Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 71-84.DOI: 10.13745/j.esf.sf.2020.9.2
Previous Articles Next Articles
FAN Xuanmei(), DAI Lanxin, ZHONG Yujin, LI Jingjuan, WANG Lansheng
Received:
2020-08-20
Revised:
2020-09-10
Online:
2021-03-25
Published:
2021-04-03
CLC Number:
FAN Xuanmei, DAI Lanxin, ZHONG Yujin, LI Jingjuan, WANG Lansheng. Recent research on the Diexi paleo-landslide: dam and lacustrine deposits upstream of the Minjiang River, Sichuan, China[J]. Earth Science Frontiers, 2021, 28(2): 71-84.
Fig.1 (a) Tectonic map of the Qinghai-Tibet Plateau showing the location of the study area, and (b) geological map of the study area showing the locations of the Diexi paleo-landslide dam and lake upstream of the Minjiang River, Sichuan
Fig.7 Grain size variations in sediment samples collected from the dam (blue square), mid-lake (green square) and lake-end (red square) sections of the Diexi paleo-lake deposit
Fig.12 Longitudinal profile of the Minjiang River around the Diexi paleo-landslide dam, showing the knickpoints (star), steepness indexes (circle), and upstream catchment contribution area
Fig.14 Distribution of the dammed paleo-lakes (adapted from [2]) and prehistoric settlements (adapted from [49]) in the upstream catchment of the Minjiang River
[1] | 王兰生, 杨立铮, 王小群, 等. 岷江叠溪古堰塞湖的发现[J]. 成都理工大学学报(自然科学版), 2005,32(1):1-11. |
[2] | 王兰生, 王小群, 许向宁, 等. 岷江上游近两万年前发生了什么事件?[J]. 地学前缘, 2007,14(4):189-196. |
[3] | 王兰生, 王小群, 许向宁, 等. 岷江叠溪古堰塞湖的研究意义[J]. 第四纪研究, 2012,32(5):998-1010. |
[4] |
ZHAO S Y, CHIGIRA M, WU X Y. Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau[J]. Geomorphology, 2019,338:27-42.
DOI URL |
[5] | FAN X M, YUNUS A P, JANSEN J D, et al. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau’ by Zhao et al. (2019) Geomorphology 338, 27-42[J]. Geomorphology, 2019: 106963. |
[6] | 罗晓康, 殷志强, 杨龙伟. 岷江上游河流阶地发育特征及与古滑坡关系初步分析[J]. 第四纪研究, 2019,39(2):391-398. |
[7] | 杨文光, 朱利东, 郑洪波, 等. 岷江上游第四纪叠溪古堰塞湖的演化[J]. 地质通报, 2008,27(5):605-610. |
[8] | 杨文光, 朱利东, 张岩, 等. 岷江上游茂县古堰塞湖的沉积演化[J]. 海洋地质前沿, 2011,27(5):35-40. |
[9] |
XU H, CHEN J, CUI Z J, et al. Sedimentary facies and depositional processes of the Diexi Ancient Dammed Lake, upper Minjiang River, China[J]. Sedimentary Geology, 2020,398:105583.
DOI URL |
[10] | 许会, 陈剑, 崔之久, 等. 堰塞湖沉积物粒度特征分析:以岷江上游叠溪古堰塞湖为例[J]. 沉积学报, 2019,37(1):51-61. |
[11] | 安卫平, 赵晋泉, 闫小兵, 等. 岷江断裂羌阳桥一带古堰塞湖沉积及构造变形与古地震[J]. 地震地质, 2008,30(4):980-988. |
[12] | 张斌, 王萍, 王建存. 岷江上游堰塞湖沉积中软沉积物变形构造成因讨论[J]. 地震研究, 2011,34(1):67-74. |
[13] |
WANG P, ZHANG B, QIU W L, et al. Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet[J]. Journal of Asian Earth Sciences, 2011,40(4):865-872.
