Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 301-319.DOI: 10.13745/j.esf.sf.2021.9.9
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• A spacial section on The India-Eurasia Collision and Its Long-Range Effec • Previous Articles Next Articles
Mikhail M. BUSLOV1,2,*(), Lyudmila P. IMAEVA3,4
Received:
2021-08-20
Accepted:
2021-09-03
Online:
2021-09-25
Published:
2021-09-13
Contact:
Mikhail M. BUSLOV
Mikhail M. BUSLOV, Lyudmila P. IMAEVA. Neotectonics of the Altai-Sayan Mountains and reactivation of regional faults controlling seismicity[J]. Earth Science Frontiers, 2021, 28(5): 301-319.
Fig.1 The location of the study area in the southern Siberia of Altai at the junction zone of the Altai and Sayan orogens in the Central Asian Orogenic Belt (CAOB). The Mongol-Okhotsk Orogenic Belt (MOOB) is located to the southeast of this area. KA=Kuznetsk Alatau; KB=Kuznetsk Basin; MB=Minusa Basin; HB= Hubsugul basin, MGL=Mongolian Great Lakes’ Valley.
Fig.4 Schemes of the Late Mesozoic-Cenozoic terrain of the south-eastern part of Gorny 619 Altai over the past 95 Ma (modified after Vetrov et al., 2016)
Fig.6 Neotectonic scheme in the shaded relief (top panel), and geological sections of the Kurai-Chuya basin with the surrounding mountains (modified after Nevedrova et al., 2014; Dobretsov et al., 2016). Red dots indicate the position of aftershocks, large green circles indicate the position of the September 27th, 2003 Altai earthquake (M=7.5) and large white circles indicate the position of large aftershocks (modified after Lunina et al., 2008), yellow dots indicate the position of travertines (modified after Deev et al., 2017; Pozdnyakova et al., 2019).
Fig.8 The scheme shows active and Late Paleozoic faults with the location of large earthquakes’ epicenters with a magnitude M ≥ 5. It also gives information about the analysis of the stress fields and tectonic deformations’ reconstructions results in the zones of active faults (Sankov et al., 1997; Ritz et al., 2003; Cunningham, 2007; Walker et al., 2007; Parfeevets and Sankov, 2010; Imaev et al., 2015; Imaeva et al., 2015). The numbers in the figure indicate the active faults: 1—Charysh-Terekta, 2—Kurai, 3—Shapshal, 4—Sayan-Tuva-Azas-Oka, 5—Tonuol-Tunka, 6—North Sayan, 7—Main Sayan, 8—Est Tonuol, 9—Predaltai, 10—North Khangai, 11—Gobi-Altai, 12—Fuyun, 13—Kuerty, 14—Irtish, 15—Northeast, 16—Chara, 17—Chigiz-Tarbagatay, 18—Barleike-Xiemislai, 19—Dalabute.
[1] | Agatova A.P., Nepop R.K., 2018. Recurrence interval of strong earthquakes in the se Altai, Russia revealed by tree-ring analysis and radiocarbon dating. Geochronometria, 45, 20-33. https://doi.org/10.1515/geochr-2015-0083. |
[2] | Arefieva S. S., Rogozhina E. A., Aptekmana Zh. Ya., Bykovaa V. V. Dorbathb C., 2006. Deep Structure and Tomographic Imaging of Strong Earthquake Source Zones. Izvestiya, Physics of the Solid Earth, 2006, Vol.42, No. 10, pp. 850-863. https://doi.org/10.1134/S1069351306100090. |
[3] | Bachmanov D.M., Kozhurin A.I., Trifonov V.G., 2017. The Active Faults of Eurasia Database. Geodynamics & Tectonophysics 8 (4), 711-736. https://doi:10.5800/GT-2017-8-4-0314. |
[4] | Biagi P.F., Castellana L., Minafra A., Maggipinto G., Maggipinto T., Ermini A., Molchanov O., Khatkevich Y.M., Gordeev E. I., 2006. Groundwater chemical anomalies connected with the Kamchatka earthquake(M=7.1) on March 1992. Natural Hazards and Earth System Sciences, 6, 853-859. https://doi.org/10.5194/nhess-6-853-2006. |
[5] | Bullen M.E., Burbank D.W., Garver J.I., Abdrakhmatov, K Ye., 2001. Late Cenozoic tectonic evolution of the northwestern Tien Shan: new age estimates for the initiation of mountain building. Geological Society of America Bulletin, 113, 1544-1559. |
