地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 179-209.DOI: 10.13745/j.esf.sf.2025.4.49

• 成矿过程新论 • 上一篇    下一篇

大陆碰撞成矿作用:新认识与新进展

侯增谦1(), 杨志明2, 张洪瑞2, 王瑞3, 宋玉财2, 刘琰2, 郑远川3, 许博3, 王庆飞3, 刘英超2   

  1. 1.深地探测与矿产勘查全国重点实验室, 中国地质科学院, 北京 100037
    2.深地探测与矿产勘查全国重点实验室, 中国地质科学院地质研究所, 北京 100037
    3.地质过程与成矿预测全国重点实验室, 中国地质大学(北京), 北京 100083
  • 收稿日期:2025-04-21 修回日期:2025-05-29 出版日期:2025-11-25 发布日期:2025-11-12
  • 作者简介:侯增谦(1961—),男,研究员,中国科学院院士,主要从事矿床地质研究。E-mail: houzengqian@126.com
  • 基金资助:
    国家重点研发计划项目(2022YFF0800903)

Metallogenesis in collisional orogens: New insights and advances

HOU Zengqian1(), YANG Zhiming2, ZHANG Hongrui2, WANG Rui3, SONG Yucai2, LIU Yan2, ZHENG Yuanchuan3, XU Bo3, WANG Qingfei3, LIU Yingchao2   

  1. 1. State Key Laboratory of Deep Earth and Mineral Exploration, Chinese Academy of Geological Sciences, Beijing 100037, China
    2. State Key Laboratory of Deep Earth and Mineral Exploration, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
    3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-04-21 Revised:2025-05-29 Online:2025-11-25 Published:2025-11-12

摘要:

大陆碰撞成矿理论框架已经初步构建,但在碰撞带岩石圈结构与深部致矿过程、碰撞带热状态与成矿差异控制、关键成矿过程与矿床成因机理等方面仍认识不足。近年来,通过地球物理-地球化学-岩石学-成矿学等多学科交叉研究和实验模拟,大陆碰撞成矿作用研究取得了诸多新认识和新进展。研究表明,碰撞带可以分为冷碰撞和热碰撞两种基本类型。其中,比利牛斯、阿尔卑斯和加里东造山带为冷碰撞演化序列代表,扎格罗斯、喜马拉雅和华力西造山带为热碰撞演化序列代表。冷/热结构受控于碰撞带深部过程和地幔热扰动强度。碰撞前大洋俯冲对上覆岩石圈的改造,导致岩石圈地幔交代富集、新生下地壳形成和古老地壳活化再造,为碰撞期含铜、金、稀土等岩浆系统形成提供了重要物源。碰撞期软流圈上涌交代、改造、吞噬上覆岩石圈,导致强烈的壳幔物质能量交换,为碰撞成矿提供了深部动力机制。碰撞成矿作用主要形成斑岩铜金矿床、MVT铅锌矿床、碳酸岩型稀土矿床、造山型金矿床以及淡色花岗岩有关的稀有金属矿床等。碰撞型大型斑岩铜矿床的形成要求:大陆板片中缓角度俯冲、俯冲板片垂向撕裂、新生下地壳部分熔融和壳内硫化物分解;MVT超大型铅锌矿的形成要求:褶冲系和前陆带环境、压/张构造转换、盆地卤水沿拆离带的迁移汇聚和前锋带的构造圈闭;碳酸岩型稀土矿床的形成要求:富稀土沉积物俯冲循环、碳酸岩化地幔根部分熔融、富REE碳酸岩浆壳内演化、高密度盐熔体与围岩交代反应;造山型金矿床的形成要求:岩石圈立交桥结构与壳/幔解耦变形、富水幔源超钾质岩浆集聚与去气、流体沿超壳断裂迁移与交代;与淡色花岗岩有关的稀有金属矿床的形成要求:活化改造地壳的部分熔融、拆离构造驱动的岩浆分异或者热驱动的岩浆高度分异。基于上述要素,结合典型矿床对比,建立和完善了大陆碰撞带4种典型矿床的成矿模型。

关键词: 大陆碰撞, 新生下地壳, 俯冲角度, 板片撕裂, 岩石圈架构, 成矿作用

Abstract:

The theoretical framework for metallogenesis in collisional orogen belts is established, yet aspects like lithospheric architecture, deep mineralization processes, thermal regimes and ore genesis mechanisms require refinement. Interdisciplinary research and experimental simulations have greatly improved our understanding of collision-related metallogenesis in orogenic systems. Our research demonstrates that collision zones can be divided into two fundamental types: cold- and hot-collisions. The former includes the Pyrenean, Alpine, and Caledonian orogenic belts, while the latter includes the Zagros, Himalayan, and Variscan orogenic belts. The distinction between these regimes is primarily controlled by lithospheric thermal states and geodynamics. Pre-collision oceanic subduction modifies overlying lithosphere via mantle refertilization, juvenile lower crust formation, and crustal reworking, controlling Cu-Au-REE magmatism during subsequent collision. Asthenospheric upwelling drives crust-mantle exchange, providing deep metallogenic drivers. Mineral deposits within collisional orogen belts include porphyry Cu-Au deposits, Mississippi Valley-type (MVT) Pb-Zn deposits, carbonatite-associated REE deposits, orogenic Au deposits, and rare metal deposits related to leucogranites. The key factors for the formation of collisional giant porphyry Cu deposits include: moderately dipping continental subduction, vertical slab tearing, juvenile lower crust anatexis, and sulfides remobilization. The major factors for the formation of MVT Pb-Zn deposits include: fold-thrust belt, transpression or extension environments, basinal brine migration along detachments, and structural traps. The formation of carbonatite-associated REE deposits is related to the recycling of REE-enriched sediments via subduction, partial melting of carbonate-rich mantle sources, crustal magma evolution, and wall-rock metasomatism by saline melts. The main factors for the formation of orogenic Au deposits include: trans-lithospheric architecture and crust-mantle decoupling, accumulation and devolatilization of volatile-rich, mantle-derived ultrapotassic magma, and fluid flux along crustal-scale faults. Leucogranite-related rare metal deposits form through anatexis of fertile crust and magma differentiation facilitated via heat advenction along detachments. Metallogenic models for these deposit types are refined through comparative analysis.

Key words: continental collision, juvenile lower crust, subduction angle, slab tearing, lithospheric architecture, metallogenesis

中图分类号: