Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (3): 78-103.DOI: 10.13745/j.esf.sf.2020.3.5
Previous Articles Next Articles
WANG Xiangli1,2(), WEI Wei3,*(
)
Received:
2019-12-04
Revised:
2020-02-03
Online:
2020-05-20
Published:
2020-05-20
Contact:
WEI Wei
CLC Number:
WANG Xiangli, WEI Wei. Stable chromium isotope geochemistry[J]. Earth Science Frontiers, 2020, 27(3): 78-103.
元 素 | 具不同质量数的铬与干扰元素同位素及其丰度 | |||||||
---|---|---|---|---|---|---|---|---|
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | |
Ti | 49Ti 5.41% | 50Ti 5.18% | ||||||
V | 50V 0.25% | 51V 99.75% | ||||||
Cr | 50Cr 4.35% | 52Cr 83.79% | 53Cr 9.50% | 54Cr 2.36% | ||||
Fe | 54Fe 5.85% | 56Fe 91.75% |
Table 1 Abundances of stable Cr isotopes and their isobaric interferences
元 素 | 具不同质量数的铬与干扰元素同位素及其丰度 | |||||||
---|---|---|---|---|---|---|---|---|
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | |
Ti | 49Ti 5.41% | 50Ti 5.18% | ||||||
V | 50V 0.25% | 51V 99.75% | ||||||
Cr | 50Cr 4.35% | 52Cr 83.79% | 53Cr 9.50% | 54Cr 2.36% | ||||
Fe | 54Fe 5.85% | 56Fe 91.75% |
参考文献 | 初始浓度 | 实验简介 | 分馏类型 | 分馏ε/‰ |
---|---|---|---|---|
Ellis等[ | 0.19 mmol/L | 磁铁矿 | 瑞利分馏 | -3.4 |
入海口沉积物 | ||||
池塘沉积物 | ||||
Zink等[ | 8.65 mmol/L | 0.9 μmol H2O2,pH≈0.7 | 瑞利分馏 | -4.2 |
13.2 μmol H2O2,pH≪1 | 平衡分馏 | -3.5 | ||
13.2 μmol H2O2,中性 | 瑞利分馏 | -5.0 | ||
Berna等[ | 1.92 mmol/L | 绿色沉积物 | 瑞利分馏 | -3.1 |
-2.4 | ||||
Døssing等[ | 0.41 mmol/L | 1.15 mmol/L Fe(Ⅱ),pH=7(批次实验) | 瑞利分馏 | -3.1 |
3.85 mmol/L | 0.03 mmol/(L·min) Fe(Ⅱ),pH=6.8和8.1(添加实验) | -1.5 | ||
参考文献 | 初始浓度 | 实验简介 | 分馏类型 | 分馏ε/‰ |
Basu和Johnson[ | 19 μmol/L | 针铁矿[345 μmol/L Fe(Ⅱ)] | 瑞利分馏 | -3.9 |
18 μmol/L | FeS [75 μmol/L Fe(Ⅱ)] | -2.1 | ||
11.15 μmol/L | 铜绿 [100 μmol/L Fe(Ⅱ)] | -2.7 | ||
18.98 μmol/L | 菱铁矿 [84.2 μmol/L Fe(Ⅱ)] | -2.7 | ||
23 μmol/L | ISRM沉积物 [2 400 μmol/L Fe(Ⅱ)] | -3.2 | ||
Jamieson-Hanes等[ | 0.38 mmol/L | 7.5 g有机碳(批次实验) | 瑞利分馏 | -3.5 |
有机碳(流通实验) | 平衡分馏 | -2.1 | ||
Kitchen等[ | 20~22 μmol/L | 5~25 μmol/L溶解Fe(Ⅱ),pH=4.5~5.3 | 瑞利分馏 | -4.2 |
20.5 μmol/L | 1.9 mmol/L Ellliot富里酸,pH=5.0 | 瑞利分馏 | -3.1 | |
1.9 mmol/L Waskish腐殖酸,pH=4.5和5.0 | ||||
针铁矿和γ-Al2O3催化下,200 μmol/L 扁桃酸,pH=4.0 | ||||
Jamieson-Hanes等[ | 1.0 mmol/L | 厌氧环境下,颗粒状零价Fe(流通实验) | 两阶段 | 早期:-0.2 |
晚期:-1.5 |
Table 2 Summary of Cr isotope fractionations during abiotic Cr (Ⅵ) reduction
参考文献 | 初始浓度 | 实验简介 | 分馏类型 | 分馏ε/‰ |
---|---|---|---|---|
Ellis等[ | 0.19 mmol/L | 磁铁矿 | 瑞利分馏 | -3.4 |
入海口沉积物 | ||||
池塘沉积物 | ||||
Zink等[ | 8.65 mmol/L | 0.9 μmol H2O2,pH≈0.7 | 瑞利分馏 | -4.2 |
13.2 μmol H2O2,pH≪1 | 平衡分馏 | -3.5 | ||
13.2 μmol H2O2,中性 | 瑞利分馏 | -5.0 | ||
Berna等[ | 1.92 mmol/L | 绿色沉积物 | 瑞利分馏 | -3.1 |
-2.4 | ||||
Døssing等[ | 0.41 mmol/L | 1.15 mmol/L Fe(Ⅱ),pH=7(批次实验) | 瑞利分馏 | -3.1 |
3.85 mmol/L | 0.03 mmol/(L·min) Fe(Ⅱ),pH=6.8和8.1(添加实验) | -1.5 | ||
参考文献 | 初始浓度 | 实验简介 | 分馏类型 | 分馏ε/‰ |
Basu和Johnson[ | 19 μmol/L | 针铁矿[345 μmol/L Fe(Ⅱ)] | 瑞利分馏 | -3.9 |
18 μmol/L | FeS [75 μmol/L Fe(Ⅱ)] | -2.1 | ||
11.15 μmol/L | 铜绿 [100 μmol/L Fe(Ⅱ)] | -2.7 | ||
18.98 μmol/L | 菱铁矿 [84.2 μmol/L Fe(Ⅱ)] | -2.7 | ||
23 μmol/L | ISRM沉积物 [2 400 μmol/L Fe(Ⅱ)] | -3.2 | ||
Jamieson-Hanes等[ | 0.38 mmol/L | 7.5 g有机碳(批次实验) | 瑞利分馏 | -3.5 |
有机碳(流通实验) | 平衡分馏 | -2.1 | ||
Kitchen等[ | 20~22 μmol/L | 5~25 μmol/L溶解Fe(Ⅱ),pH=4.5~5.3 | 瑞利分馏 | -4.2 |
20.5 μmol/L | 1.9 mmol/L Ellliot富里酸,pH=5.0 | 瑞利分馏 | -3.1 | |
1.9 mmol/L Waskish腐殖酸,pH=4.5和5.0 | ||||
针铁矿和γ-Al2O3催化下,200 μmol/L 扁桃酸,pH=4.0 | ||||
Jamieson-Hanes等[ | 1.0 mmol/L | 厌氧环境下,颗粒状零价Fe(流通实验) | 两阶段 | 早期:-0.2 |
晚期:-1.5 |
参考文献 | 初始浓度 | 实验简介 | 分馏类型 | 分馏ε/‰ | |
---|---|---|---|---|---|
Sikora等[ | 5.1~9.5 μmol/L | 3.3~100 μmol/L乳酸盐(Shewanella oneidensis stain MR-1) | 瑞利分馏 | -4.5~-4.1 | |
6.8~60 μmol/L 甲酸盐(Shewanella oneidensis stain MR-1) | -4.5~-4.0 | ||||
9.5 μmol/L | 10.2 mmol/L乳酸盐(Shewanella oneidensis stain MR-1) | -1.8 | |||
Han等[ | 50 μmol/L | 需氧环境下,20 μmol/L乳酸盐(Pseudomonas stutzeri stain RCH2) | 瑞利分馏 | -2.0 | |
反硝化环境下,20 μmol/L乳酸盐(Pseudomonas stutzeri stain RCH2) | -0.4 | ||||
Basu等[ | 5 μmol/L | 300 μmol/L醋酸盐(Geobacter sulfurreducens) | 瑞利分馏 | -3.03 | |
300 μmol/L乳酸盐(Shewanella sp. strain NR) | -2.17 | ||||
300 μmol/L醋酸盐(Pseudomonas stutzeri DCP-Ps1) | -3.14 | ||||
10 μmol/L | 100 μmol/L丙酮酸盐(Desulfovibrio vulgaris) | -3.01 | |||
Xu等[ | 19.2 mmol/L | 无葡萄糖(Bacillus sp. QH-1),37 ℃ | 瑞利分馏 | -3.74 | |
0.1 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -1.94 | ||||
1 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -2.02 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -1.99 | ||||
10 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -1.92 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),4 ℃ | -7.62 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),15 ℃ | -4.59 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),25 ℃ | -3.09 | ||||
Lu等[ | 0.2 mmol/L | 细菌作用下沉积物产生的CH4 | 瑞利分馏 | -2.62 | |
Zhang等[ | 0.4 nmol/L | 需氧环境下,葡萄糖(Pseudomonas) | 瑞利分馏 | -3.12 | |
需氧环境下,柠檬酸盐(Pseudomonas) | -4.32 | ||||
需氧环境下,醋酸盐(Pseudomonas) | -3.21 | ||||
需氧环境下,丙酸盐(Pseudomonas) | -3.90 | ||||
厌氧环境下,葡萄糖(Pseudomonas) | -4.93 | ||||
厌氧环境下,柠檬酸盐(Pseudomonas) | -4.63 | ||||