[6] | Bullen M.E., Burbank D.W., Garver J.I., 2003. Building the northern Tien Shan: integrated thermal, structural and topographic constraints. Journal of Geology, 111, 149-165. |
[7] | Buslov M.M., 2011. Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults. Russian Geology and Geophysics, 52, 5271. https://doi.org/10.1016/j.rgg.2010.12.005. ,2011. |
[8] | Buslov M.M., 2012 Geodynamic nature of the Baikal Rift Zone and its sedimentary filling in the Cretaceous-Cenozoic: the effect of the far-range impact of the Mongolo-Okhotsk and Indo-Eurasian collisions. Russian Geology and Geophysics, 53,955-962. https://doi.org/10.1016/j.rgg.2012.07.010. |
[9] | Buslov M.M., Watanabe T., Fujiwara Y., Iwata K., Smirnova L.V., Saphonova I.Yu., Semakov N.N., Kir’yanova A.P., 2004. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. Journal of Asian Earth Sciences, 23, 655-671. https://doi.org/10.1016/S1367-9120(03)00131-7. |
[10] | Buslov, M.M, De Grave, J., Bataleva, E.A., Batalev, V.Y.., 2007. Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: synthesis of geological, thermochronological and geophysical data. Journal of Asian Earth Sciences, 29, 205-214. https://doi.org/10.1016/j.jseaes.2006.07.001. |
[11] | Buslov M.M, Kokh D. A., De Grave, J. , 2008. Mesozoic-Cenozoic tectonics and geodynamics of Altai, Tien Shan, and Northern Kazakhstan from apatite fission-track data. Russian Geology and Geophysics, 49,648-654. https://doi.org/10.1016/j.rgg.2008.01.006. |
[12] | Buslov M.M., Geng H., Travin A.V., Otgonbaatar D., Kulikova A.V., Ming C., Stijn, G., Semakov N.N., Rubanova E.S., Abildaeva M.A., Voitishek E.E., Trofimova D.A., 2013. Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russian Geology and Geophysics, 54, 1250-1271. https://doi.org/10.1016/j.rgg.2013.09.009 |
[13] |
Buslov M.M., Cai K., 2017. Tectonics and geodynamics of the Altai-Junggar orogen in the Vendian-Paleozoic: Implications for the continental evolution and growth of the Central Asian fold belt. Geodynamics and Tectonophysics, 8, 421-427(in Russian with English abstract). 10.5800/GT-2017-8-3-0252
DOI |
[14] |
Buslov M.M., Cai K., Abildaeva M.A., 2019. Late Paleozoic tectonics of the Junggar-Altai-Sayan Foldbelt. IOP Conference Series: Earth and Environmental Science, 319, 012002. 10.1088/1755-1315/319/1/012002
DOI |
[15] | Chen C.-H., Wang S., Wen S., Yeh T.-K., Lin C.-H., Liu J.-Y., Yen H.-Y., Lin T.-W., 2013. Anomalous Frequency Characteristics of Groundwater Level before Major Earthquakes in Taiwan. Hydrology and Earth System Sciences, 17,1693-1703. https://doi.org/10.5194/hess-17-1693-2013. |
[16] | Console R, Murru M., Catalli F., 2006. Physical and stochastic models of earthquake clustering. Tectonophysics, 417, 141-153. https://doi:10.1016/j.tecto.2005.05.052. |
[17] | Cunnihgham W.D., 2007, Structural and topographic characteristics of restraining bend, Gobi Altai and easternmost Tien Shan. Geological Society, London, Special Publications, 290,219-237. https://doi.org/10.1144/SP290.7. |
[18] | Deev,Е.V., Sokol E.V., Ryapolova Yu.M., Kokh S.N., Rusanov G.G., 2017. Quaternary travertines of the Kurai fault zone (Gorny Altai). Doklady Earth Sciences, 473, 261-265, https://doi.org/10.1134/S1028334X17030023. |
[19] | Deev E.V., Turova I.V., Borodovskiy A.P., Zolnikov I.D., Oleszczak L., 2017. Unknown large ancient earthquakes along the Kurai fault zone (Gorny Altai): new results of palaeoseismological and archaeoseismological studies. International Geology Review, 59(30), 293-310, https://doi.org/10.1080/00206814.2016.1258675. |