DOI URL |
[14] |
JIANG H C, MAO X, XU H Y, et al. Provenance and earthquake signature of the last deglacial Xinmocun lacustrine sediments at Diexi, east Tibet[J]. Geomorphology, 2014,204:518-531.
DOI URL |
[15] | 沈曼, 王小群, 许峰, 等. 叠溪古堰塞湖地震扰动沉积物特征[J]. 成都理工大学学报(自然科学版), 2014,41(3):369-377. |
[16] |
WEI Y F, WANG X Q, SHENG M, et al. Reproduction of the sedimentary disturbance phenomenon of the Diexi ancient landslide-dammed lake under earthquake[J]. Journal of Mountain Science, 2015,12(5):1181-1188.
DOI URL |
[17] |
XU H Y, JIANG H C, YU S, et al. OSL and pollen concentrate 14C dating of dammed lake sediments at Maoxian, east Tibet, and implications for two historical earthquakes in AD 638 and 952[J]. Quaternary International, 2015,371:290-299.
DOI URL |
[18] |
LIANG L J, JIANG H C. Geochemical composition of the last deglacial lacustrine sediments in east Tibet and implications for provenance, weathering, and earthquake events[J]. Quaternary International, 2017,430:41-51.
DOI URL |
[19] |
ZHONG N, JIANG H C, LI H B, et al. Last deglacial soft-sediment deformation at Shawan on the eastern Tibetan Plateau and implications for deformation processes and seismic magnitudes[J]. Acta Geologica Sinica (English Edition), 2019,93(2):430-450.
DOI URL |
[20] | 钟宁, 蒋汉朝, 李海兵, 等. 岷江上游新磨村湖相沉积物粒度端元反演及其记录的构造和气候事件[J]. 地质学报, 2020,94(3):968-981. |
[21] | 张岩, 朱利东, 杨文光, 等. 青藏高原东缘叠溪海盆地40~30 ka BP高分辨率快速气候变化记录[J]. 地学前缘, 2009,16(5):91-98. |
[22] | 王小群, 王兰生, 沈军辉. 岷江上游叠溪古堰塞湖沉积物粒度特征及环境意义[J]. 工程地质学报, 2010,18(5):677-684. |
[23] | 王小群, 王兰生. 岷江叠溪古堰塞湖沉积物中孢粉特征[J]. 地球科学:中国地质大学学报, 2013,38(5):975-982. |
[24] | WANG X Q, LI Y R, YUAN Y, et al. Palaeoclimate and palaeoseismic events discovered in Diexi barrier lake on the Minjiang river, China[J]. Natural Hazards and Earth System Sciences, 2014,14(8):2069-2078. |
[25] | 张岳桥, 李海龙, 李建. 青藏高原30~40 ka BP暖湿气候事件对川西河谷地质环境的影响[J]. 地球学报, 2016,37(4):481-492. |
[26] |
MA J X, CHEN J, CUI Z J, et al. Sedimentary evidence of outburst deposits induced by the Diexi paleolandslide-dammed lake of the upper Minjiang River in China[J]. Quaternary International, 2018,464:460-481.
DOI URL |
[27] |
LIU W M, CUI P, GE Y G, et al. Paleosols identified by rock magnetic properties indicate dam-outburst events of the Min River, eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018,508:139-147.
DOI URL |
[28] |
CHEN R C, CHEN J, MA J X, et al. Quartz grain surface microtextures of dam-break flood deposits from a landslide-dammed lake: a case study[J]. Sedimentary Geology, 2019,383:238-247.
DOI URL |
[29] | 高翔, 邓起东. 巴颜喀喇断块边界断裂强震活动分析[J]. 地质学报, 2013,87(1):9-19. |
[30] |
DENG B, LIU S G, LIU S, et al. Progressive Indosinian N-S deformation of the Jiaochang structure in the Songpan-Ganzi Fold-belt, western China[J]. PLOS One, 2013,8(10):e76732.
DOI URL |
[31] |
GORUM T, FAN X M, VAN WESTEN C J, et al. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 2011,133(3/4):152-167.
DOI URL |
[32] |
FAN X M, SCARINGI G, XU Q, et al. Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification[J]. Landslides, 2018,15(5):967-983.
DOI URL |
[33] |
FAN X M, SCARINGI G, KORUP O, et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 2019,57(2):421-503.
DOI URL |
[34] |
DUFRESNE A, BÖSMEIER A, BÖSMEIER A . Sedimentology of rock avalanche deposits: case study and review[J]. Earth-Science Reviews, 2016,163:234-259.
DOI URL |
[35] |
FAN X M, DUFRESNE A, SIVA SUBRAMANIAN S, et al. The formation and impact of landslide dams: state of the art[J]. Earth-Science Reviews, 2020,203:103116.
DOI URL |
[36] | 李昶. 不同水库淤积形态对总有机碳、总氮埋藏通量的影响[D]. 上海: 华东师范大学, 2018. |
[37] | 柴贺军, 刘汉超. 一九三三年叠溪地震滑坡堵江事件及其环境效应[J]. 地质灾害与环境保护, 1995,6(1):7-17. |
[38] | 常隆庆. 四川叠溪地震调查记[J]. 地质论评, 1938,3(3):251-293. |
[39] | 闫小兵, 安卫平, 赵晋泉, 等. 叠溪地震遗迹拾零[J]. 山西地震, 2009(3):21-25, 31. |
[40] | 洪时中, 徐吉廷, 王克明. 叠溪地震次生水灾的规模、范围、水文参数与分段特征[J]. 四川地震, 2019(1):5-11. |
[41] |
KORUP O, STROM A L, WEIDINGER J T. Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand[J]. Geomorphology, 2006,78(1/2):3-21.
DOI URL |
[42] |
SCHWANGHART W, SCHERLER D. Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques[J]. Earth Surface Dynamics, 2017,5(4):821-839.
DOI URL |
[43] |
ZHANG F, JIN Z, WEST A J, et al. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake[J]. Science Advances, 2019,5(6): eaav7110.
DOI URL |
[44] |
HOWARTH J D, FITZSIMONS S J, NORRIS R J, et al. Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand[J]. Earth and Planetary Science Letters, 2014,403:340-351.
DOI URL |
[45] | 乔秀夫, 李海兵, 苏德辰. 软沉积物变形构造:地震与古地震记录[M]. 北京: 地质出版社, 2017. |
[46] |
ZOLITSCHKA B, FRANCUS P, OJALA A E K, et al. Varves in lake sediments: a review[J]. Quaternary Science Reviews, 2015,117:1-41.
DOI URL |
[47] |
WU L Z, ZHAO D J, ZHU J D, et al. A late Pleistocene river-damming landslide, Minjiang River, China[J]. Landslides, 2020,17(2):433-444.
