

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 156-178.DOI: 10.13745/j.esf.sf.2025.8.63
收稿日期:2025-08-20
修回日期:2025-08-30
出版日期:2025-11-25
发布日期:2025-11-12
作者简介:牛耀龄(1959—),男,著名岩石学、矿物学、地球化学和全球构造学家,中国地质大学(北京)荣誉教授,英国杜伦大学地球科学终身教授,中国崂山国家实验室领军科学家,对全球地球科学的研究与教育作出了重要贡献。E-mail: yaoling.niu@foxmail.com
基金资助:Received:2025-08-20
Revised:2025-08-30
Online:2025-11-25
Published:2025-11-12
摘要:
我们只有钻穿完整洋壳,回答长期被忽略的基本科学问题,才能完善板块构造理论。这些问题包括:洋壳由哪些岩石组成,它的厚度变化幅度有多大,洋壳-地幔地震波速不连续莫霍面(即Mohorovičić或Moho面)究竟反映什么样的岩石学变化?这些问题似乎都是众所周知的事实,但事实并非如此。准确地讲,我们目前的认知远不完整,一些流行的误解来自对方便假设的选择性解读。最流行的假设之一是,从地震波速推断的洋壳(即莫霍面之上的岩石)是岩浆成因的。检验这一假设是当年“莫霍面计划”(Project Mohole:1957—1966)的核心动机:钻透完整洋壳,钻穿莫霍面,钻入地幔。“莫霍面计划”因技术挑战和造船预算成本不断飙升等因素而终结,但所研发的技术使随后的大洋科学钻探取得了成功。因此,对初始的假说一直未能检验,只是人们一直简单地认为莫霍面之上的洋壳是在洋中脊由岩浆冷凝形成的。因为全球莫霍面的深度(即,洋壳厚度)很均一,为(6.0±1.0) km,所以整个固体地球科学界,被误导30多年,误认为地震波速揭示的洋壳(“地震洋壳”)是岩浆成因的“岩浆洋壳”,在全球厚度均匀一致,与洋脊扩张速率无关。然而在许多慢速、超慢速扩张洋脊地段有一致厚度的“地震洋壳”,却裸露有大量蛇纹岩化地幔橄榄岩。因此,我们必须客观严谨地审视关于洋脊岩浆作用的流行观点,这需要钻穿完整洋壳,钻入地幔。因为只有快速扩张洋脊有可能形成完整的岩浆洋壳,所以只有在太平洋海底地质简单的理想部位打钻才有可能实现钻穿岩浆洋壳的目标。美国引领全球大洋科学钻探的“决心号”(D/V JOIDES Resolution)已于2024年底退役。目前公认中国建造的“梦想号”(D/V Meng Xiang)大洋钻探船是当今唯一具备钻穿洋壳能力的钻井船,其先进的钻探能力和较低的运行成本使钻穿洋壳的科学梦想成为可能。
• 我们必须钻穿完整洋壳,圆满回答基本科学问题,完善板块构造理论。
• “地震洋壳”等于“岩浆洋壳”的流行观点误导多年,必须结束。
• “地震洋壳”,至少是慢速扩张洋脊形成的洋壳,是岩浆岩和蛇纹岩化的地幔橄榄岩的无序混合。
• 只有快速扩张洋脊能形成完整岩浆洋壳,所以钻穿完整太平洋洋壳才能准确认知莫霍面的岩石学性质。
• 中国的“梦想号”是目前唯一能钻穿洋壳的科学钻探船。
中图分类号:
牛耀龄. 我们为什么要钻穿完整的洋壳?[J]. 地学前缘, 2025, 32(6): 156-178.
NIU Yaoling. Why should we drill through intact ocean crust?[J]. Earth Science Frontiers, 2025, 32(6): 156-178.