[20] | De Grave J., Buslov, M.M., Van den Haute, P., 2007a. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology. Journal of Asian Earth Sciences, 29, 188-204. https://doi.org/doi:10.1016/j.jseaes.2006.03.001. |
[21] | De Grave J., Van den Haute P., 2002. Denudation and cooling of the Lake Teletskoye Region in the Altai Mountains (South Siberia) as revealed by apatite fission-track convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology. Journal of Asian Earth Sciences, 29, 188-204. https://doi.org/10.1016/S0040- 1951(02)00051-3. |
[22] | De Grave J., Buslov, M.M., Van denhaute, P., Dehandschutter, B., Delvaux, D. , 2007. Meso-Cenozoic Evolution of Mountain Range - Intramontane Basin Systems in the Southern Siberian Altai Mountains by Apatite Fission-Track Thermochronology, in: Thrust Belts and Foreland Basins. From Fold Kinematics to Hydrocarbon Systems, edited by: Lacombe, O., Lavé, J., Roure, F., Vergés, J., Springer, Berlin, Heidelberg, Germany, 457-470. |
[23] | De Grave J., Van denhaute, P., Buslov, M.M., Dehandschutter, B., Glorie, S. , 2008. Apatite fission-track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region. Radiation Measurements, 43, 38-42, https://doi.org/10.1016/j.radmeas.2007.11.068. |
[24] | De Grave J., Buslov M.M., Van denhaute P., Metcalf J., Dehandschutter B., McWilliams M.O., 2009. Multi-method chronometry of the Teletskoye graben and its basement, Siberian Altai Mountains: new insights on its thermo-tectonic evolution. Geological Society, Special Publications, London, 324, 237-259. https://doi.org/10.1144/SP324.17. |
[25] | De Grave J., Glorie S., Zhimulev F.I., Buslov M.M., Elburg M., Vanhaecke F., Van den Haute P., 2011. Emplacement and exhumation of the Kuznetsk-Alatau basement (Siberia): implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova, 23, 248-256. https://doi.org/10.1111/j.1365-3121.2011.01006.x. |
[26] | De Grave J., Glorie, S., Ryabinin, A., Zhimulev, F., Buslov, M.M., Izmer, A., Elburg, M., Vanhaecke, F., Van den Haute, P., 2012. Late palaeozoic and meso-Cenozoic tectonic evolution of the southern kyrgyz Tien Shan: constraints from multimethod thermochronology in the Trans-Alai, Turkestan-Alai section and the Southeastern ferghana Basin. Journal of Asian Earth Sciences, 44, 149-168. https://doi.org/10.1016/j.jseaes.2011.04.019. |
[27] | De Grave J., Glorie, S., Buslov, M.M., Stockli, D.F., McWilliams, M.O, Batalev, V., Van den Haute, P., , 2013. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Research, 23,998-1020. https://doi.org/10.1016/j.gr.2012.06.014. |
[28] | De Grave J., De Pelsmaeker, E., Zhimulev, F.I., Glorie, S., Buslov, M.M., Van den Haute, P., 2014. Meso-Cenozoic building of the northern Central Asian Orogenic Belt: thermotectonic history of the Tuva region. Tectonophysics, 621, 44-59. https://doi.org/10.1016/j.tecto.2014.01.039. |
[29] | Dehandschutter B., Vysotsky E., Delvaux D., Klerkx J., Buslov M.M., Seleznev V.S., De Batist M., 2002. Structural evolution of the Teletsk graben (Russian Altai). Tectonophysics, 351, 139167. https://doi.org/10.1016/S0040-1951(02)00129-4. |
[30] | Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnichenko A., Ruzhich V., San’kov V., 1997. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282, 1-38. |
[31] | Delvaux D., Cloetingh S., Beekman F., Sokoutis D., Burov E., Buslov M.M., Abdrakhmatov K.E., 2013. Basin evolution in a folding lithosphere: Altai-Sayan and Tien Shan belts in Central Asia. Tectonophysics, 602, 194222. https://doi.org/10.1016/j.tecto.2013.01.010. |