厌氧环境下,醋酸盐(Pseudomonas) | -3.37 | ||||
厌氧环境下,丙酸盐(Pseudomonas) | -1.58 | ||||
需氧环境下,琥珀酸盐(Shewanella) | -3.43 | ||||
厌氧环境下,琥珀酸盐(Shewanella) | -2.47 | ||||
需氧环境下,不同浓度的葡萄糖(Pseudomonas) | -3.19 | ||||
需氧环境下,Pseudomonas,pH=4 | -3.08 | ||||
需氧环境下,Pseudomonas,pH=6 | -3.14 | ||||
需氧环境下,Pseudomonas,pH=8 | -3.13 | ||||
Chen等[ | 100 μmol/L | Shewanella oneidensis stain MR-1, pH=6.0~8.5, T=18~34 ℃ | 早期 | -2.37~-3.04 | |
晚期 | -0.98~-1.11 | ||||
Zhang等[ | 0.4 nmol/L | Pseudomonas fluorescens LB 300,无Fe | 瑞利分馏 | -2.56 | |
Pseudomonas fluorescens LB 300,溶解态Fe(Ⅲ) | -3.00 | ||||
Pseudomonas fluorescens LB 300,针铁矿 | -2.96 | ||||
Pseudomonas fluorescens LB 300,赤铁矿 | -4.26 | ||||
Pseudomonas fluorescens LB 300,溶解态Fe(Ⅱ) | -3.39 | ||||
Pseudomonas fluorescens LB 300,针铁矿和Fe(Ⅱ) | -3.24 | ||||
Pseudomonas fluorescens LB 300,赤铁矿和Fe(Ⅱ) | -3.29 | ||||
Shewanella oneidensis MR-1,无Fe | -2.47 | ||||
Shewanella oneidensis MR-1,溶解态Fe(Ⅲ) | -2.34 | ||||
Shewanella oneidensis MR-1,针铁矿 | -2.13 | ||||
Shewanella oneidensis MR-1,赤铁矿 | -2.27 |
Table 3 Summary of Cr isotope fractionations during biotic Cr (Ⅵ) reduction
参考文献 | 初始浓度 | 实验简介 | 分馏类型 | 分馏ε/‰ | |
---|---|---|---|---|---|
Sikora等[ | 5.1~9.5 μmol/L | 3.3~100 μmol/L乳酸盐(Shewanella oneidensis stain MR-1) | 瑞利分馏 | -4.5~-4.1 | |
6.8~60 μmol/L 甲酸盐(Shewanella oneidensis stain MR-1) | -4.5~-4.0 | ||||
9.5 μmol/L | 10.2 mmol/L乳酸盐(Shewanella oneidensis stain MR-1) | -1.8 | |||
Han等[ | 50 μmol/L | 需氧环境下,20 μmol/L乳酸盐(Pseudomonas stutzeri stain RCH2) | 瑞利分馏 | -2.0 | |
反硝化环境下,20 μmol/L乳酸盐(Pseudomonas stutzeri stain RCH2) | -0.4 | ||||
Basu等[ | 5 μmol/L | 300 μmol/L醋酸盐(Geobacter sulfurreducens) | 瑞利分馏 | -3.03 | |
300 μmol/L乳酸盐(Shewanella sp. strain NR) | -2.17 | ||||
300 μmol/L醋酸盐(Pseudomonas stutzeri DCP-Ps1) | -3.14 | ||||
10 μmol/L | 100 μmol/L丙酮酸盐(Desulfovibrio vulgaris) | -3.01 | |||
Xu等[ | 19.2 mmol/L | 无葡萄糖(Bacillus sp. QH-1),37 ℃ | 瑞利分馏 | -3.74 | |
0.1 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -1.94 | ||||
1 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -2.02 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -1.99 | ||||
10 mmol/L葡萄糖(Bacillus sp. QH-1),37 ℃ | -1.92 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),4 ℃ | -7.62 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),15 ℃ | -4.59 | ||||
2.5 mmol/L葡萄糖(Bacillus sp. QH-1),25 ℃ | -3.09 | ||||
Lu等[ | 0.2 mmol/L | 细菌作用下沉积物产生的CH4 | 瑞利分馏 | -2.62 | |
Zhang等[ | 0.4 nmol/L | 需氧环境下,葡萄糖(Pseudomonas) | 瑞利分馏 | -3.12 | |
需氧环境下,柠檬酸盐(Pseudomonas) | -4.32 | ||||
需氧环境下,醋酸盐(Pseudomonas) | -3.21 | ||||
需氧环境下,丙酸盐(Pseudomonas) | -3.90 | ||||
厌氧环境下,葡萄糖(Pseudomonas) | -4.93 | ||||
厌氧环境下,柠檬酸盐(Pseudomonas) | -4.63 | ||||
厌氧环境下,醋酸盐(Pseudomonas) | -3.37 | ||||
厌氧环境下,丙酸盐(Pseudomonas) | -1.58 | ||||
需氧环境下,琥珀酸盐(Shewanella) | -3.43 | ||||
厌氧环境下,琥珀酸盐(Shewanella) | -2.47 | ||||
需氧环境下,不同浓度的葡萄糖(Pseudomonas) | -3.19 | ||||
需氧环境下,Pseudomonas,pH=4 | -3.08 | ||||
需氧环境下,Pseudomonas,pH=6 | -3.14 | ||||
需氧环境下,Pseudomonas,pH=8 | -3.13 | ||||
Chen等[ | 100 μmol/L | Shewanella oneidensis stain MR-1, pH=6.0~8.5, T=18~34 ℃ | 早期 | -2.37~-3.04 | |
晚期 | -0.98~-1.11 | ||||
Zhang等[ | 0.4 nmol/L | Pseudomonas fluorescens LB 300,无Fe | 瑞利分馏 | -2.56 | |
Pseudomonas fluorescens LB 300,溶解态Fe(Ⅲ) | -3.00 | ||||
Pseudomonas fluorescens LB 300,针铁矿 | -2.96 | ||||
Pseudomonas fluorescens LB 300,赤铁矿 | -4.26 | ||||
Pseudomonas fluorescens LB 300,溶解态Fe(Ⅱ) | -3.39 | ||||
Pseudomonas fluorescens LB 300,针铁矿和Fe(Ⅱ) | -3.24 | ||||
Pseudomonas fluorescens LB 300,赤铁矿和Fe(Ⅱ) | -3.29 | ||||
Shewanella oneidensis MR-1,无Fe | -2.47 | ||||
Shewanella oneidensis MR-1,溶解态Fe(Ⅲ) | -2.34 | ||||
Shewanella oneidensis MR-1,针铁矿 | -2.13 | ||||
Shewanella oneidensis MR-1,赤铁矿 | -2.27 |
参考文献 | 实验简介 | δ53Cr/‰ | ε |
---|---|---|---|
Bain和Bullen[ | 水钠锰矿 (δ-MnO2) | -2.5~0.7 | |
Ellis等[ | 软锰矿 (β-MnO2) | 1.1 | |
Wang等[ | 水钠锰矿 (δ-MnO2),pH≈4.5 | -0.5~0.0 | |
Zink等[ | 0.5~150 μmol H2O2, pH=10.5 | 0.2 |
Table 4 Summary of Cr isotope fractionations during Cr (Ⅲ) oxidation
参考文献 | 实验简介 | δ53Cr/‰ | ε |
---|---|---|---|
Bain和Bullen[ | 水钠锰矿 (δ-MnO2) | -2.5~0.7 | |
Ellis等[ | 软锰矿 (β-MnO2) | 1.1 | |
Wang等[ | 水钠锰矿 (δ-MnO2),pH≈4.5 | -0.5~0.0 | |
Zink等[ | 0.5~150 μmol H2O2, pH=10.5 | 0.2 |
参考文献 | 实验简介 | Δ/‰ |
---|---|---|
Schauble等[ | 理论计算 | 6.0~7.0 |
Zink等[ | 溶解Cr(Ⅲ)和Cr(Ⅵ)同位素交换(总浓度为50 μg/mL,浓度比分别为1/2和2/1),pH=5.5或7,反应时间超过数周 | |
Wang等[ | 0.2 mol/L Cr(Ⅲ)和0.2 mol/L Cr(Ⅵ)同位素交换,pH=1.2, 60 ℃ | 5.2 |
0.2 mol/L Cr(Ⅲ)和0.2 mol/L Cr(Ⅵ)同位素交换,pH=1.2, 40 ℃ | 5.5 | |
0.2 mol/L Cr(Ⅲ)和0.2 mol/L Cr(Ⅵ)同位素交换,pH=1.2, 25 ℃ | 5.8 |
Table 5 Summary of equilibrium Cr isotope fractionation between Cr (Ⅲ) and Cr (Ⅵ)
参考文献 | 实验简介 | Δ/‰ |
---|---|---|
Schauble等[ | 理论计算 | 6.0~7.0 |
Zink等[ | 溶解Cr(Ⅲ)和Cr(Ⅵ)同位素交换(总浓度为50 μg/mL,浓度比分别为1/2和2/1),pH=5.5或7,反应时间超过数周 | |
Wang等[ | 0.2 mol/L Cr(Ⅲ)和0.2 mol/L Cr(Ⅵ)同位素交换,pH=1.2, 60 ℃ | 5.2 |
0.2 mol/L Cr(Ⅲ)和0.2 mol/L Cr(Ⅵ)同位素交换,pH=1.2, 40 ℃ | 5.5 | |
0.2 mol/L Cr(Ⅲ)和0.2 mol/L Cr(Ⅵ)同位素交换,pH=1.2, 25 ℃ | 5.8 |
参考文献 | 实验简介 | 分馏Δ/‰ | |
---|---|---|---|
Ellis等[ | γ-Al2O3吸附溶解的Cr(Ⅵ),pH=4(6~12 h) | -0.04 | |
γ-Al2O3吸附溶解的Cr(Ⅵ),pH=6(6~12 h) | 0.00 | ||
