Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 261-272.DOI: 10.13745/j.esf.sf.2020.5.24
Previous Articles Next Articles
HU Zongquan1,2,3(), WANG Ruyue1,2,3,*(
), LIU Zhongbao1, LIU Guangxiang1, FENG Dongjun1, YANG Zhenheng4, WANG Pengwei1
Received:
2019-12-05
Revised:
2020-05-19
Online:
2021-01-25
Published:
2021-01-28
Contact:
WANG Ruyue
CLC Number:
HU Zongquan, WANG Ruyue, LIU Zhongbao, LIU Guangxiang, FENG Dongjun, YANG Zhenheng, WANG Pengwei. Source-reservoir characteristics and coupling evaluations for the Lower Jurassic lacustrine shale gas reservoir in the Sichuan Basin[J]. Earth Science Frontiers, 2021, 28(1): 261-272.
岩性 | 孔隙类型 | 孔隙载体 | 孔隙分布 | 孔隙形态 | 孔隙发育程度 |
---|---|---|---|---|---|
页岩 | 有机孔 | 迁移有机质(固体沥青) | 固体沥青内部 | 球状为主 | 较高 |
原地有机质(生物碎屑等) | 有机质内部、边缘 | 不规则状 | 低 | ||
无机孔 | 无机矿物 | 黏土及碎屑矿物颗粒缘及晶间 | 线状、三角形、不规则状 | 高 | |
碳酸盐等不稳定矿物内部、边缘 | 针孔状、不规则状 | 较低 | |||
粉砂质碎屑粒间、边缘 | 针孔状 | 低 | |||
灰岩 | 有机孔 | 迁移有机质 | 固体沥青内部 | 球状为主 | 低 |
无机孔 | 无机矿物 | 碳酸盐矿物粒间 | 不规则状 | 低 | |
碳酸盐矿物粒内 | 针孔状、不规则状、线状解理 | 中等 |
Table 1 Macropore types and characteristics of the Da’anzhai Member
岩性 | 孔隙类型 | 孔隙载体 | 孔隙分布 | 孔隙形态 | 孔隙发育程度 |
---|---|---|---|---|---|
页岩 | 有机孔 | 迁移有机质(固体沥青) | 固体沥青内部 | 球状为主 | 较高 |
原地有机质(生物碎屑等) | 有机质内部、边缘 | 不规则状 | 低 | ||
无机孔 | 无机矿物 | 黏土及碎屑矿物颗粒缘及晶间 | 线状、三角形、不规则状 | 高 | |
碳酸盐等不稳定矿物内部、边缘 | 针孔状、不规则状 | 较低 | |||
粉砂质碎屑粒间、边缘 | 针孔状 | 低 | |||
灰岩 | 有机孔 | 迁移有机质 | 固体沥青内部 | 球状为主 | 低 |
无机孔 | 无机矿物 | 碳酸盐矿物粒间 | 不规则状 | 低 | |
碳酸盐矿物粒内 | 针孔状、不规则状、线状解理 | 中等 |
[1] | 胡宗全, 杜伟, 彭勇民, 等. 页岩微观孔隙特征及源-储关系: 以川东南地区五峰组—龙马溪组为例[J]. 石油与天然气地质, 2015, 36(6):1001-1008. |
[2] | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653. |
[3] | 胡宗全, 杜伟, 刘忠宝, 等. 页岩气源储耦合机理及其应用[M]. 北京: 地质出版社, 2018. |
[4] | 孙焕泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(5):569-575. |
[5] | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3):451-458. |
[6] | 郭旭升, 胡东风, 李宇平, 等. 海相和湖相页岩气富集机理分析与思考: 以四川盆地龙马溪组和自流井组大安寨段为例[J]. 地学前缘, 2016, 23(2):18-28. |
[7] | 郭彤楼, 李宇平, 魏志红. 四川盆地元坝地区自流井组页岩气成藏条件[J]. 天然气地球科学, 2011, 22(1):1-7. |
[8] | 何发岐, 朱彤. 陆相页岩气突破和建产的有利目标: 以四川盆地下侏罗统为例[J]. 石油实验地质, 2012, 34(3):246-251. |
[9] | 周德华, 焦方正, 郭旭升, 等. 川东南涪陵地区下侏罗统页岩油气地质特征[J]. 石油与天然气地质, 2013, 34(4):450-454. |
[10] | 王香增. 延长石油集团非常规天然气勘探开发进展[J]. 石油学报, 2016, 37(1):137-144. |
[11] | 朱彤, 胡宗全, 刘忠宝, 等. 四川盆地湖相页岩气源-储配置类型及评价[J]. 石油与天然气地质, 2018, 39(6):1146-1153. |
[12] | 魏祥峰, 黄静, 李宇平, 等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质, 2014, 41(3):970-981. |
[13] | 郑荣才, 何龙, 梁西文, 等. 川东地区下侏罗统大安寨段页岩气(油)成藏条件[J]. 天然气工业, 2013, 33(12):30-40. |
[14] |
LI Y, FENG Y, LIU H, et al. Geological characteristics and resource potential of lacustrine shale gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2013, 40(4):454-460.