[32] | Deroin J.-P., Buslov M.M., 2017. Geomorphic study of seismically active areas using remote sensing data. Case of the Gorny Altai (Siberia) affected by the 2003 Altai earthquake. Bulletin de la Societe geologique de France, 188, 11. https://doi:10.1051/bsgf/2017012. |
[33] | De Pelsmaeker E., Glorie, S., Buslov, M. M., Zhimulev, F. I., Poujol, M., Korobkin, V. V., Vanhaecke, F., Vetrov, E. V., De Grave, J., 2015. Late-Paleozoic emplacement and Meso-Cenozoic reactivationof the southern Kazakhstan granitoid basement. Tectonophysics, 662, 416-433. https://doi.org/10.1016/j.tecto.2015.06.014. |
[34] | Dobretsov N.L., Buslov M.M., 2007. Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russian Geology and Geophysics, 48,71-82. https://doi.org/10.1016/j.rgg.2006.12.006. |
[35] | Dobretsov N.L., Buslov M.M., Delvaux D., Berzin N.A., Ermikov V.D., 1996. Meso- and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plumes. International Geology Review, 40, 430-466. |
[36] | Dobretsov N.L., Buslov M.M., De Grave, J., Sklyarov, E.V., 2013. Interplay of magmatism, sedimentation, and collision processes in the Siberian craton and the flanking orogens. Russian Geology and Geophysics, 54, 1135-1149. https://doi.org/10.1016/j.rgg.2013.09.001. |
[37] | Dobretsov N.L., Buslov M.M., Vasilevsky A.N., Vetrov E.V., Nevedrova N.N., 2016. Cenozoic history of topography in southeastern Gorny Altai: thermochronology, resistivity and gravity records. Russian Geology and Geophysics, 57, 15251534. https://doi.org/10.1016/j.rgg.2016.10.001. |
[38] | Dutova E.M., Kats V.E., Shitov A.V., Surnin A.I., Molokov V.A., 2020. Helium in groundwaters of the Altai Republic. Geodynamics & Tectonophysics, 11, 651-663 (in Russian with English abstract). https://doi.org/10.5800/GT-2020-11-3-0497. |
[39] | Fan J., Jiang H., Shi W., Guo Q., Zhang S., Wei X., Xu H., Zhong N., Huang S, Chang, X., Xia, J. ., 2020. A 450-year lacustrine record of recurrent seismic activities around the Fuyun fault, Altay Mountains, Northwest China. Quaternary International, 30, 7588. https://doi.org/10.1016/j.quaint.2020.08.051. |
[40] | Glorie S., De Grave, J. , 2016. Exhuming the Meso-Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan: a review based on low-temperature thermochronology. Geoscience Frontiers, 7, 155-170. https://doi.org/10.1016/j.gsf.2015.04.003. |
[41] | German V.I., 2006. Unified scaling theory for distributions of temporal and spatial characteristics in seismology. Tectonophysics, 424(3-4), 167-175. https://doi:10.18411/svfu1230915-39. |
[42] | Glorie S., De Grave, J., Buslov, M.M., Elburg, M.A., Stockli, D.F., Gerdes, A., Van den Haute, P. , 2010. Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): from emplacement to exhumation. Journal of Asian Earth Sciences, 38, 131-146. https://doi.org/10.1016/j.jseaes.2009.12.009. |
[43] | Glorie S., Buslov M.M., Izmer, A., Fournier-Carrie A., Batalev, V.Y, Vanhaecke, F, Elburg, M.A., Van den Haute P., 2011a. The thermo-tectonic history of the Song-Kul Plateau, Kyrgyz Tien Shan: constraints by apatite and titanite ther-mochronometry and zircon U/Pb dating. Gondwana Research, 20, 745-763. https://doi.org/10.1029/2011TC002949. |
[44] | Glorie S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Izmer, A., Elburg, M.A., Ryabinin, A.B., Vandoorne, W., Vanhaeke, F., Van den Haute, P. , 2011b. Formation and Palaeozoic evolution of the Gorny-Altai-Altai-Mongolia suture zone (Siberia): zircon U/Pb constraints on its igneous record. Gondwana Research, 20,465-484. https://doi.org/10.1016/j.gr.2011.03.003. |
[45] | Glorie S., De Grave, J., Delvaux, D., Buslov, M.M., Zhimulev, F.I., Vanhaecke, F., Elburg M.A., Van den Haute P., 2012a. Tectonic history of the Irtysh shear zone (NE Kazakhstan): new constraints from zircon U/Pb dating, apatite fission track dating and palaeostress analysis. Journal of Asian Earth Sciences, 45,138-149. https://doi.org/10.1016/j.jseaes.2011.09.024. |
[46] | Glorie S., De Grave, J., Zhimulev, F.I., Buslov, M.M., Elburg, M.A, Van den Haute, P., 2012b. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: insights from multi-method thermochronometry. Tectonophysics,544-545, 7592. https://doi.org/10.1016/j.tecto.2012.03.035. |
[47] | Gillespie J., Glorie S., Xiao W., Zhang Z., Collins A.S., Evans V, McInnes, B., De Grave, J., 2017. Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: insights from low-temperature thermochronology. Gondwana Research, 43,107-122. https://doi.org/10.1016/j.gr.2015.10.004. |
[48] | Goldin S.V., Kuchai O.A., 2007. Seismic strain in the Altai-Sayan active seismic area and elements of collisional geodynamics. Russian Geology and Geophysics, 48, 537-557. |
[49] | Gonzalez A., Vazquez-Prada, M., Gomez, J.B., Pacheco A.F., 2006. A way to synchronize models with seismic faults for earthquake forecasting: insights from a simple stochastic model. Tectonophysics, 424(3-4), 319-334. https://doi: 10.1016/j.tecto.2006.03.039. |
[50] | Jolivet M., Ritz, J.-F, Vassallo R., Larroque, C, Braucher, R, Todbileg, M., Chauvet, A, Sue, C, Arnaud, N., De Vicente, R, Arzhanikova, A., Arzhanikov S., 2007. Mongolial summits: an uplifted, flat, old but still preserved erosion surface. Geology, 35, 871-874. https://doi.org/10.1130/G23758A.1. |
[51] | Jolivet M., De Boisgrollier, Т, Petit, C, Fournier, M., Sankov V.A., Ringenbach, J.-C, Byzov, L, Miroshnichenko, A.L, Kovalenko, S.N., Anisimova S.V., 2009. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology. Tectonics, 28, TC3008. https://doi.org/10.1029/2008TC002404. |
[52] | Jolivet M., Dominguez S., Charreau J., Chen Y., Li Y., Wang Q., 2010. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation. Tectonics, 29, T-601930. https://doi.org/10.1029/2010TC002712. |
[53] | Imaev V.S., Imaeva L.P., Smekalin, О.P., Koz’min B.M., Grib N.N., Chipizubov А.V., 2015. A seismotectonic map of Eastern Siberia. Geodynamics & Tectonophysics, 6, 275-287. https://doi:10.5800/GT-2015-6-3-0182. |
[54] | Imaeva L.P., Imaev V.S., Smekalin O.P., Grib N.N., 2015. A Seismotectonic Zonation Map of Eastern Siberia: New Principles and Methods of Mapping. Open Journal of Earthquake Research, 4, 114. https://doi.org/10.5800/GT-2015-6-3-0182. |
[55] | Imaeva L.P., Imaev V.S., Koz’min B.M., 2019. Dynamics of the Zones of Strong Earthquake Epicenters in the Arctic-Asian Seismic Belt. Geosciences, 9(4), 168. https://doi:10.3390/geosciences9040168. |
[56] | Kim Y.-S., Choi J.-H., 2007. Fault propagation, displacement and damage zones. Conference commemorating the 1957 Gobi-Altay earthquake. Mongolia,Ulaanbaatar, 2007 81-86. |
[57] | Klinger Y., Etchebes M., Tapponnier P., Narteau C., 2011. Characteristic slip for five great earthquakes along the Fuyun fault in China. Nature Geoscience, 4(6), 389-392. https://doi.org/10.1038/ngeo1158. |
[58] | Le Pichon X., Fournier M., Jolivet L., 1992. Kinematics, topography, shortening and extrusion in the India-Eurasia collision. Tectonics, 11, 1085-1098. https://doi:10.1029/92TC01566. |
[59] | Lopatin M.N., Semenov R.M., 2018. Variations of Dissolved Helium and Radon Caused by Earthquakes in Groundwater of the Southern Cis-Baikal Region. Doklady Earth Sciences, 481, 1037-1039. https://doi.org/10.1134/S1028334X18080160. . |