α-goethite吸附溶解的Cr(Ⅵ),pH=4(6~12 h) | 0.02 | ||
α-goethite吸附溶解的Cr(Ⅵ),pH=6(24 h) | -0.04 | ||
Rodler等[ | 8、30和 70 μg/mL溶解态Cr(Ⅵ)与方解石快速共沉淀 | 0.06~0.18 | |
520、1 560、3 120、5 200和10 400 μg/mL溶解态Cr(Ⅵ)与方解石缓慢共沉淀 | 0.29±0.08 | ||
Saad等[ | 固态Cr(Ⅲ)溶解于各类铁载体、有机酸以及两者的混合物 | -0.19~1.23 | |
Babechuk等[ | CrC | Cr3+-CrCl2+ | |
200 μg Cr(Ⅲ)溶解于6 mol/L HCl(161 d) | 0.02 | -0.73 | |
200 μg Cr(Ⅲ)溶解于0.1 mol/L和1 mol/L HCl(38 d) | 1.04、1.81 | -1.88、-1.59 | |
200 μg Cr(Ⅲ)溶解于0.01 mol/L HCl(38 d) | -0.19 | -0.49 | |
102.5 mg CrCl3·6H2O溶解于10.5 mL的0.01 mol/L HCl | -0.38 | -0.51 | |
Kraemer等[ | DFOB和柠檬酸淋滤硅酸盐岩 | -0.13~0.53 | |
DFOB和柠檬酸淋滤氧化物岩石 | -0.13~2.19 | ||
Frank等[ | 高岭土吸附河水中的Cr(Ⅵ)(0.1~10 mg/L) | -0.24 | |
高岭土吸附海水中Cr(Ⅵ)(0.1~10 mg/L) | 无吸附 |
Table 6 Summary of the redox-independent Cr isotope fractionations
参考文献 | 实验简介 | 分馏Δ/‰ | |
---|---|---|---|
Ellis等[ | γ-Al2O3吸附溶解的Cr(Ⅵ),pH=4(6~12 h) | -0.04 | |
γ-Al2O3吸附溶解的Cr(Ⅵ),pH=6(6~12 h) | 0.00 | ||
α-goethite吸附溶解的Cr(Ⅵ),pH=4(6~12 h) | 0.02 | ||
α-goethite吸附溶解的Cr(Ⅵ),pH=6(24 h) | -0.04 | ||
Rodler等[ | 8、30和 70 μg/mL溶解态Cr(Ⅵ)与方解石快速共沉淀 | 0.06~0.18 | |
520、1 560、3 120、5 200和10 400 μg/mL溶解态Cr(Ⅵ)与方解石缓慢共沉淀 | 0.29±0.08 | ||
Saad等[ | 固态Cr(Ⅲ)溶解于各类铁载体、有机酸以及两者的混合物 | -0.19~1.23 | |
Babechuk等[ | CrC | Cr3+-CrCl2+ | |
200 μg Cr(Ⅲ)溶解于6 mol/L HCl(161 d) | 0.02 | -0.73 | |
200 μg Cr(Ⅲ)溶解于0.1 mol/L和1 mol/L HCl(38 d) | 1.04、1.81 | -1.88、-1.59 | |
200 μg Cr(Ⅲ)溶解于0.01 mol/L HCl(38 d) | -0.19 | -0.49 | |
102.5 mg CrCl3·6H2O溶解于10.5 mL的0.01 mol/L HCl | -0.38 | -0.51 | |
Kraemer等[ | DFOB和柠檬酸淋滤硅酸盐岩 | -0.13~0.53 | |
DFOB和柠檬酸淋滤氧化物岩石 | -0.13~2.19 | ||
Frank等[ | 高岭土吸附河水中的Cr(Ⅵ)(0.1~10 mg/L) | -0.24 | |
高岭土吸附海水中Cr(Ⅵ)(0.1~10 mg/L) | 无吸附 |
Fig.2 A compilation of δ53Cr values of modern weathering profiles[112,113,114,115,116,117,118], river waters[112,114-116], estuarine waters[119], seawater[22-23,30,114,121-122,124-125,128,130,132,147],and various marine sediments[19,23,120,125-133]
Fig.6 (A) The evolution of atmospheric oxygen content through Earth history.(B) A compilation of δ53Cr in paleosols[83,84,85,86,87] and sedimentary rocks[10,23,61,84,88-111].
[1] | RUDNICK R L, GAO S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3:1-64. |
[2] |
SUN S S, MCDONOUGH W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42:313-345.
DOI URL |
[3] |
EARY L E, RAI D. Kinetics of chromium (Ⅲ) oxidation to chromium (Ⅵ) by reaction with manganese dioxide[J]. Environmental Science & Technology, 1987, 21:1187-1193.
DOI URL |
[4] |
FENDORF S E, FENDORF M, SPARKS D L, et al. Inhibitory mechanisms of Cr (Ⅲ) oxidation by δ-MnO2[J]. Journal of Colloid and Interface Science, 1992, 153:37-54.
DOI URL |
[5] |
OZE C, BIRD D K, FENDORF S. Genesis of hexavalent chromium from natural sources in soil and groundwater[J]. Proceedings of the National Academy of Sciences, 2007, 104:6544-6549.
DOI URL |
[6] |
ROSSMAN K, TAYLOR P. Isotopic composition of the elements[J]. Pure and Applied Chemistry, 1998, 70:217-236.
DOI URL |
[7] |
QIN L, CARLSON R W. Nucleosynthetic isotope anomalies and their cosmochemical significance[J]. Geochemical Journal, 2016, 50:43-65.
DOI URL |
[8] |
BALL J, BASSETT R. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis[J]. Chemical Geology, 2000, 168:123-134.
DOI URL |
[9] |
SCHOENBERG R, ZINK S, STAUBWASSER M, et al. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS[J]. Chemical Geology, 2008, 249:294-306.
DOI URL |
[10] |
FREI R, GAUCHER C, POULTON S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J]. Nature, 2009, 461:250-253.
DOI URL |
[11] |
LI C F, FENG L J, WANG X C, et al. Precise measurement of Cr isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials[J]. Journal of Analytical Atomic Spectrometry, 2016, 31:2375-2383.
DOI URL |
[12] |
LI C F, FENG L J, WANG X C, et al. A low-blank two-column chromatography separation strategy based on a KMnO4 oxidizing reagent for Cr isotope determination in micro-silicate samples by thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32:1938-1945.
DOI URL |
[13] |
ZHU J M, WU G, WANG X, et al. An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:809-821.
DOI URL |
[14] |
BIRCK J L, ALLÈGRE C J. Chromium isotopic anomalies in Allende refractory inclusions[J]. Geophysical Research Letters, 1984, 11:943-946.
DOI URL |
[15] |
TRINQUIER A, BIRCK J L, ALLÈGRE C J. High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23:1565-1574.
DOI URL |
[16] |
YAMAKAWA A, YAMASHITA K, MAKISHIMA A, et al. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry[J]. Analytical Chemistry, 2009, 81:9787-9794.
DOI URL |
[17] |
BONNAND P, PARKINSON I J, JAMES R H, et al. Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26:528-535.
DOI URL |
[18] | LARSEN K, WIELANDT D, SCHILLER M, et al. Chromatographic speciation of Cr (Ⅲ)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A, 2016, 1443:162-174. |
[19] |
REINHARD C T, PLANAVSKY N J, WANG X, et al. The isotopic composition of authigenic chromium in anoxic marine sediments: a case study from the Cariaco Basin[J]. Earth and Planetary Science Letters, 2014, 407:9-18.