图1 全球海底地图与洋壳结构解译图 (a)海底年龄,展示覆盖约三分之二固体地球表面的洋壳正在沿着围绕全球约60 000 km长的扩张洋脊形成,并随年龄往洋脊两侧扩张。请注意,在20世纪60年代板块构造发现之前,我们并不知道洋盆如此年轻(<2亿年),也不知道海底扩张和洋壳在洋脊的形成。(b)与大陆地壳(25~70 km;平均约35 km)相比,洋壳厚度很薄且均一(5~7 km;平均(6.1±1.0) km;引自文献[48])。 (c) 洋壳地震波速(vP)与“典型”蛇绿岩套岩性和波速的比较。沿造山带蛇绿岩套的识别是板块构造理论在大陆地质研究中最早和最成功的应用之一。蛇绿岩套被认为是在古海底扩张洋脊形成的古洋壳,代表古板块边界。请注意令人困惑的“地震Moho”和“岩石学Moho”,如果“层状橄榄岩”和地幔橄榄岩的顶部蛇纹岩化了,就会有另一个“地震Moho”。资料来源如图所示。
Fig.1 Global seafloor map and interpreted ocean crust architecture
图2 从地震波速资料,洋壳范围内的蛇纹岩化地幔橄榄岩可能被误判为岩浆岩 (a)修改自文献[2],展示地幔橄榄岩的密度和地震波速(vP)变化与蛇纹岩化程度的关系。新鲜地幔橄榄岩vP>8 km/s。≥30%蛇纹岩化的地幔橄榄岩具有和地壳岩浆岩相似的密度和地震波速(如浅蓝色点画矩形所示)。请注意,暴露在海底的深海橄榄岩通常具有90%~100%的蛇纹岩化(引自文献[30,55-56])。 (b)显示实验对(a)的确认(引自文献[16-17])。其中彩色区域对应于地质上合理的条件。彩色带近似于图1c中的层状岩性条件。关键是蛇纹岩化的地幔橄榄岩具有与岩浆地壳岩(例如玄武岩、辉绿岩和辉长岩;见图1c)无法区分的地震波速性质。
Fig.2 Serpentinized mantle peridotites can be seismically interpreted as crustal rocks of magmatic origin
图3 洋中脊之下岩浆生成过程示意图 (a)扩张洋脊地幔热结构示意(左)和定性(右)描述,其中所有要素均显而易见(改自Niu,2016,2021)。板块分离导致软流圈地幔绝热上升,与固相线在Po处(即To)相交时开始减压熔融,抵达Pf(Tf)时地幔熔融终止(固体-熔体平衡的最终深度),即传导(“冷”) 热边界层(CTBL;区域)限制了地幔熔融 ②)。由于浮力差,熔体(红色箭头细虚线)比固体残余(蓝色箭头实线)上升更快。熔体抽取形成洋壳,而熔融残余橄榄岩加入了岩石圈地幔的增生。后者暴露在海底时,被称为深海橄榄岩(AP)。(b)和(c)分别表示快速和慢速扩张洋脊的情形,展示软流圈地幔的上涌速率与扩张速率(见图5)、减压区间 [Po-Pf] 和熔融程度(F)成正比,而与CTBL的厚度(或 Pf 深度)成反比。
Fig.3 Illustrations of magma generation beneath ocean ridges
图4 热损失模型预测:洋中脊地幔熔融程度随扩张速率增加而增大 地幔热损失模型展示洋脊地幔上涌速率(U)随着扩张速率的增加而增加(2v; 引自文献[65-66,77])。左上公式中,U为软流圈地幔上涌流场速率,2v洋脊扩张速率,x和z分别为流场中某点位到洋脊中心轴线的距离和深度。由于减压熔融深度区间(Po-Pf),亦即地幔熔融程度(F),与地幔流上升速率成正比(见图3),岩浆的产量和岩浆洋壳的厚度必须随着扩张速率的增加而增加,与全球洋脊玄武岩(MORB)化学组成(见图4)和热损失模型(见图6b的[3,4,5])一致。为了便于说明,图中只显示当x=0时(洋脊正下方),地幔上涌流的最大速率即U=2v/π。当洋脊扩张速率2v<20 mm/a时(红色),也只是线性延伸,没有突减。因此,全球均一Moho深度(即地震地壳厚度,(6.3±0.9) km;见图6a;引自文献[47-48])不代表岩浆成因洋壳。
Fig.4 Thermal model prediction of the extent of ocean ridge mantle melting and magma production that increases with increasing spreading rate
图5 洋中脊玄武岩(MORB)组成表明:洋中脊地幔熔融程度随扩张速率增加而增大 修改自文献[73](a-c)是基于当时有限的MORB数据(引自文献[68])。(d-f)是基于更新的全球 MORB 数据(引自文献[75]),这证实了近30 年前得出的结论(亦即a-c),洋脊地幔的熔融程度随着洋脊扩张速率的增加而增加(g;并见图3)。数据点是扩张速率区间的平均值(引自文献[54,73])。
Fig.5 Ocean ridge basalt (MORB) composition shows the extent of ocean ridge mantle melting and magma production that increase with increasing spreading rate
图6 地震洋壳厚度(莫霍面深度)及模型解释 (a)洋脊“地震洋壳”厚度(即Moho面深度)与扩张速率的关系图(引自文献[47-48])。这些作者简单地将“地震洋壳”厚度称为“岩浆洋壳”厚度。他们强调全球FSR>20 mm/a洋脊近于均一的“岩浆洋壳厚度”为(6.3±0.9) km,但超慢速扩张洋脊(FSR<20 mm/a;如西南印度洋脊和北极夹克洋脊),“岩浆洋壳”变薄。(b)“岩浆洋壳厚度”模型与全扩张速率(FSR)的关系。模型 [1](引自文献[47])和[2](引自文献[76]) 只是用地震数据(a)作为制约条件,模拟“岩浆洋壳”,忽略了岩石学数据(图5)和物理学原理(图4),所以模型[1,2]没有意义。洋脊热损失热模型[3](引自文献[65]),[4](引自文献[77])和[5](引自文献[78])显示预测的岩浆生成量转换为“岩浆地壳厚度”与洋脊扩张的速率的关系。尽管这3种模型略有不同,但它们显示出总体一致的曲线趋势,因为它们都考虑了地幔上涌速率,因此减压熔融区间与扩张速率成正比的关系(引自文献[66]),如图4,并与MORB化学组成得到的结论一致(图5)。
Fig.6 Seismic ocean crust thickness (Moho depth) and model interpretations