[60] | Lunina O.V., 2016, The digital map of the Pliocene-Quaternary crustal faults in the southern East Siberia and the adja-cent Northern Mongolia. Geodynamics & Tectonophysics, 7(3), 407-434 (in Russian). https://doi.org/10.5800/GT-2016-7-3-0215. |
[61] | Lunina O.V., Gladkov A.S., Novikov I.S., Agatova A.R., Vysotskii E.M., Emanov A.A., 2008. Geometry of the fault zone of the 2003 Ms=7.5 Chuya earthquake and associated stress fields, Gorny Altai. Tectonophysics, 453,276-294. https://doi.org/10.1016/j.tecto.2007.10.010. |
[62] | Mazzotti, St., 2007. Geodynamic models for earthquake studies in Intraplate North America. In.: Continental intraplate earthquakes: science, hazard, and policy issues. Eds. S. Stein, St. Mazzotti. Geolog. Soc. of America.Boulder, Colorado. Special Paper, 425, 17-33. |
[63] | Molnar P., Tapponnier P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189, 419-426. https://doi.org/10.1126/science.189.4201.419. |
[64] | Nepop R.K., Agatova A.R., 2008. Estimating magnitudes of prehistoric earthquakes from landslide data: first experience in southeastern Altai. Russian Geology and Geophysics, 49, 144-151. https://doi.org/10.1016/j.rgg.2007.06.013. |
[65] | Novikov I.S., Emanov A.A., Leskova E.V., Batalev V.Yu., Rybin A.K., Bataleva E.A., 2008. The system of neotectonic faults in southeastern Altai: orientations and geometry of motion. Russian Geology and Geophysics, 49, 859-867. https://doi.org/10.1016/j.rgg.2008.04.005. |
[66] | Nikonov A.A., Shvarev S.V., 2006. New data on seismotectonics and seismicity of Gornyi Altai. Doklady Earth Sciences, 409,697-700. https://doi.org/10.1134/S1028334X06050035. |
[67] | Nissen E., Emmerson B., Funning G., Mistrukov A., Parsons B., Robinson D., Rogozhin E., Wright T., 2007. Combining InSAR and seismology to study the 2003 Siberian Altai earthquakes - dextral strike-slip and anticlockwise rotations in the northern India-Eurasia collision zone. Geophysical Journal International, 169, 216-232. https://doi.org/10.1111/j.1365-246X.2006.03286.x. |
[68] | Radziminovich N.A., Bayar G., Miroshnichenko A.I., Demberel S., Ulziibat M., Ganzorig D., Lukhnev A.V., 2016. Focal mechanisms of earthquakes and stress field of the crust in Mongolia and its surroundings. Geodynamics & Tectonophysics, 7(1), 23-38. https://doi.org/10.5800/GT-2016-7-1-0195.https://doi.org/10.5800/GT-2016-7-1-0195. |
[69] | Papazachos B.C., Papaioannou Ch.A, Scordilis, E.M., Papazachos, C.B., Karakaisis, G.F., 2008. A forward test of the decelerating-accelerating seismic strain model to western south and central America. Tectonophysics, 454, 36-43. https://doi:10.1016/j.tecto.2008.03.012. |
[70] | Parfeevets A.V., Sankov V.A., 2010. Late Cenozoic fields of the tectonic stresses in Western and Central Mongolia. Izvestiya, Physics of the Solid Earth, 46, 367-378. https://doi.org/10.1134/S1069351310050010. |
[71] | Rogozhin E.A., Ovsyuchenko A.N., Marakhanov A.V., Ushanova E.A., 2007. Tectonic position and geological manifestations of the Altai earthquake. Geotektonika, 41, 87-104. https://doi:10.1134/S001685210702001X. |
[72] | Pozdnyakova N.I., Deev E.V., Dublyansky Yu. V., Sokol E.V., Kokh S.N., Turova I.V., Rusanov G.G., 2019. Travertines of the southeastern part of Gorny Altai: relationship with faults and paleoearthquakes, in: Proceedings of the international conference dedicated to the 15th anniversary of the establishment of CAIAG on Remote and ground-based research of the Earth in Central Asia., Bishkek, Kyrgyzstan, September 17-18, 5963. |
[73] | Ritz J.-F., Bourles D., Brown E. T., Carretier S., Chery, J., Enhtuvshin B., Galsan P., Finkel R.C., Hanks T.C., Kendrick K.J., Philip H., Raisbeck G., Schlupp A., Schwartz D.P., Yiou F., 2003. Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with 10Be dates. Journal of geophysical research, 108, 21-62. https://doi.org/10.1029/2001JB000553. |