DOI URL |
[20] |
FREI R, ROSING M T. Search for traces of the late heavy bombardment on Earth: results from high precision chromium isotopes[J]. Earth and Planetary Science Letters, 2005, 236:28-40.
DOI URL |
[21] |
SCHOENBERG R, VON BLANCKENBURG F. An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS[J]. International Journal of Mass Spectrometry, 2005, 242:257-272.
DOI URL |
[22] |
SCHEIDERICH K, AMINI M, HOLMDEN C, et al. Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples[J]. Earth and Planetary Science Letters, 2015, 423:87-97.
DOI URL |
[23] |
HOLMDEN C, JACOBSON A, SAGEMAN B, et al. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway[J]. Geochimica et Cosmochimica Acta, 2016, 186:277-295.
DOI URL |
[24] |
ELLIS A S, JOHNSON T M, BULLEN T D. Chromium isotopes and the fate of hexavalent chromium in the environment[J]. Science, 2002, 295:2060-2062.
DOI URL |
[25] |
FUJII T, SUZUKI D, WATANABE K, et al. Application of the total evaporation technique to chromium isotope ratio measurement by thermal ionization mass spectrometry[J]. Talanta, 2006, 69:32-36.
DOI URL |
[26] |
HALICZ L, YANG L, TEPLYAKOV N, et al. High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 23:1622-1627.
DOI URL |
[27] |
MARÉCHAL C N, TÉLOUK P, ALBARÈDE, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156:251-273.
DOI URL |
[28] |
ALBARÈDE F, BEARD B. Analytical methods for non-traditional isotopes[J]. Reviews in Mineralogy and Geochemistry, 2004, 55:113-152.
DOI URL |
[29] |
HEUSER A, EISENHAUER A, GUSSONE N, et al. Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique[J]. International Journal of Mass Spectrometry, 2002, 220:385-397.
DOI URL |
[30] |
MOOS S B, BOYLE E A. Determination of accurate and precise chromium isotope ratios in seawater samples by MC-ICP-MS illustrated by analysis of SAFe Station in the North Pacific Ocean[J]. Chemical Geology, 2019, 511:481-493.
DOI URL |
[31] |
LOYAUX-LAWNICZAK S, LECOMTE P, EHRHARDT J-J. Behavior of hexavalent chromium in a polluted groundwater: redox processes and immobilization in soils[J]. Environmental Science & Technology, 2001, 35:1350-1357.
DOI URL |
[32] |
BUERGE I J, HUG S J. Influence of organic ligands on chromium (Ⅵ) reduction by iron (Ⅱ)[J]. Environmental Science & Technology, 1998, 32:2092-2099.
DOI URL |
[33] |
WITTBRODT P R, PALMER C D. Effect of temperature, ionic strength, background electrolytes, and Fe (Ⅲ) on the reduction of hexavalent chromium by soil humic substances[J]. Environmental Science & Technology, 1996, 30:2470-2477.
DOI URL |
[34] |
DØSSING L, DIDERIKSEN K, STIPP S, et al. Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments[J]. Chemical Geology, 2011, 285:157-166.
DOI URL |
[35] |
KITCHEN J W, JOHNSON T M, BULLEN T D, et al. Chromium isotope fractionation factors for reduction of Cr(Ⅵ) by aqueous Fe(Ⅱ) and organic molecules[J]. Geochimica et Cosmochimica Acta, 2012, 89:190-201.
DOI URL |
[36] |
BERNA E C, JOHNSON T M, MAKDISI R S, et al. Cr stable isotopes as indicators of Cr (Ⅵ) reduction in groundwater: a detailed time-series study of a point-source plume[J]. Environmental Science & Technology, 2010, 44:1043-1048.
DOI URL |
[37] |
BASU A, JOHNSON T M. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials[J]. Environmental Science & Technology, 2012, 46:5353-5360.
DOI URL |
[38] |
JAMIESON-HANES J H, AMOS R T, BLOWES D W. Reactive transport modeling of chromium isotope fractionation during Cr (Ⅵ) reduction[J]. Environmental Science & Technology, 2012, 46:13311-13316.
DOI URL |
[39] |
ZINK S, SCHOENBERG R, STAUBWASSER M. Isotopic fractionation and reaction kinetics between Cr(Ⅲ) and Cr(Ⅵ) in aqueous media[J]. Geochimica et Cosmochimica Acta, 2010, 74:5729-5745.
DOI URL |
[40] |
JAMIESON-HANES J H, GIBSON B D, LINDSAY M B, et al. Chromium isotope fractionation during reduction of Cr (Ⅵ) under saturated flow conditions[J]. Environmental Science & Technology, 2012, 46:6783-6789.
DOI URL |
[41] |
JAMIESON-HANES J H, LENTZ A M, AMOS R T, et al. Examination of Cr (Ⅵ) treatment by zero-valent iron using in situ, real-time X-ray absorption spectroscopy and Cr isotope measurements[J]. Geochimica et Cosmochimica Acta, 2014, 142:299-313.
DOI URL |
[42] |
SIKORA E R, JOHNSON, T M, BULLEN T D. Microbial mass-dependent fractionation of chromium isotopes[J]. Geochimica et Cosmochimica Acta, 2008, 72:3631-3641.
DOI URL |
[43] |
CHEN G, HAN J, MU Y, et al. Two-stage chromium isotope fractionation during microbial Cr (Ⅵ) reduction[J]. Water Research, 2019, 148:10-18.
DOI URL |
[44] |
HAN R, QIN L, BROWN S T, et al. Differential isotopic fractionation during Cr (Ⅵ) reduction by an aquifer-derived bacterium under aerobic versus denitrifying conditions[J]. Applied and Environmental Microbiology, 2012, 78:2462-2464.
DOI URL |
[45] |
BASU A, JOHNSON T M, SANFORD R A. Cr isotope fractionation factors for Cr (Ⅵ) reduction by a metabolically diverse group of bacteria[J]. Geochimica et Cosmochimica Acta, 2014, 142:349-361.
DOI URL |
[46] |
XU F, MA T, ZHOU L, et al. Chromium isotopic fractionation during Cr (Ⅵ) reduction by Bacillus sp. under aerobic conditions[J]. Chemosphere, 2015, 130:46-51.
DOI URL |
[47] |
LU Y Z, CHEN G J, BAI Y N, et al. Chromium isotope fractionation during Cr (Ⅵ) reduction in a methane-based hollow-fiber membrane biofilm reactor[J]. Water Research, 2018, 130:263-270.
DOI URL |
[48] |
ZHANG Q, AMOR K, GALER S J, et al. Variations of stable isotope fractionation during bacterial chromium reduction processes and their implications[J]. Chemical Geology, 2018, 481:155-164.
DOI URL |
[49] |
ZHANG Q, AMOR K, GALER S J, et al. Using stable isotope fractionation factors to identify Cr (Ⅵ) reduction pathways: metal-mineral-microbe interactions[J]. Water Research, 2019, 151:98-109.
DOI URL |
[50] | JOE-WONG C, WEAVER K, BROWN S, et al. Thermodynamic controls on redox-driven kinetic stable isotope fractionation[J]. Geochemical Perspective Letters, 2019, 10:20-25. |
[51] | BAIN D J, BULLEN T D. Chromium isotope fractionation during oxidation of Cr (III) by manganese oxides[J]. Geochimica et Cosmochimica Acta, 2005, 69(Suppl):212. |
[52] | ELLIS A S, JOHNSON T M, VILLALOBOS-ARAGON A, et al. Environmental cycling of Cr using stable isotopes: kinetic and equilibrium effects[C]. American Geophysical Union Fall Meeting, 2008. |
[53] | WANG D T, FREGOSO D C, ELLIS A S, et al. Stable isotope fractionation during chromium (III) oxidation by δ-MnO2[C]. American Geophysical Union Fall Meeting, 2010. |
[54] |
OZE C, SLEEP N H, COLEMAN R G, et al. Anoxic oxidation of chromium[J]. Geology, 2016, 44:543-546.
DOI URL |
[55] | RAO L, ZHANG Z, FRIESE J I, et al. Oligomerization of chromium (Ⅲ) and its impact on the oxidation of chromium (Ⅲ) by hydrogen peroxide in alkaline solutions[J]. Journal of the Chemical Society, Dalton Transactions, 2002, 2:267-274. |
[56] |
BANERJEE D, NESBITT H. Oxidation of aqueous Cr (Ⅲ) at birnessite surfaces: constraints on reaction mechanism[J]. Geochimica et Cosmochimica Acta, 1999, 63:1671-1687.
DOI URL |
[57] |
SCHAUBLE E, ROSSMAN G R, TAYLOR H P. Theoretical estimates of equilibrium chromium-isotope fractionations[J]. Chemical Geology, 2004, 205:99-114.
DOI URL |
[58] |
WANG X L, JOHNSON T M, ELLIS A S. Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr (Ⅲ) and Cr (Ⅵ)[J]. Geochimica et Cosmochimica Acta, 2015, 153:72-90.