图7 展示许多慢速与超慢速扩张洋中脊部位出露大量蛇纹岩化地幔橄榄岩,但这些地区仍然具有正常地震洋壳厚度((6.0±1.0) km) (a)主要板块漂移速度矢量的全球板块构造图(用APM模型: http://jules.unavco.org/Voyager/GEM_GSRM)以显示蛇纹岩化地幔橄榄岩或深海橄榄岩 (AP)出露的位置,这些蛇纹岩化橄榄岩暴露在超慢速扩张洋脊裂谷(例如,北极Gakkel洋脊和西南印度洋脊)和慢速扩张大西洋洋脊(MAR;紫色矩形框内;>20 mm/a和<40 mm/a)(引自文献[59-62])。请注意,所有暴露蛇纹岩的MAR洋脊地段均为FSR>20 mm/a (21~35 mm/a;见图6a),所以 FSR>20 mm/a的洋脊均具有“均匀岩浆壳厚度”的解释(引自文献[48])不正确。快速扩张东太平洋隆的特点是具有宽缓轴脊和丰富的熔岩,绝对没有蛇纹岩。请注意,来自东太平洋的蛇纹岩不是来自洋脊,而是来自 Garrett和Terevaka转换断层及Hess Deep,如图所示(引自文献[57-58,68])。 (b) 从南极俯视的南大洋板块构造图(资料来源见(a)),表明南极大陆板块基本上是静止不动的,因为它周边是被动大陆边缘,并且被洋脊包围,这些洋脊以外的所有其他板块都向远端俯冲带漂移(引自文献[102])。(c)左侧示意海沟后撤是大陆漂移的驱动力(引自文献[101-102]);在重力作用下,俯冲板块不仅会向后回卷,而且其弯曲“肩膀”必然会在重力作用下向海移动,被描述为“海沟后撤”,也叫俯冲带后撤。虚线表示海沟/俯冲带随时间变化的新位置:T1→T2→T3。因此,大陆板块被动地跟随后撤的海沟,这就是大陆向左漂移的原因。这个概念在右((a)的一部分)展示,Nazca板块向东俯冲到南美洲大陆之下,海沟向西后撤,南美洲大陆向西漂移,因此造就了海底扩张和南大西洋的增长。
Fig.7 Slow- and ultraslow-spreading ridge locations with normal seismic thickness (6.0±1.0 km) where serpentinized mantle peridotites are exposed on the seafloor
图8 洋中脊横向地貌形态随扩张速率变化示意图 示意图(改自文献[83])来说明洋脊地形地貌和岩浆生产量与洋脊扩张速率的关系,进一步支持岩浆产量、补给量(引自文献[82])和地幔熔融程度随洋脊扩张速率的增加而增(引自文献[30,54,68,73])。请注意在北极等超慢速扩张洋脊(Gakkel Ridge和Southwest Indian Ridge)发现常有“无(乏)岩浆”脊段的情景,引自文献[62,79,92])。
Fig.8 Illustration of across-ocean ridge morphology varying as a function of spreading rate
图9 洋中脊横向地貌形态随扩张速率变化的定量分析 全球洋脊地形地貌与扩张速率的关系(引自文献[85])。横跨脊轴的地形起伏是脊轴相对于洋脊两侧40 km处水深的相对深度。显然,FSR>80 mm/a的快速洋脊以“轴脊”的正地形为特征,FSR<50 mm/a的慢速扩张洋脊以“轴谷”的负地形为特征,而FSR介于约50~80 mm/a 扩张速率的过渡洋脊同时有正地形和负地形,这种地形地貌模式与洋脊扩张速率的关系恰好对应于MORB主量元素与洋脊扩张速率的关系(引自文献[71])。这些全球资料证实了早期的认识(引自文献[82]),反映地幔熔融程度,岩浆生产量以及岩浆补给量与岩浆扩张速率的成因关系。
Fig.9 Quantitative analysis of across-ocean ridge morphology varying as a function of spreading rate
图10 洋中脊横向与纵向剖面示意图。展示快速扩张与慢速扩张洋中脊的洋壳-地幔岩石结构关系 修改自文献[99],总结了快速扩张洋脊横向(a)、纵向(b)(修改自文献[69])和慢速扩张洋脊横向(c)、纵向(d)在地貌形态和洋壳/地幔岩石构造方面的差异(修改自文献[60]),以及他们对热液变质作用的理解。请注意,(c)展示了经过充分研究的海底核杂岩复合体(OCCs),其中蛇纹岩化深海橄榄岩和携带的辉长岩裸露在海底(引自文献[92])。
Fig.10 Cartoon illustrations of across-ridge and along-ridge cross sections to show the lithological architecture of ocean crust/mantle relationships between fast- and slow-spreading ocean ridges
| [1] | DIETZ R S. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 1961, 190: 854-857. |
| [2] | HESS H H. History of ocean basins. ENGEL A E J, JAMES H L, LEONARD B F. Petrologic studies: a volume to Honor A F[M]. Buddington: Geological Society of America, 1962: 599-620. |
| [3] | VINE F J, MATTHEWS D H. Magnetic anomalies over ocean ridges[J]. Nature, 1963, 199: 947-949. |
| [4] | MAXWELL A E, VON HERZON R P, ANDREWS J E, et al. Initial Reports of Deep Sea Drilling Project.Volume III[S/OL]. 1970. https://doi.org/10.2973/dsdp.proc.3.1970. |
| [5] | MCKENZIE D P, PARKER R L. The North Pacific: an example of tectonics on a sphere[J]. Nature, 1967, 216: 1276-1280. |