[74] | Rogozhin E.A., Ovsyuchenko A.N., Marahanov A.V., Ushanova E.A., 2007. Tectonic setting and geological manifestations of the 2003 Altai earthquake. Geotectonics, 47, 87-104. https://doi.org/10.1134/S0016852113050051. |
[75] | Rogozhin E.A., Ovsyuchenko A.N., Marahanov A.V., 2008. Major earthquakes of the southern Gorny Altai in the Holocene. Izvestiya. Physics Solid Earth, 44, 469-486. https://doi.org/10.1134/S1069351308060037. |
[76] | Sankov V.A., Miroshnichenko A.I., Levi K.G., Lukhnev A.V., Melnikov A.I., Delvaux D., 1997. Cenozoic tectonic stress field evolution in the Baikal Rift Zone. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 21, 435-455. |
[77] | Sankov V.A., Parfeevets A.V., 2020. The Cenozoic crustal stress of Mongolia according to geological and structural data (review). Geodynamics & Tectonophysics, 11(4), 722-742 (in Russian with English abstract). https://doi.org/10.5800/GT-2020-11-4-0503. |
[78] | Semenov, R.M., Kashkovskii V.V., Lopatin M.N., 2017. Hydrogeochemical Earthquake Precursor in the Southern Baikal Region. Russian Geology and Geophysics, 58, 1553-1560. https://doi.org/10.1016/j.rgg.2017.11.015. |
[79] | Seminsky, K.Zh., 1990, General regularities of dynamics of structure formation in the large shear zones. Geologiya i Geofizika (Russian Geology and Geophysics), 4, 14-23 (in Russian). |
[80] | Seminsky, K.Zh., 2012. Internal structure of fault zones: spatial and temporal evolution studies on clay models. Geodynamics & Tectonophysics, 3(3), 183-194. https://doi:10.5800/GT-2012-3-3-0070. |
[81] | Seminsky K.Zh., Bobrov A.A., 2009. Radon activity of faults (western Baikal and southern Angara areas). Russian Geology and Geophysics, 50(8), 682-692. http://dx.doi.org/10.1016/j.rgg.2008.12.010. |
[82] | Seminsky K.Z., Tugarina M.A., 2011. Underground hydrosphere in the western shoulder of the Baikal rift: Results of hydrogeological research in the Bayandai settlement-Krestovskii cape profile. Doklady Earth Sciences, 439, 1079-1083. https://doi.org/10.1134/S1028334X11080289. |
[83] | Semisky K. Zh., Bobrov A.A., 2013. The first results of studies of temporary variations in soilradon activity of faults in Western Pribaikalie. Geodynamics & Tectonophysics, 4(1), 112. http://dx.doi.org/10.5800/GT-2013-4-1-0088 |
[84] | Sherman S.I., 1992. Faults and tectonic stresses of the Baikal rift zon. Tectonophysics, 208(13), 297-307. |
[85] | Sherman S.I., 2012. Destruction of the lithosphere: Fault block divisibility and its tectonophysical regularities. Geodynamics & Tectonophysics, 3(4), 315-344. https://doi.org/10.5800/GT2012340077. |
[86] | Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 1999. Destructive zones and fault-block structures of Central Asia. Pacific Geology, 18(2), 41-53. |
[87] | Sherman S.I., Dem’yanovich V.M., Lysak S.V., 2004. Active faults, seismicity and fracturing in thelithosphere of the Baikal rift system. Tectonophysics, 380(34), 261-272. https://doi.org/10.5800/GT-2010-1-1-0003. |
[88] | Sobel E.R., Oskin M., Burbank D., Mikolaichuk A., 2006. Exhumation of basementcored uplifts: example of the Kyrgyz Range quantified with apatite fission track thermochronology. Tectonics, 25, 117. https://doi.org/10.1029/2005TC001809. |
[89] | Sherman S.I., Lysak S.V., Gorbunova E.A., 2012. A tectonophysical model of the Baikal seismic zone: testing and implications for medium-term earthquake prediction. Russian Geology and Geophysics, 53(4), 392-405. https://doi.org/10.1016/j.rgg.2012.03.003. |
