Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 494-504.DOI: 10.13745/j.esf.sf.2022.9.5
Previous Articles Next Articles
Received:
2022-01-24
Revised:
2022-03-31
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
SUN Yongshuai, HU Ruilin. Effect of bedrock slope angle on deformation and failure of overlying rock-soil mixture: Insight into the evolution of landslides[J]. Earth Science Frontiers, 2023, 30(3): 494-504.
孔隙比 | 含水率/% | 最大干密度/ (g·cm-3) | 黏聚力/ kPa | 内摩擦角/ (°) |
---|---|---|---|---|
0.59 | 22.3 | 1.71 | 20 | 27.8 |
Table 1 Physical and mechanical properties of silt material
孔隙比 | 含水率/% | 最大干密度/ (g·cm-3) | 黏聚力/ kPa | 内摩擦角/ (°) |
---|---|---|---|---|
0.59 | 22.3 | 1.71 | 20 | 27.8 |
[1] | MEDLEY E W. The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks)[M]. Berkeley: University of California, 1994. |
[2] | MEDLEY E W. Estimating block size distributions of melanges and similar block-in-matrix rocks (bimrocks)[C]// Proceedings of 5th North American Rock Mechanics Symposium. Toronto: University of Toronto Press, 2002: 509-606. |
[3] | 油新华. 土石混合体的随机结构模型及其应用研究[J]. 岩石力学与工程学报, 2002, 21(11): 1748. |
[4] | 油新华, 何刚, 李晓. 土石混合体的分类建议[J]. 工程地质学报, 2002, 10(增刊): 448-452. |
[5] | LI X, LIAO Q L, HE J M. In-situ tests and a stochastic structural model of rock and soil aggregate in the Three Gorges Reservoir area, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 702-707. |
[6] | 李晓, 廖秋林, 赫建明, 等. 土石混合体力学特性的原位试验研究[J]. 岩石力学与工程学报, 2007, 26(12): 2377-2384. |
[7] |
陈剑, 陈瑞琛, 崔之久. 高速远程滑坡的地貌学与沉积学研究进展[J]. 地学前缘, 2021, 28(4): 349-360.
DOI |
[8] |
张永双, 刘筱怡, 吴瑞安, 等. 青藏高原东缘深切河谷区古滑坡:判识、特征、时代与演化[J]. 地学前缘, 2021, 28(2): 94-105.
DOI |
[9] |
李高, 谭建民, 王世梅, 等. 滑坡对降雨响应的多指标监测及综合预警探析:以赣南罗坳滑坡为例[J]. 地学前缘, 2021, 28(6): 283-294.
DOI |
[10] | 胡峰, 李志清, 孙凯, 等. 冻土石混合体、冰石混合物和冻土在压、拉作用下的破坏特征对比[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2923-2934. |
[11] | 徐华, 周廷宇, 王歆宇, 等. 川藏铁路红层改良路基填料压缩试验与颗粒流模拟研究[J]. 岩土力学, 2021, 42(8): 2259-2268. |
[12] | WANG Y H, LI J L, JIANG Q, et al. Study on spatial variation of shear mechanical properties of soil-rock mixture[J]. Periodica Polytechnica Civil Engineering, 2019, 63(4): 1080-1091. |
[13] | 张振平, 付晓东, 盛谦, 等. 基于含石量指标的土石混合体非线性破坏强度准则[J]. 岩石力学与工程学报, 2021, 40(8): 1672-1686. |
[14] | 江强强, 徐杨青, 王浩. 不同含石量条件下土石混合体剪切变形特征的试验研究[J]. 工程地质学报, 2020, 28(5): 951-958. |
[15] | RUILIN H, XIAO L, YU W, et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(2): 255-281. |
[16] | TANG J Y, XU D S, LIU H B. Effect of gravel content on shear behavior of sand-gravel mixture[J]. Rock and Soil Mechanics, 2018, 39(1): 93-102. |
[17] | YANG Z P, YIAN X, LEI X D, et al. Particle discrete element numerical study on factors of shear strength characteristics for soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(1): 39-50. |
[18] |
ZHANG Y S, WU R A, GUO C B, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728-740.