| [6] | MORGAN W J. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 1968, 73: 1959-1982. |
| [7] | LE PICHON X. Sea-floor spreading and continental drift[J]. Journal of Geophysical Researc, 1968, 73: 3661-3697. |
| [8] | WEGENER A. Die entstehhung der kontinente[J]. Geologische Rundschau, 1912, 3: 276-293. |
| [9] | RAITT R W. Seismic refraction studies of the Pacific ocean basin[J]. Geological Society of America Bulletin, 1956, 67: 1623-1640. |
| [10] | EWING J, EWING M. Seismic-refraction profiles in the Atlantic ocean basins, in the Mediterranean Sea, on the Mid-Atlantic Ridge and in the Norwegian Sea[J]. Geological Society of America Bulletin, 1959, 70: 291-318. |
| [11] | HESS H H. The oceanic crust[J]. Journal of Marine Research, 1955, 14: 423-439. |
| [12] | ENGEL A E J, ENGEL C G. Composition of basalts from the mid-Atlantic ridge[J]. Science, 1964, 144: 1330-1333. |
| [13] | MUIR I D, TILLEY C E. Basalts from the northern part of the rift zone of the mid-Atlantic ridge[J]. Journal of Petrology, 1964, 5(3): 409-434. |
| [14] | ENGEL A E J, ENGEL C G, HAVENS R G. Chemical characteristics of oceanic basalts and the upper mantle[J]. Geological Society of America Bulletin, 1965, 76(7): 719-734. |
| [15] | HESS H H. The AMSOC hole to the Earth’s mantle[J]. American Scientist, 1960, 48: 254-263. |
| [16] | CHRISTENSEN N I. The abundance of serpentinites in the oceanic crust[J]. Journal of Geology, 1972, 80(6): 709-719. |
| [17] | CHRISTENSEN N I. Serpentinites, peridotites, and seismology[J]. International Geology Review, 2004, 46(9): 795-816. |
| [18] | ANONYMOUS. Penrose field conference on ophiolites[J]. Geotimes, 1972, 17: 24-25. |
| [19] | COLEMAN R G. Ophiolites: Ancient Oceanic Lithosphere?[C]. Berlin Heidelberg: Springer-Verlag, 1977: 229. |
| [20] | BRUCE M C, NIU Y L. Evidence for Palaeozoic magmatism recorded in the Late Neoproterozoic Marlborough ophiolite, New England Fold Belt, central Queensland[J]. Australian Journal of Earth Sciences, 2000, 47(6): 1065-1076. |
| [21] | BRUCE M C, NIU Y L. Early Permian supra-subduction assemblage of the South Island terrane, Percy Isles, New England Fold Belt, Queensland[J]. Australian Journal of Earth Sciences, 2000, 47(6): 1077-1085. |
| [22] | SHERVAIS J W. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 2000GC000080. |
| [23] | STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3.1-3.38. |
| [24] | STERN R J, REAGAN M, ISHIZUKA O, et al. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites[J]. Lithosphere, 2010, 4: 469-483. |
| [25] | PEARCE J A, ROBINSON P T. The Troodos ophiolite complex probably formed in a subduction initiation slab edge setting[J]. Gondwana Research, 2010, 18(1): 60-81. |