[90] | Scholz C.H., 2002. The mechanics of earthguakes and faulting. Cambridge Univ. Press, New York, 439. |
[91] | Tatevossian R.E., Rogozhin E.A., Arefiev S.S., Ovsyuchenko A.N., 2009. Earthquake intensity assessment based on environmental effects: principles and case studies. Geological Society, London, Special Publications, 316, 7391. https://doi.org/10.1144/SP316.5. |
[92] | Thomas J.C., Lanza R., Kazansky A., Zykin V., Semakov N., Mitrokhin D., Delvaux D., 2002. Paleomagnetic study of Cenozoic sediments from the Zaisan basin (SE Kazakhstan) and the Chuya depression (Siberian Altai): tectonic implications for central Asia. Tectonophysics, 351, 119-137. https://doi.org/10.1016/S0040-1951(02)00128-2. |
[93] | Trifonov V.G., 1985. Features of the development of active faults. Geotektonika (Geotectonics), 2, 16-26 (in Russian). |
[94] | Trifonov V.G., 2004. Active faults in Eurasia: general remarks. Tectonophysics 380 (3-4), 123-130. https://doi.org/10.1016/j.tecto.2003.09.017. |
[95] | Trifonov V.G., Machette M.N., 1993. The World Map of Major Active Faults Project. Annali di Geofisica, 36(3-4), 225-236. |
[96] | Trifonov V.G., Kozhurin A.I., 2010. Study of active faults: Theoretical and applied implications. Geotectonics 44(6), 510-528. https://doi.org/10.1134/S0016852110060051. |
[97] | Trifonov V.G., Sokolov S.Yu., 2014. Late Cenozoic tectonic uplift producing mountain building in comparison with mantle structure in the Alpine-Himalayan Belt. Intern. J. Geosciences, 5, 497-518. http://dx.doi.org/.doi 10.4236/ijg.2014.55047. |
[98] | Trifonov V.G., Ivanova T.P., Bachmanov D.M., 2012. Recent mountain building in geodynamic evolution of the Central Alpine-Himalayan Belt. Geotectonics, 46(5), 315-332. |
[99] | Trifonov V.G., 2013, Cyclicity of late Holocene seismicity in the Alpine-Himalayan Belt. Geotectonics, 2013, 47(6), 418-430. |
[100] | Vassallo R., Jolivet M., Ritz, J.F, Braucher R., Larroque C., Sue C., Todbileg M., Javkhlanbold D., 2007. Uplift age and rates of the Gurvan Bogd system (Gobi’ Altay) by apatite fission track analysis. Earth and Planetary Science Letters, 259, 333-346. https://doi.org/10.1016/j.epsl.2007.04.047. |
[101] | Vetrov E.V., Buslov M.M., De Grave, J., 2016. Evolution of tectonic events and topography in southeastern Gorny Altai in the Late Mesozoic-Cenozoic (data from apatite fission track thermochronology). Russian Geology and Geophysics, 57, 81-95. http://doi.org/10.1016/j.rgg.201.0.006,617. |
[102] | Yin A., 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488, 293-325. https://doi.org/10.1016/j.tecto.2009.06.002. |
[103] | Yuan W.M., Carter A., Dong J.Q., Bao Z.K., An Y.C., Guo Z.J., 2006. Mesozoic-tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: new constraints from apatite fission track data. Tectonophysics, 412, 183-193. https://doi.org/10.1016/j.tecto.2005.09.007. |
[104] | Ulomov V.I., Shumilina L.S., 1999. The Set of General Seismic Zonation Maps of the Russian Federation-OSR-97. Scale 1∶8000000. Explanatory Note. UIPE RAS, Moscow, 57 (in Russian). |
[105] | Walker R.T., Nissen E., Molor E., Bayasgalan A., 2007. Reinterpretation of the active faulting in central Mongolia. Geology, 35,759-762. https://doi.org/10.1130/G23716A.1 |
[1] | WANG Ping, WANG Huiying, HU Gang, QIN Jintang, LI Cuiping. A preliminary study on the development of dammed paleolakes in the Yarlung Tsangpo River basin, southeastern Tibet [J]. Earth Science Frontiers, 2021, 28(2): 35-45. |
[2] | ZHANG Yongshuang, LIU Xiaoyi, WU Rui’an, GUO Changbao, REN Sanshao. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 94-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||