DOI |
[19] | ZHENG B N, DING D Y, ZHANG D, et al. CT scanning and PFC modeling combined 3D method for gravel-bearing slip soil[J]. Journal of Engineering Geology, 2019, 27(3): 569-576. |
[20] | XIA J G, HU R L, QI S W, et al. Large-scale triaxial shear testing of soilrock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2031-2039. |
[21] | ZHONG Z L, TU Y L, HE X Y, et al. Research progress on physical index and strength characteristics of bimsoils[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 1135-1144. |
[22] | HU F, LI Z Q, HU R L, et al. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 766-778. |
[23] | 刘顺青, 蔡国军, 周爱兆, 等. 不同含石率及基覆岩层倾角下土石混合体边坡稳定性分析[J]. 工程科学与技术, 2019, 51(4): 105-115. |
[24] | 夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017, 36(8): 2031-2039. |
[25] | 张敏超, 刘新荣, 王鹏, 等. 不同含石量下泥岩土石混合体剪切特性及细观破坏机制[J]. 土木与环境工程学报(中英文), 2019, 41(6): 17-26. |
[26] | 周中, 刘撞撞, 杨豪. 不同含石量下土石混合体重型击实验研究[J]. 江西理工大学学报, 2019, 40(5): 8-14. |
[27] | 严颖, 赵金凤, 季顺迎. 块石含量和空间分布对土石混合体抗剪强度影响的离散元分析[J]. 工程力学, 2017, 34(6): 146-156. |
[28] | 杨小彬, 侯鑫, 裴艳宇, 等. 大粒径石块分布对土石混合体稳定性的影响[J]. 科学技术与工程, 2020, 20(31): 12962-12967. |
[29] | VALLEJO L E, LOBO-GUERRERO S, SEMINSKY L F, et al. Shear strength of sand-gravel mixtures: laboratory and theoretical analysis[C]// Geo-Congress 2014. Atlanta: American Society of Civil Engineers, 2014: 74-83. |
[30] |
LEE H K, PYO S H. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites[J]. Composites Science and Technology, 2008, 68(2): 387-397.
DOI URL |
[31] |
VALLEJO L E, LOBO-GUERRERO S. The elastic moduli of clays with dispersed oversized particles[J]. Engineering Geology, 2005, 78(1/2): 163-171.
DOI URL |
[32] | 丁小华, 周伟, 罗怀廷, 等. 基于透明土技术的土石混合体压缩变形试验研究[J]. 采矿与安全工程学报, 2021, 38(1): 157-164. |
[33] | 杜修力, 张佩, 金浏. 土石混合体宏观力学性能研究的细观等效分析方法[J]. 工程力学, 2017, 34(10): 44-52. |
[34] | 金磊, 曾亚武. 块石形状对土石混合体力学行为影响的颗粒流模拟[J]. 计算力学学报, 2016, 33(5): 753-759, 790. |
[35] |
ZENG Y W, JIN L, DU X, et al. Refined modeling and movement characteristics analyses of irregularly shaped particles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(4): 388-408.
DOI URL |
[36] |
GRAZIANI A, ROSSINI C, ROTONDA T. Characterization and DEM modeling of shear zones at a large dam foundation[J]. International Journal of Geomechanics, 2012, 12(6): 648-664.
DOI URL |
[37] |
KOZICKI J, TEJCHMAN J, MRÓZ Z. Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM[J]. Granular Matter, 2012, 14(4): 457-468.
DOI URL |
[38] |
LI Y R. Effects of particle shape and size distribution on the shear strength behavior of composite soils[J]. Bulletin of Engineering Geology and the Environment, 2013, 72(3/4): 371-381.