DOI URL |
[59] |
ELLIS A S, JOHNSON T M, BULLEN T D. Using chromium stable isotope ratios to quantify Cr (Ⅵ) reduction: lack of sorption effects[J]. Environmental Science & Technology, 2004, 38:3604-3607.
DOI URL |
[60] | FRANK A B, KLAEBE R M, FREI R. Fractionation behavior of chromium isotopes during the sorption of Cr (Ⅵ) on kaolin and its implications for using black shales as a paleoredox archive[J]. Geochemistry, Geophysics, Geosystems, 2019, 20:2290-2302. |
[61] |
RODLER A, SÁNCHEZ-PASTOR N, FERNÁNDEZ-DÍAZ L, et al. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: implications for their use as paleoclimatic proxy[J]. Geochimica et Cosmochimica Acta, 2015, 164:221-235.
DOI URL |
[62] |
SAAD E M, WANG X, PLANAVSKY N J, et al. Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution[J]. Nature Communications, 2017, 8:1590.
DOI URL |
[63] |
BABECHUK M G, KLEINHANNS I C, REITTER E, et al. Kinetic stable Cr isotopic fractionation between aqueous Cr (Ⅲ)-Cl-H2O complexes at 25 ℃: implications for Cr (Ⅲ) mobility and isotopic variations in modern and ancient natural systems[J]. Geochimica et Cosmochimica Acta, 2018, 222:383-405.
DOI URL |
[64] |
KRAEMER D, FREI R, VIEHMANN S, et al. Mobilization and isotope fractionation of chromium during water-rock interaction in presence of siderophores[J]. Applied Geochemistry, 2019, 102:44-54.
DOI URL |
[65] |
TANG Y, ELZINGA E J, LEE Y J, et al. Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 2007, 71:1480-1493.
DOI URL |
[66] |
MCCLAIN C, MAHER K. Chromium fluxes and speciation in ultramafic catchments and global rivers[J]. Chemical Geology, 2016, 426:135-157.
DOI URL |
[67] |
NAKAYAMA E, TOKORO H, KUWAMOTO T, et al. Dissolved state of chromium in seawater[J]. Nature, 1981, 290:768-770.
DOI URL |
[68] |
SANDER S, KOSCHINSKY A. Onboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji Basin[J]. Marine Chemistry, 2000, 71:83-102.
DOI URL |
[69] |
SANDER S G, KOSCHINSKY A. Metal flux from hydrothermal vents increased by organic complexation[J]. Nature Geoscience, 2011, 4:145-150.
DOI URL |
[70] |
LENNARTSON A. The colours of chromium[J]. Nature Chemistry, 2014, 6:942.
DOI URL |
[71] |
FARKAŠ J, CHRASTNY V, NOVAK M, et al. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: implications for environmental studies and the evolution of δ53/52Cr in the Earth's mantle over geologic time[J]. Geochimica et Cosmochimica Acta, 2013, 123:74-92.
DOI URL |
[72] |
SHEN J, LIU J, QIN L, et al. Chromium isotope signature during continental crust subduction recorded in metamorphic rocks[J]. Geochemistry, Geophysics, Geosystems, 2015, 16:3840-3854.
DOI URL |
[73] | WANG X L, PLANAVSKY N J, REINHARD C T, et al. Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration[J]. Chemical Geology, 2016, 429:19-33. |
[74] |
SHEN J, QIN L, FANG Z, et al. High-temperature inter-mineral Cr isotope fractionation: a comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2018, 499:278-290.
DOI URL |
[75] |
BONNAND P, PARKINSON I J, ANAND M. Mass dependent fractionation of stable chromium isotopes in mare basalts: implications for the formation and the differentiation of the Moon[J]. Geochimica et Cosmochimica Acta, 2016, 175:208-221.
DOI URL |
[76] |
SOSSI P A, MOYNIER F, VAN ZUILEN K. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes[J]. Proceedings of the National Academy of Sciences, 2018, 115:10920-10925.
DOI URL |
[77] |
XIA J, QIN L, SHEN J, et al. Chromium isotope heterogeneity in the mantle[J]. Earth and Planetary Science Letters, 2017, 464:103-115.
DOI URL |
[78] |
CHEN C, SU B X, XIAO Y, et al. High-temperature chromium isotope fractionation and its implications: constraints from Kızıldağ ophiolite, SE Turkey[J]. Lithos, 2019, 342-343: 361-369.
DOI URL |
[79] |
ALLÈGRE C J, POIRIER J P, HUMLER E, et al. The chemical composition of the Earth[J]. Earth and Planetary Science Letters, 1995, 134:515-526.
DOI URL |
[80] |
MOYNIER F, YIN Q Z, SCHAUBLE E. Isotopic evidence of Cr partitioning into Earth's core[J]. Science, 2011, 331:1417-1420.
DOI URL |
[81] |
SCHOENBERG R, MERDIAN A, HOLMDEN C, et al. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs[J]. Geochimica et Cosmochimica Acta, 2016, 183:14-30.
DOI URL |
[82] |
BONNAND P, WILLIAMS H, PARKINSON I, et al. Stable chromium isotopic composition of meteorites and metal-silicate experiments: implications for fractionation during core formation[J]. Earth and Planetary Science Letters, 2016, 435:14-21.
DOI URL |
[83] |
CROWE S A, DØSSING L N, BEUKES N J, et al. Atmospheric oxygenation three billion years ago[J]. Nature, 2013, 501:535-538.
DOI URL |
[84] |
FREI R, POLAT A. Chromium isotope fractionation during oxidative weathering: implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada[J]. Precambrian Research, 2013, 224:434-453.
DOI URL |
[85] |
PARNELL J, MARK D F, FREI R, et al. 40Ar/39Ar dating of exceptional concentration of metals by weathering of Precambrian rocks at the Precambrian-Cambrian boundary[J]. Precambrian Research, 2014, 246:54-63.
DOI URL |
[86] |
BABECHUK M, KLEINHANNS I, SCHOENBERG R. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol[J]. Geobiology, 2017, 15:30-50.
DOI URL |
[87] |
TOMA J, HOLMDEN C, SHAKOTKO P, et al. Cr isotopic insights into ca. 1.9 Ga oxidative weathering of the continents using the Beaverlodge Lake paleosol, Northwest Territories, Canada[J]. Geobiology, 2019, 17:467-489.
DOI URL |
[88] |
FREI R, GAUCHER C, STOLPER D, et al. Fluctuations in late Neoproterozoic atmospheric oxidation: Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay)[J]. Gondwana Research, 2013, 23:797-811.
DOI URL |
[89] |
FREI R, CROWE S A, BAU M, et al. Oxidative elemental cycling under the low O2 Eoarchean atmosphere[J]. Scientific Reports, 2016, 6:1-9.
DOI URL |
[90] |
FREI R, DØSSING L, GAUCHER C, et al. Extensive oxidative weathering in the aftermath of a late Neoproterozoic glaciation: evidence from trace element and chromium isotope records in the Urucum district (Jacadigo Group) and Puga iron formations (Mato Grosso do Sul, Brazil)[J]. Gondwana Research, 2017, 49:1-20.
DOI URL |
[91] |
SIAL A N, CAMPOS M S, GAUCHER C, et al. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence[J]. Journal of South American Earth Sciences, 2015, 61:33-52.
DOI URL |
[92] |
TEIXEIRA N, CAXITO F, ROSIÈR C, et al. Trace elements and isotope geochemistry (C, O, Fe, Cr) of the Cauê iron formation, Quadrilátero Ferrífero, Brazil: evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition[J]. Precambrian Research, 2017, 298:39-55.
DOI URL |
[93] |
WEI W, FREI R, KLAEBE R, et al. Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: a chromium-isotope perspective[J]. Precambrian Research, 2018, 319:198-210.
DOI URL |
[94] |
HUANG J, LIU J, ZHANG Y, et al. Cr isotopic composition of the Laobao cherts during the Ediacaran-Cambrian transition in South China[J]. Chemical Geology, 2018, 482:121-130.
DOI URL |
[95] |
ALBUT G, BABECHUK M G, KLEINHANNS I C, et al. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa)[J]. Geochimica et Cosmochimica Acta, 2018, 228:157-189.
DOI URL |
[96] |
PLANAVSKY N J, REINHARD C T, WANG X, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346:635-638.
DOI URL |
[97] |
FREI R, GAUCHER C, DØSSING L N, et al. Chromium isotopes in carbonates: a tracer for climate change and for reconstructing the redox state of ancient seawater[J]. Earth and Planetary Science Letters, 2011, 312:114-125.
DOI URL |
[98] |
RODLER A, FREI R, GAUCHER C, et al. Chromium isotope, REE and redox-sensitive trace element chemostratigraphy across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia[J]. Precambrian Research, 2016, 286:234-249.
DOI URL |
[99] |
RODLER A, FREI R, GAUCHER C, et al. Multiproxy isotope constraints on ocean compositional changes across the late Neoproterozoic Ghaub glaciation, Otavi Group, Namibia[J]. Precambrian Research, 2017, 298:306-324.
