminescence dating of high-alpine lake sediments[J]. Quaternary Geochronology, 2012,8:23-32.
DOI URL |
[110] |
THOMAS P J, MURRAY A S, SANDGREN P. Age limit and age underestimation using different OSL signals from lacustrine quartz and polymineral fine grains[J]. Quaternary Science Reviews, 2003,22(10/11/12/13):1139-1143.
DOI URL |
[111] |
LANG A, ZOLITSCHKA B. Optical dating of annually laminated lake sediments: a test case from Holzmaar/Germany[J]. Quaternary Science Reviews, 2001,20(5/6/7/8/9):737-742.
DOI URL |
[112] | PREUSSER F, DEGERING D, FUCHS M, et al. Luminescence dating: basics, methods and applications[J]. Eiszeitalter und Gegenwart Quaternary Science Journal, 2008,57:95-149. |
[113] |
LUKAS S, SPENCER J Q G, ROBINSON R A J, et al. Problems associated with luminescence dating of Late Quaternary glacial sediments in the NW Scottish Highlands[J]. Quaternary Geochronology, 2007,2(1/2/3/4):243-248.
DOI URL |
[114] |
PÁNEK T, SMOLKOVÁ V, HRADECKY J, et al. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia)[J]. Quaternary Research, 2013,80(1):33-46.
DOI URL |
[115] | DUFRESNE A, DAVIES T R, MCSAVENEY M J. Influence of runout-path material on emplacement of the Round Top rock avalanche, New Zealand[J]. Earth Surface Processes and Landforms, 2010,35(2):190-201. |
[116] | WAGNER G A. Age determination of young rocks and artifacts: physical and chemical clocks in Quaternary geology and archaeology[M]. Berlin: Springer, 1998. |
[117] |
TAJAGI H, ARITA K, DANHARA T, et al. Timing of the Tsergo Ri landslide, Langtang Himal, determined by fission-track dating of pseudotachylyte[J]. Journal of Asian Earth Sciences, 2007,29(2/3):466-472.
DOI URL |
[118] |
DEMURO M, FROESE D G, ARNOLD L J, et al. Single-grain OSL dating of glaciofluvial quartz constrains Reid glaciation in NW Canada to MIS 6[J]. Quaternary Research, 2012,77(2):305-316.
DOI URL |
[119] | OLLEY J M, CAITCHEON G G, ROBERTS R G. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence[J]. Radiation, 1999,30(2):207-217. |
[120] |
OLLEY J M, de DECKKER P, ROBERTS R G, et al. Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon[J]. Sedimentary Geology, 2004,169(3/4):175-189.
DOI URL |
[121] |
DULLER G A T. Single-grain optical dating of Quaternary sediments: why aliquotsize matters in luminescence dating[J]. Boreas, 2008,37(4):589-612.
DOI URL |
[1] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
[2] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
[3] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. Electron spin resonance dating for the Central Churia Thrust of the Nepal Himalaya [J]. Earth Science Frontiers, 2023, 30(4): 260-269. |
[4] | LUO Niangang, GAO Lianfeng, ZHANG Zhenguo, YIN Zhigang, CUI Jianyu, WU Junfei, XING Jie, DING Kai, GAO Chenyang, WANG Yue. Processes and mechanism of lithospheric thinning in the eastern North China Craton during the Early Cretaceous: Evidence from the Beidashan pluton, Liaoning Province [J]. Earth Science Frontiers, 2023, 30(3): 340-365. |
[5] | SUN Yongshuai, HU Ruilin. Effect of bedrock slope angle on deformation and failure of overlying rock-soil mixture: Insight into the evolution of landslides [J]. Earth Science Frontiers, 2023, 30(3): 494-504. |
[6] | ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance [J]. Earth Science Frontiers, 2023, 30(2): 163-182. |
[7] | LI Wangpeng, LI Huili, WANG Yi, LIU Shaofeng, ZHANG Zhongpei, YANG Weili, CAI Xiyao, QIAN Tao, LI Xiaojian. Neoproterozoic glaciations in Yecheng area, southwestern margin of the Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 356-380. |
[8] | ZHU Xiaohui, CHEN Danling, FENG Yimin, REN Yunfei, ZHANG Xin. Granitic magmatism and tectonic evolution in the Qilian Mountain Range in NW China: A review [J]. Earth Science Frontiers, 2022, 29(2): 241-260. |
[9] | YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins [J]. Earth Science Frontiers, 2021, 28(6): 10-28. |
[10] | SHI Kangxing, WANG Changming, DU Bin, CHEN Qi, ZHU Jiaxuan, RAO Shicheng, DUAN Hongyu. Ca. 1.90-1.80 Ga continent-continent collision in southeastern North China Craton: Evidence from the granite-greenstone belt in the Jiaobei Terrane [J]. Earth Science Frontiers, 2021, 28(6): 295-317. |
[11] | CHEN Jian, CHEN Ruichen, CUI Zhijiu. Research progress on the morphology and sedimentology of long runout landslides [J]. Earth Science Frontiers, 2021, 28(4): 349-360. |
[12] | YIN Zhiqiang, WEI Gang, QIN Xiaoguang, LI Wenjuan, ZHAO Wuji. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 46-57. |
[13] | FAN Xuanmei, DAI Lanxin, ZHONG Yujin, LI Jingjuan, WANG Lansheng. Recent research on the Diexi paleo-landslide: dam and lacustrine deposits upstream of the Minjiang River, Sichuan, China [J]. Earth Science Frontiers, 2021, 28(2): 71-84. |
[14] | CHEN Jian, CUI Zhijiu, CHEN Ruichen, ZHENG Xinxin. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River [J]. Earth Science Frontiers, 2021, 28(2): 85-93. |
[15] | ZHANG Yongshuang, LIU Xiaoyi, WU Rui’an, GUO Changbao, REN Sanshao. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 94-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||