DOI URL |
[48] | 朱乃诚. 茂县及岷江上游地区在古蜀文明形成中的重要作用与地位[J]. 四川文物, 2020(1):68-76. |
[49] | 江章华, 何锟宇. 成都平原史前聚落分析[J]. 四川文物, 2016(6):70-78, 83. |
[50] | 李绍先, 刘晓霞. 地震洪水灾害与三星堆古城的毁弃[J]. 绵阳师范学院学报, 2012,31(10):106-110. |
[51] | 万娇. 成都十二桥遗址早期堆积的性质及成因分析[J]. 文物, 2017(12):38-47. |
[52] | 刘兴诗. 成都平原古城群兴废与古气候问题[J]. 四川文物, 1998(4):3-5. |
[53] | 许婧璟, 张志龙, 戴辉. 岷江上游古堰塞湖溃决与成都黏土形成、古蜀文明消亡的联系[J]. 江西建材, 2017(15):2-3. |
[1] | CHEN Yun-Tai. From SumatraAndaman to Tohoku, Japan: Lessons from the great earthquakes and the earthquakegenerated megatsunamis. [J]. Earth Science Frontiers, 20140101, 21(1): 120-131. |
[2] | MO Tian-Feng. Discussion on some important problems in structural geology and tectonics. [J]. Earth Science Frontiers, 20140101, 21(1): 132-149. |
[3] | LIU Yuan-Zheng, MA Jin, MA Wen-Chao. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. [J]. Earth Science Frontiers, 20140101, 21(1): 150-160. |
[4] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[5] | XU Jishan, PENG Jianbing, SUI Wanghua, AN Haibo, LI Zuodong, XU Wenjie, DONG Peijie. Formation mechanism and tectonic implication of Xinyi earth fissures in Tan-Lu fault transition section [J]. Earth Science Frontiers, 2024, 31(3): 470-481. |
[6] | CHENG Qiuming. Long-range effects of mid-ocean ridge dynamics on earthquakes, magmatic activities, and mineralization events in plate subduction zones [J]. Earth Science Frontiers, 2024, 31(1): 1-14. |
[7] | SUN Dong, YANG Tao, CAO Nan, QIN Liang, HU Xiao, WEI Meng, MENG Minghui, ZHANG Wei. Characteristics and mitigation of coseismic geohazards associated with the Luding MS 6.8 earthquake [J]. Earth Science Frontiers, 2023, 30(3): 476-493. |
[8] | CHEN Bo. The clustering feature of time-space distributions of coal mine disasters and earthquake activities in China—an in-depth investigation [J]. Earth Science Frontiers, 2023, 30(2): 548-560. |
[9] | JIA Zhongjia, ZHU Junjiang, OU Xiaolin, ZHANG Shengsheng, HUANG Chang, CHEN Ruixue, ZHANG Shaoyu, LI Sanzhong, JIA Yonggang, LIU Yongjiang. Focal mechanism solutions for global tsunami earthquakes and future tsunami threat to China [J]. Earth Science Frontiers, 2022, 29(5): 203-215. |
[10] | ZENG Zuoxun, CHEN Zhigeng, LU Chengdong, YANG Yu, CHEN Kangli, XIANG Shimin, DAI Qingqin, ZHANG Jun, DENG Yanting, FU Yan, DU Qiujiao, LIU Lilin, YANG Weiran. Earth system science research on earthquake mechanisms: Theory and validation of a new model [J]. Earth Science Frontiers, 2021, 28(6): 263-282. |
[11] | Mikhail M. BUSLOV, Lyudmila P. IMAEVA. Neotectonics of the Altai-Sayan Mountains and reactivation of regional faults controlling seismicity [J]. Earth Science Frontiers, 2021, 28(5): 301-319. |
[12] | SHEN Junfeng, SHEN Xuhui, LI Shengrong, XU Liwei, DU Baisong, WANG Dongli, WANG Shuhao. Relationship between the effects of mineral thermoelectricity and abnormal geoelectricity [J]. Earth Science Frontiers, 2020, 27(5): 207-217. |
[13] | WANG Jie, WU Haibo, LU Xiaofei, LI Xianrui. Geological features of opening-closing tectonics at different spatiotemporal scales [J]. Earth Science Frontiers, 2020, 27(1): 260-269. |
[14] | NIE Zongsheng. Stratigraphic division of the Upper Pleistocene, environmental change and formation of the Yellow River in the Hetao Basin, Inner Mongolia [J]. Earth Science Frontiers, 2019, 26(4): 259-272. |
[15] | CHEN Xiaoli, SHAN Xinjian, ZHANG Ling, LIU Chunguo, HAN Nana4, LAN Jian. Quick assessment of earthquake-triggered landslide hazards: a case study of the 2017 MS 7.0 Jiuzhaigou earthquake [J]. Earth Science Frontiers, 2019, 26(2): 312-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||