DOI URL |
[100] |
RODLER A, HOHL S, GUO Q, et al. Chromium isotope stratigraphy of Ediacaran cap dolostones, Doushantuo formation, South China[J]. Chemical Geology, 2016, 436:24-34.
DOI URL |
[101] | GILLEAUDEAU G, FREI R, KAUFMAN A, et al. Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates[J]. Geochemical Perspectives Letters, 2016, 2:178-187. |
[102] |
GILLEAUDEAU G J, VOEGELIN A R, THIBAULT N, et al. Stable isotope records across the Cretaceous-Paleogene transition, Stevns Klint, Denmark: new insights from the chromium isotope system[J]. Geochimica et Cosmochimica Acta, 2018, 235:305-332.
DOI URL |
[103] |
D'ARCY J, GILLEAUDEAU G J, PERALTA S, et al. Redox fluctuations in the Early Ordovician oceans: an insight from chromium stable isotopes[J]. Chemical Geology, 2017, 448:1-12.
DOI URL |
[104] |
WEI W, FREI R, GILLEAUDEAU G J, et al. Oxygenation variations in the atmosphere and shallow seawaters of the Yangtze Platform during the Ediacaran Period: clues from Cr-isotope and Ce-anomaly in carbonates[J]. Precambrian Research, 2018, 313:78-90.
DOI URL |
[105] |
REMMELZWAAL S R, DIXON S, PARKINSON I J, et al. Investigating ocean deoxygenation during the PETM through the Cr isotopic signature of foraminifera[J]. Paleoceanography and Paleoclimatology, 2019, 34:917-929.
DOI URL |
[106] |
WILLE M, NEBEL O, VAN KRANENDONK M J, et al. Mo-Cr isotope evidence for a reducing Archean atmosphere in 3.46-2.76 Ga black shales from the Pilbara, Western Australia[J]. Chemical Geology, 2013, 340:68-76.
DOI URL |
[107] |
LEHMANN B, FREI R, XU L, et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China: reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology, 2016, 111:89-103.
DOI URL |
[108] |
COLE D B, REINHARD C T, WANG X, et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic[J]. Geology, 2016, 44:555-558.
DOI URL |
[109] |
WANG X L, REINHARD C, PLANAVSKY N, et al. Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258[J]. Chemical Geology, 2016, 429:85-92.
DOI URL |
[110] |
CANFIELD D E, ZHANG S, FRANK A B, et al. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen[J]. Nature Communications, 2018, 9:2871.
DOI URL |
[111] |
ACKERMAN L, PAŠAVA J, ŠÍPKOVÁ A, et al. Copper, zinc, chromium and osmium isotopic compositions of the Teplá-Barrandian unit black shales and implications for the composition and oxygenation of the Neoproterozoic-Cambrian ocean[J]. Chemical Geology, 2019, 521:59-75.
DOI URL |
[112] |
FREI R, POIRÉ D, FREI K M. Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): a chromium stable isotope perspective[J]. Chemical Geology, 2014, 381:110-124.
DOI URL |
[113] |
BERGER A, FREI R. The fate of chromium during tropical weathering: a laterite profile from Central Madagascar[J]. Geoderma, 2014, 213:521-532.
DOI URL |
[114] |
PAULUKAT C, DØSSING L N, MONDAL S K, et al. Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact: a Cr isotope perspective on the Sukinda Valley ore district (Orissa, India)[J]. Applied Geochemistry, 2015, 59:125-138.
DOI URL |
[115] |
D'ARCY J, BABECHUK M G, DØSSING L N, et al. Processes controlling the chromium isotopic composition of river water: constraints from basaltic river catchments[J]. Geochimica et Cosmochimica Acta, 2016, 186:296-315.
DOI URL |
[116] |
WU W, WANG X, REINHARD C T, et al. Chromium isotope systematics in the Connecticut River[J]. Chemical Geology, 2017, 456:98-111.
DOI URL |
[117] |
WILLE M, BABECHUK M G, KLEINHANNS I C, et al. Silicon and chromium stable isotopic systematics during basalt weathering and lateritisation: a comparison of variably weathered basalt profiles in the Deccan Traps, India[J]. Geoderma, 2018, 314:190-204.
DOI URL |
[118] |
FENG J L, LI C F. Chromium speciation and its stable isotopic signature in the dolomite-terra rossa weathering system[J]. Geoderma, 2019, 339:106-114.
DOI URL |
[119] |
SUN Z, WANG X, PLANAVSKY N. Cr isotope systematics in the Connecticut River estuary[J]. Chemical Geology, 2019, 506:29-39.
DOI URL |
[120] |
BONNAND P, JAMES R, PARKINSON I, et al. The chromium isotopic composition of seawater and marine carbonates[J]. Earth and Planetary Science Letters, 2013, 382:10-20.
DOI URL |
[121] |
PAULUKAT C, GILLEAUDEAU G J, CHERNYAVSKIY P, et al. The Cr-isotope signature of surface seawater: a global perspective[J]. Chemical Geology, 2016, 444:101-109.
DOI URL |
[122] |
GORING-HARFORD H J, KLAR J, PEARCE C R, et al. Behaviour of chromium isotopes in the eastern sub-tropical Atlantic Oxygen Minimum Zone[J]. Geochimica et Cosmochimica Acta, 2018, 236:41-59.
DOI URL |
[123] | MOOS S B. The marine biogeochemistry of chromium isotopes[D]. Cambridge: Massachusetts Institute of Technology, 2018. |
[124] | WANG X L, GLASS J B, REINHARD C T, et al. Species-dependent chromium isotope fractionation across the Eastern Tropical North Pacific Oxygen Minimum Zone[J]. Geochemistry, Geophysics, Geosystems, 2019, 20:2499-2514. |
[125] |
PEREIRA N S, VÖGELIN A R, PAULUKAT C, et al. Chromium isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic[J]. Geobiology, 2015, 4:1-13.
DOI URL |
[126] |
GUEGUEN B, REINHARD C T, ALGEO T J, et al. The chromium isotope composition of reducing and oxic marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 184:1-19.
DOI URL |
[127] |
WANG X L, PLANAVSKY N, HULL P, et al. Chromium isotopic composition of core-top planktonic foraminifera[J]. Geobiology, 2017, 15:51-64.
DOI URL |
[128] |
FARKAŠ J, FRŠDA J, PAULUKAT C, et al. Chromium isotope fractionation between modern seawater and biogenic carbonates from the Great Barrier Reef, Australia: implications for the paleo-seawater δ53Cr reconstruction[J]. Earth and Planetary Science Letters, 2018, 498:140-151.
DOI URL |
[129] |
WEI W, FREI R, CHEN T Y, et al. Marine ferromanganese oxide: a potentially important sink of light chromium isotopes?[J] Chemical Geology, 2018, 495:90-103.
DOI URL |
[130] |
FREI R, PAULUKAT C, BRUGGMANN S, et al. A systematic look at chromium isotopes in modern shells-implications for paleo-environmental reconstructions[J]. Biogeosciences, 2018, 15:4905-4922.
DOI URL |
[131] |
REMMELZWAAL S R, SADEKOV A Y, PARKINSON I J, et al. Post-depositional overprinting of chromium in foraminifera[J]. Earth and Planetary Science Letters, 2019, 515:100-111.
DOI URL |
[132] |
BRUGGMANN S, KLAEBE R M, PAULUKAT C, et al. Heterogeneity and incorporation of chromium isotopes in recent marine molluscs (Mytilus)[J]. Geobiology, 2019, 17:417-435.
DOI URL |
[133] |
BRUGGMANN S, SCHOLZ F, KLAEBE R, et al. Chromium isotope cycling in the water column and sediments of the Peruvian continental margin[J]. Geochimica et Cosmochimica Acta, 2019, 257:224-242.
DOI URL |
[134] |
FENDORF S E. Surface reactions of chromium in soils and waters[J]. Geoderma, 1995, 67:55-71.
DOI URL |
[135] |
OZE C, FENDORF S, BIRD D K, et al. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California[J]. American Journal of Science, 2004, 304:67-101.
DOI URL |
[136] |
YAMAZAKI H, GOHDA S, NISHIKAWA Y. Chemical forms of chromium in natural water[J]. Journal of the Oceanographical Society of Japan, 1980, 35:233-240.
DOI URL |
[137] |
BOYLE E, COLLIER R, DENGLER A, et al. On the chemical mass-balance in estuaries[J]. Geochimica et Cosmochimica Acta, 1974, 38:1719-1728.
DOI URL |
[138] |
CRANSTON, R, MURRAY, J. Chromium species in the Columbia River and estuary[J]. Limnology and Oceanography, 1980, 25:1104-1112.
DOI URL |
[139] |
CAMPBELL J A, YEATS P A. Dissolved chromium in the St. Lawrence estuary[J]. Estuarine, Coastal and Shelf Science, 1984, 19:513-522.