DOI URL |
[39] | 喻江武, 苟志龙, 雷瑜, 等. 基于傅立叶逆变换的土石混合体模型生成研究[J]. 水利水电技术, 2019, 50(4): 7-15. |
[40] | 金磊, 曾亚武, 叶阳, 等. 不规则颗粒及其集合体三维离散元建模方法的改进[J]. 岩土工程学报, 2017, 39(7): 1273-1281. |
[41] | 雷晓丹, 杨忠平, 翟航, 等. 土石混合体块石破碎影响因素的颗粒流数值研究[J]. 工程地质学报, 2020, 28(6): 1193-1204. |
[42] | 杜修力, 张佩, 金浏, 等. 基于分形理论的北京地区砂砾石地层细观建模[J]. 岩石力学与工程学报, 2017, 36(2): 437-445. |
[43] | 陶庆东, 何兆益, 贾颖. 土石混合体路基填料分形特性与压实破碎特征试验研究[J]. 中外公路, 2020, 40(2): 243-248. |
[44] | 蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929. |
[45] | 陈剑, 王全才, 李波. 西藏樟木滑坡特征及成因研究[J]. 自然灾害学报, 2016, 25(2): 103-109. |
[1] | CHEN Jian, CHEN Ruichen, CUI Zhijiu. Research progress on the morphology and sedimentology of long runout landslides [J]. Earth Science Frontiers, 2021, 28(4): 349-360. |
[2] | SUN Qiliang, XIE Xinong, WU Shiguo. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives [J]. Earth Science Frontiers, 2021, 28(2): 258-270. |
[3] | HUANG Xiaolong, WU Zhonghai, LIU Feng, TIAN Tingting, HUANG Xiaojin, ZHANG Duo. Tectonic interpretation of the main paleoseismic landslides and their distribution characteristics in the Chenghai fault zone, Northwest Yunnan [J]. Earth Science Frontiers, 2021, 28(2): 125-139. |
[4] | ZHANG Yongshuang, LIU Xiaoyi, WU Rui’an, GUO Changbao, REN Sanshao. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 94-105. |
[5] | CHEN Jian, CUI Zhijiu, CHEN Ruichen, ZHENG Xinxin. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River [J]. Earth Science Frontiers, 2021, 28(2): 85-93. |
[6] | FAN Xuanmei, DAI Lanxin, ZHONG Yujin, LI Jingjuan, WANG Lansheng. Recent research on the Diexi paleo-landslide: dam and lacustrine deposits upstream of the Minjiang River, Sichuan, China [J]. Earth Science Frontiers, 2021, 28(2): 71-84. |
[7] | YIN Zhiqiang, WEI Gang, QIN Xiaoguang, LI Wenjuan, ZHAO Wuji. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 46-57. |
[8] | BAI Shibiao, CUI Peng, GE Yonggang, WANG Hao. Geochronological analysis of fossil landslides and improvement of dating accuracy [J]. Earth Science Frontiers, 2021, 28(2): 19-34. |
[9] | CHEN Xiaoli, SHAN Xinjian, ZHANG Ling, LIU Chunguo, HAN Nana4, LAN Jian. Quick assessment of earthquake-triggered landslide hazards: a case study of the 2017 MS 7.0 Jiuzhaigou earthquake [J]. Earth Science Frontiers, 2019, 26(2): 312-320. |
[10] | WANG Chi-Hua, GUO Zhao-Cheng, DU Meng-Liang, CHENG Zun-Lan. Model study of predicting rainstorm induced landslide and debris flow at Niumian Gully, the focal area of 20080512 Earthquake. [J]. Earth Science Frontiers, 2012, 19(1): 228-238. |
[11] | WANG Chi-Hua, GUO Zhao-Cheng, DU Meng-Liang, CHENG Zun-Lan. Model study of monitoring and early warning of rainstorm induced landslide and debris flow based on digital landslide technology. [J]. Earth Science Frontiers, 2011, 18(5): 303-309. |
[12] | Liu-Chang-Zheng, CHEN Yue-Long, HU Guang, DIAO Juan, LI Yue, LI Lin-Ye, JI Bing-Yan, HONG Yuan-Kui. Some problems in the study of the genesis of Xigeda Formation. [J]. Earth Science Frontiers, 2011, 18(5): 271-282. |
[13] | XU Ze-Min, LIU Wen-Lian. Some problems in the study of the genesis of Xigeda Formation. [J]. Earth Science Frontiers, 2011, 18(5): 256-270. |
[14] | . Remote sensing interpretation on June 28, 2010 Guanling landslide, Guizhou Province, China. [J]. Earth Science Frontiers, 2011, 18(3): 310-316. |
[15] | YUAN Ren-Mao, TAN Ti-Bin, CHEN Gui-Hua, XU Ti-Wei. Huge landslides occurred at the special places of the coseismic rupture and their mechanism explanation based on the formation model of tectonicgeomorphology: A case study of Donghekou ejection landslide. [J]. Earth Science Frontiers, 2010, 17(5): 243-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||