DOI URL |
[15] |
XU Q, LIU B, MA Y, et al. Controlling factors and dynamical formation models of lacustrine organic matter accumulation for the Jurassic Da’anzhai Member in the central Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2017, 86:1391-1405.
DOI URL |
[16] |
PANG Z, TAO S, ZHANG Q, et al. Reservoir micro structure of Da’anzhai Member of Jurassic and its petroleum significance in Central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(1):68-78.
DOI URL |
[17] | 刘忠宝, 刘光祥, 胡宗全, 等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义: 以四川盆地中下侏罗统为例[J]. 天然气工业, 2019, 39(12):10-21. |
[18] | 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2):8-17. |
[19] | 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造-改造”评价思路[J]. 天然气地球科学, 2017, 28(5):724-733. |
[20] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
DOI URL |
[21] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.
DOI URL |
[22] |
CARDOTT B J, LANDIS C R, CURTIS M E. Post-oil solid bitumen network in the Woodford Shale, USA: a potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139:106-113.
DOI URL |
[23] |
TANG X, ZHANG J, JIN Z, et al. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin[J]. Marine and Petroleum Geology, 2015, 64:165-172.
DOI URL |
[24] | 徐旭辉, 郑伦举, 马中良. 泥页岩中有机质的赋存形态与油气形成[J]. 石油实验地质, 2016, 38(4):423-428. |
[25] | 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1):23-30. |
[26] | 杨超, 张金川, 李婉君, 等. 辽河坳陷沙三、沙四段泥页岩微观孔隙特征及其成藏意义[J]. 石油与天然气地质, 2014, 35(2):286-294. |
[27] | 王香增, 范柏江, 张丽霞, 等. 陆相页岩气的储集空间特征及赋存过程: 以鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例[J]. 石油与天然气地质, 2015, 36(4):651-658. |
[28] | 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016, 37(6):799-808. |
[29] | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1):1-10. |
[30] | 何龙. 涪陵地区大安寨段页岩气裂缝特征及分布规律[D]. 成都: 成都理工大学, 2014. |
[31] | 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比: 以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39(4):631-640. |
[32] | 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2):126-134. |
[33] | 张士万, 孟志勇, 郭战峰, 等. 涪陵地区龙马溪组页岩储层特征及其发育主控因素[J]. 天然气工业, 2014, 34(12):16-24. |
[34] |
LONG S, PENG Y, LIU H, et al. Micro-characteristics of the shale in the first member of Silurian Longmaxi Formation in Southeastern Sichuan Basin, China[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9):6662-6669.
DOI URL |
[35] |
YANG R, HE S, YI J, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70:27-45.
DOI URL |
[36] | WANG R, HU Z, SUN C, et al. Comparative analysis of shale reservoir characteristics in the Wufeng-Longmaxi (O3w-S1l) and Niutitang (C-1n) Formations: a case study of the Wells JY1 and TX1 in southeastern Sichuan Basin and its periphery, SW China[J]. Interpretation, 2018, 6(4): SN31-SN45. |
[37] |
YANG C, ZHANG J, TANG X, et al. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China[J]. International Journal of Coal Geology, 2017, 171:76-92.
DOI URL |
[38] | XU Q, LIU B, MA Y, et al. Geological and geochemical characterization of lacustrine shale: a case study of the Jurassic Da’anzhai member shale in the central Sichuan Basin, southwest China[J]. Journal of Natural Gas Science and Engineering, 2017, 47:126-139. |
[39] |
LI T, JIANG Z, LI Z, et al. Continental shale pore structure characteristics and their controlling factors: a case study from the lower third member of the Shahejie Formation, Zhanhua Sag, Eastern China[J]. Journal of Natural Gas Science and Engineering, 2017, 45:670-692.
DOI URL |
[1] | LIU Yuan-Zheng, MA Jin, MA Wen-Chao. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. [J]. Earth Science Frontiers, 20140101, 21(1): 150-160. |
[2] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[3] | ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures [J]. Earth Science Frontiers, 2024, 31(6): 196-203. |
[4] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[5] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[6] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[7] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[8] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[9] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[10] | YIN Shuai, ZHANG Ziyang, ZHANG Xingxing, WANG Jingchen, HU Wei, DING Wenlong, LI Hu. Fracture development mode in fan delta front unconventional tight oil reservoirs: A case study of Paleogene He-3 in southeastern Biyang Depression [J]. Earth Science Frontiers, 2024, 31(5): 139-155. |
[11] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[12] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[13] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[14] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[15] | ZHAO Shengxian, LI Bo, CHEN Xin, LIU Wenping, ZHANG Chenglin, JI Chunhai, LIU Yongyang, LIU Dongchen, CAO lieyan, CHEN Yulong, LI Jiajun, LEI Yue, TAN Jingqiang. Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan [J]. Earth Science Frontiers, 2024, 31(5): 75-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||