DOI URL |
[140] |
ABU-SABA K E, FLEGAL A R. Temporally variable freshwater sources of dissolved chromium to the San Francisco Bay estuary[J]. Environmental Science & Technology, 1997, 31:3455-3460.
DOI URL |
[141] |
ELDERFIELD H. Chromium speciation in sea water[J]. Earth and Planetary Science Letters, 1970, 9:10-16.
DOI URL |
[142] | ACHTERBERG E P, VAN DEN BERG C M. Chemical speciation of chromium and nickel in the western Mediterranean[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 1997, 44:693-720. |
[143] |
SIRINAWIN W, TURNER D R, Westerlund S. Chromium (Ⅵ) distributions in the Arctic and the Atlantic Oceans and a reassessment of the oceanic Cr cycle[J]. Marine Chemistry, 2000, 71:265-282.
DOI URL |
[144] |
SANDER S, KOSCHINSKY A, HALBACH P. Redox speciation of chromium in the oceanic water column of the Lesser Antilles and offshore Otago Peninsula, New Zealand[J]. Marine and Freshwater Research, 2003, 54:745-754.
DOI URL |
[145] |
CONNELLY D P, STATHAM P J, KNAP A H. Seasonal changes in speciation of dissolved chromium in the surface Sargasso Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53:1975-1988.
DOI URL |
[146] | BROECKER W, PENG T. Tracers in the Sea[M]. Palisades: Lamont-Doherty Geological Observatory, 1982. |
[147] |
ECONOMOU-ELIOPOULOS M, FREI R, MEGREMI I. Potential leaching of Cr (Ⅵ) from laterite mines and residues of metallurgical products (red mud and slag): an integrated approach[J]. Journal of Geochemical Exploration, 2016, 162:40-49.
DOI URL |
[148] |
CRANSTON R, MURRAY J. The determination of chromium species in natural waters[J]. Analytica Chimica Acta, 1978, 99:275-282.
DOI URL |
[149] |
CRANSTON R. Chromium in Cascadia Basin, northeast Pacific Ocean[J]. Marine Chemistry, 1983, 13:109-125.
DOI URL |
[150] | MURRAY J W, SPELL B, PAUL B. The contrasting geochemistry of manganese and chromium in the eastern tropical Pacific Ocean[M]// Trace metals in sea water. New York: Springer, 1983: 643-669. |
[151] |
RUE E L, SMITH G J, CUTTER G A, et al. The response of trace element redox couples to suboxic conditions in the water column[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1997, 44:113-134.
DOI URL |
[152] |
REINHARD C T, PLANAVSKY N J, ROBBINS L J, et al. Proterozoic ocean redox and biogeochemical stasis[J]. Proceedings of the National Academy of Sciences, 2013, 110:5357-5362.
DOI URL |
[153] |
QIN L, WANG X. Chromium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82:379-414.
DOI URL |
[154] |
ZACHARA J M, GIRVIN D C, SCHMIDT R L, et al. Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions[J]. Environmental Science & Technology, 1987, 21:589-594.
DOI URL |
[155] |
SMITH E, GHIASSI K. Chromate removal by an iron sorbent: mechanism and modeling[J]. Water Environment Research, 2006, 78:84-93.
DOI URL |
[156] |
JEANDEL C, MINSTER J. Chromium behavior in the ocean: Global versus regional processes[J]. Global Biogeochemical Cycles, 1987, 1:131-154.
DOI URL |
[157] |
SUESS E, VON HUENE R. Ocean Drilling Program Leg 112, Peru continental margin: Part 2, Sedimentary history and diagenesis in a coastal upwelling environment[J]. Geology, 1988, 16:939-943.
DOI URL |
[158] |
BRATSCH S G. Standard electrode potentials and temperature coefficients in water at 298.15 K[J]. Journal of Physical and Chemical Reference Data, 1989, 18:1-21.
DOI URL |
[159] |
FANNING J C. The chemical reduction of nitrate in aqueous solution[J]. Coordination Chemistry Reviews, 2000, 199:159-179.
DOI URL |
[160] |
SEMENIUK D, MALDONADO M T, JACCARD S L. Chromium uptake and adsorption in cultured marine phytoplankton: implications for the marine Cr cycle[J]. Geochimica et Cosmochimica Acta, 2016, 184:41-54.
DOI URL |
[161] |
FENDORF S E, LI G. Kinetics of chromate reduction by ferrous iron[J]. Environmental Science & Technology, 1996, 30:1614-1617.
DOI URL |
[162] |
SEDLAK D L, CHAN P G. Reduction of hexavalent chromium by ferrous iron[J]. Geochimica et Cosmochimica Acta, 1997, 61:2185-2192.
DOI URL |
[163] |
PETTINE M, MILLERO F J, PASSINO R. Reduction of chromium (Ⅵ) with hydrogen sulfide in NaCl media[J]. Marine Chemistry, 1994, 46:335-344.
DOI URL |
[164] |
KIM C, ZHOU Q, DENG B, et al. Chromium(Ⅵ) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics[J]. Environmental Science & Technology, 2001, 35:2219-2225.
DOI URL |
[165] |
ZOUBOULIS A, KYDROS K, MATIS K. Removal of hexavalent chromium anions from solutions by pyrite fines[J]. Water Research, 1995, 29:1755-1760.
DOI URL |
[166] |
PATTERSON R R, FENDORF S, FENDORF M. Reduction of hexavalent chromium by amorphous iron sulfide[J]. Environmental Science & Technology, 1997, 31:2039-2044.
DOI URL |
[167] |
MULLET M, BOURSIQUOT S, EHRHARDT J J. Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244:77-85.
DOI URL |
[168] |
MULLET M, DEMOISSON F, HUMBERT B, et al. Aqueous Cr (Ⅵ) reduction by pyrite: speciation and characterisation of the solid phases by X-ray photoelectron, Raman and X-ray absorption spectroscopies[J]. Geochimica et Cosmochimica Acta, 2007, 71:3257-3271.
DOI URL |
[169] |
GRAHAM A M, BOUWER E J. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides[J]. Environmental Science & Technology, 2009, 44:136-142.
DOI URL |
[170] |
PERCY D, LI X, TAYLOR G T, et al. Controls on iron, manganese and intermediate oxidation state sulfur compounds in the Cariaco Basin[J]. Marine Chemistry, 2008, 111:47-62.
DOI URL |
[171] |
BAUER K W, GUEGUEN B, COLE D B, et al. Chromium isotope fractionation in ferruginous sediments[J]. Geochimica et Cosmochimica Acta, 2018, 223:198-215.
DOI URL |
[172] |
GERDES G, DUNAJTSCHIK-PIEWAK K, RIEGE H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41:1273-1294.
DOI URL |
[173] |
DUGUID S M, KYSER T K, JAMES N P, et al. Microbes and ooids[J]. Journal of Sedimentary Research, 2010, 80:236-251.
DOI URL |
[174] |
VOEGELIN A R, NÄGLER T F, SAMANKASSOU E, et al. Molybdenum isotopic composition of modern and Carboniferous carbonates[J]. Chemical Geology, 2009, 265:488-498.
DOI URL |
[175] | WANG X L, OSSA OSSA F, PLANAVSKY N. Coupled U and Fe isotope records suggest onset of oxygenic photosynconfproc three billion years ago[C]. 2017. |
[176] | GAILLARDET J, VIERS J, DUPRÉ B. Trace elements in river waters[J]. Treatise on Geochemistry, 2003, 5:605. |
[177] | ZEKTSER I S, EVERETT L G, DZHAMALOV R G. Submarine groundwater[M]. Boca Raton: Chemical Rubber Company Press, 2006. |
[178] |
REINHARD C T, LALONDE S V, LYONS T W. Oxidative sulfide dissolution on the early Earth[J]. Chemical Geology, 2013, 362:44-55.
DOI URL |
[179] |
BALL J W, IZBICKI J. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California[J]. Applied Geochemistry, 2004, 19:1123-1135.
DOI URL |
[180] | CHEUNG K, GU J D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review[J]. International Biodeterioration & Biodegradation, 2007, 59:8-15. |
[181] |
WILKIN R T, SU C, FORD R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier[J]. Environmental Science & Technology, 2005, 39:4599-4605.
DOI URL |
[182] | PALMER C D, PULS R W. Natural attenuation of hexavalent chromium in ground water and soils[M]. Durham: Superfund Technology Support Center for Ground Water, 1994. |
[183] |
CLARK S K, JOHNSON T M. Effective isotopic fractionation factors for solute removal by reactive sediments: a laboratory microcosm and slurry study[J]. Environmental Science & Technology, 2008, 42:7850-7855.
DOI URL |
[184] | BENDER M L. The δ18O of dissolved O2 in seawater: a unique tracer of circulation and respiration in the deep sea[J]. Journal of Geophysical Research: Oceans, 1990, 95:22243-22252. |
[185] |
KONHAUSER K O, LALONDE S V, PLANAVSKY N J, et al. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event[J]. Nature, 2011, 478:369-373.
DOI URL |
[186] |
KLEIN C, BEUKES N J. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada[J]. Economic Geology, 1993, 88:542-565.
DOI URL |
[187] |
HUSTON D L, LOGAN G A. Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220:41-55.
DOI URL |
[188] |
KONHAUSER K O, PLANAVSKY N J, HARDISTY D S, et al. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172:140-177.
DOI URL |
[189] |
HOLLAND H D. Volcanic gases, black smokers, and the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2002, 66:3811-3826.
DOI URL |
[190] |
BRASIER M, MCLOUGHLIN N, GREEN O, et al. A fresh look at the fossil evidence for early Archaean cellular life[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361:887-902.
DOI URL |
[191] | SHIELDS-ZHOU G, OCH L. The case for a Neoproterozoic oxygenation event: geochemical evidence and biological consequences[J]. GSA Today, 2011, 21:4-11. |
[192] |
XIAO S, SHEN B, ZHOU C, et al. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan[J]. Proceedings of the National Academy of Sciences, 2005, 102:10227-10232.
DOI URL |
[193] |
ERWIN D H, LAFLAMME M, TWEEDT S M, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334:1091-1097.
DOI URL |
[194] |
YUAN X, CHEN Z, XIAO S, et al. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes[J]. Nature, 2011, 470:390-393.
DOI URL |
[195] | LENTON T M, BOYLE R A, POULTON S W, et al. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era[J]. Nature Geoscience, 2014(7):257-265. |
[196] | YIN Z, ZHU M, DAVIDSON E H, et al. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian[J]. Proceedings of the National Academy of Sciences, 2015, 112:1453-1460. |
[197] |
OHMOTO H. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota[J]. Geology, 1996, 24:1135-1138.
DOI URL |
[198] |
RYE R, HOLLAND H D. Paleosols and the evolution of atmospheric oxygen: a critical review[J]. American Journal of Science, 1998, 298:621-672.
DOI URL |
[199] |
CONDIE K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104:1-37.
DOI URL |
[200] |
CZAJA A D, JOHNSON C M, BEARD B L, et al. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland)[J]. Earth and Planetary Science Letters, 2013, 363:192-203.
DOI URL |
[201] | FARQUHAR J, ZERKLE A L, BEKKER A. Geological constraints on the origin of oxygenic photosynjournal[J]. Photosynjournal Research, 2011, 107:11-36. |
[202] |
CANFIELD D. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396:450-453.
DOI URL |
[203] |
POULTON S W, FRALICK P W, CANFIELD, D E. The transition to a sulphidic ocean ~1.84 billion years ago[J]. Nature, 2004, 431:173-177.
DOI URL |
[204] |
SCOTT C, LYONS T, BEKKER A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452:456-459.
DOI URL |
[205] |
HOLLAND H, FEAKES C, ZBINDEN E. The Flin Flon paleosol and the composition of the atmosphere 1.8 BYBP[J]. American Journal of Science, 1989, 289:362-389.
DOI URL |
[206] |
BABECHUK M G, KAMBER B S. The Flin Flon paleosol revisited[J]. Canadian Journal of Earth Sciences, 2013, 50:1223-1243.
DOI URL |
[207] | SHAKOTKO P. Paleoregolith and unconformity-type uranium mineralization, Beaverlodge Lake, Great Bear Magmatic Zone, Northwest Territories[D]. Saskatoon: University of Saskatchewan, 2014. |
[208] |
SPERLING E A, ROONEY A D, HAYS L, et al. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean[J]. Geobiology, 2014, 12:373-386.
DOI URL |
[209] |
ZHANG S, WANG X, WANG H, et al. Sufficient oxygen for animal respiration 1400 million years ago[J]. Proceedings of the National Academy of Sciences, 2016, 113:1731-1736.
DOI URL |
[210] |
ZHANG K, ZHU X, WOOD R A, et al. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes[J]. Nature Geoscience, 2018, 11:345-350.
DOI URL |
[211] |
DIAMOND C, PLANAVSKY N, WANG C, et al. What the ~1.4 Ga Xiamaling Formation can and cannot tell us about the mid-Proterozoic ocean[J]. Geobiology, 2018, 16:219-236.
DOI URL |
[212] |
CANFIELD D E, POULTON S W, NARBONNE G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315:92-95.
DOI URL |
[213] |
SAHOO S K, PLANAVSKY N J, KENDALL B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489:546-549.
DOI URL |
[214] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506:307-315.
DOI URL |
[215] |
MILLS D B, WARD L M, JONES C, et al. Oxygen requirements of the earliest animals[J]. Proceedings of the National Academy of Sciences, 2014, 111:4168-4172.
DOI URL |
[216] |
REINHARD C T, PLANAVSKY N J, OLSON S L, et al. Earth's oxygen cycle and the evolution of animal life[J]. Proceedings of the National Academy of Sciences, 2016, 113:8933-8938.
DOI URL |
[217] |
LI Z X, LI X H, ZHOU H, et al. Grenvillian continental collision in south China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30:163-166.
DOI URL |
[218] |
CAWOOD P A. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic[J]. Earth-Science Reviews, 2005, 69:249-279.
DOI URL |
[219] |
HOFFMAN P F, KAUFMAN A J, HALVERSON G P, et al. A Neoproterozoic Snowball Earth[J]. Science, 1998, 281:1342-1346.
DOI URL |
[220] |
HOFFMAN P F, SCHRAG D P. The snowball Earth hypojournal: testing the limits of global change[J]. Terra Nova, 2002, 14:129-155.
DOI URL |
[221] |
KNOLL A H. Paleobiological perspectives on early eukaryotic evolution[J]. Cold Spring Harbor Perspectives in Biology, 2014, 6:a016121.
DOI URL |
[222] |
COHEN P A, MACDONALD F A. The Proterozoic record of eukaryotes[J]. Paleobiology, 2015, 41:610-632.
DOI URL |
[223] |
MCFADDEN K A, HUANG J, CHU X, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences, 2008, 105:3197-3202.
DOI URL |
[1] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
[2] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[3] | YUAN Yaqiong, SUN Ping’an, YU Shi, HE Shiyi. Fractionation of stable isotopes and the carbon-water cycle in Yangtze River [J]. Earth Science Frontiers, 2024, 31(5): 409-420. |
[4] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[5] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[6] | WU Kunyan, LIU Biao, WU Qianhong, LI Huan. Oxygen isotope composition of scheelite in magmatic-hydrothermal W deposits: Tracing fluid source and evolution process [J]. Earth Science Frontiers, 2024, 31(2): 299-312. |
[7] | LI Keran, YANG Di, SONG Jinmin, LI Zhiwu, JIN Xin, LIU Fang, YANG Xiong, LIU Shugen, YE Yuehao, FAN Jianping, REN Jiaxin, ZHAO Lingli, XIA Shun, CHEN Wei. Dolomitization in the Lower Cambrian Longwangmiao Formation in northeastern Yunnan: Insights from a simulation study [J]. Earth Science Frontiers, 2024, 31(2): 313-326. |
[8] | CHEN Zeya, CHEN Jianfa, LI Maowen, FU Rao, SHI Xiaofei, XU Xuemin, WU Jianjun. The hydrogen isotopic composition of methane from Lower Paleozoic natural gases, cratonic platform areas, Tarim Basin and its geological significance [J]. Earth Science Frontiers, 2023, 30(6): 232-246. |
[9] | CHEN Yu, XU Fei, CHENG Hongfei, CHEN Xianzhe, WEN Hanjie. Lithium isotope geochemistry—a review [J]. Earth Science Frontiers, 2023, 30(5): 469-490. |
[10] | XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping’an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa River Basin [J]. Earth Science Frontiers, 2023, 30(5): 510-525. |
[11] | LI Wenqiang, XU Wei, TIAN Shihong. Lithospheric mantle metasomatized by oceanic crust-derived fluids: Li and Pb isotopic evidence from potassic volcanic rocks in the southern Qiangtang terrane, central Tibet [J]. Earth Science Frontiers, 2023, 30(4): 376-388. |
[12] | LIU Jiawen, TIAN Shihong, WANG Ling. Application of magnesium stable isotopes for studying important geological processes—a review [J]. Earth Science Frontiers, 2023, 30(3): 399-424. |
[13] | FAN Qi, FAN Tailiang, LI Qingping, ZHANG Yan, GU Yu, SHANG Yaxin. Carbon isotope excursion and its genetic mechanism during the Sinian to Cambrian transition in the northern Tarim Basi [J]. Earth Science Frontiers, 2021, 28(5): 436-447. |
[14] | LIU Hong, ZHANG Linkui, HUANG Hanxiao, LI Guangming, OUYANG Yuan, YU Huai, LIANG Wei, ZHANG Hongming, CHEN Xiaoping. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdisi: fluid inclusion and H-O isotope evidence [J]. Earth Science Frontiers, 2020, 27(4): 49-65. |
[15] | BAI Jianghao, LIU Fang, ZHANG Zhaofeng, AN Yajun, LI Xin, XUE Yongli, XU Yuming. Key aspects of non-traditional isotope analysis [J]. Earth Science Frontiers, 2020, 27(3): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||