| [26] | NIU Y L. Progress and applications of the plate tectonics theory[J]. Science Bulletin, 2023, 68(13): 1340-1341. |
| [27] | NIU Y L. Do we really need to drill through the intact ocean crust?[J]. Geoscience Frontiers, 2025, 16(1): 101954. |
| [28] | NIU Y L, O’HARA M J, PEARCE J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrologic perspective[J]. Journal of Petrology, 2003, 44(5): 851-866. |
| [29] | NIU Y L, SHI X F, LI T G, et al. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement[J]. Science Bulletin, 2017, 62(021): 1464-1472. |
| [30] | NIU Y L. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites[J]. Journal of Petrology, 1997, 38(8): 1047-1074. |
| [31] | NIU Y L. The 60-year-old quest of ocean drilling into the mantle remains unfulfilled and we must persevere[J]. Science Bulletin, 2023, 68(23): 2893-2895. |
| [32] | VOOSEN P. At long last, ocean drillers exhume a bounty of rocks from Earth’s mantle-Rocks fulfil 60-year-old quest and could yield science bonanza[N]. Science News, 2023-05-25. https://www.science.org/content/article/long-last-ocean-drillers-exhume-bounty-rocksearth-s-mantle. |
| [33] | VOOSEN P. Ocean drillers exhume a bounty of mantle rocks-deep cores fulfill 60-year-old quest and could yield science bonanza[J]. Science, 2023, 380: 876-877. |
| [34] | BASCOM W. The Mohole[J]. Scientific American, 1959, 200(4): 41-49. |
| [35] | BATIZA R, ALLAN J F, BACH W, et al. Petrology, geochemistry, and petrogenesis of Leg 142 basalts - synthesis of results[C]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 142: 101. |
| [36] | DICK H J B, NATLAND J H, MILLER D J, et al. Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program 1997[S/OL]. 1999, 176: https://doi.org/10.2973/odp.proc.ir.176.1999. |
| [37] | DICK H J B, NATLAND J H, ALT J C, et al. A long in-situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 2000, 179(1): 31-51. |
| [38] | KOPPERS A A P, COGGON R. Exploring Earth by Scientific Ocean Drilling: 2050 Science Framework[S/OL]. 2020. https://doi.org/10.6075/J0W66J9H. |
| [39] | TEAGLE D, ILDEFONSE B. Journey to the mantle of the Earth[J]. Nature, 2011, 471: 437-439. |
| [40] | GILLIS K M, MEVEL C, ALLAN J F, Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program[S/OL]. 1993: 147. https://doi.org/10.2973/odp.proc.ir.2147.1993. |
| [41] | GILLIS K M, SNOW J E, KLAUS A. et al. Primitive layered gabbros from fast-spreading lower oceanic crust[J]. Nature, 2014, 505: 204-207. |
| [42] | ROBINSON P T, VON HERZEN R P, ADAMSON A C. et al. Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program[S/OL]. 1987: 118. https://doi.org/10.2973/odp.proc.ir.118.1989. |
| [43] | DICK H J B, MACLEOD C J, BLUM O. et al. Proc. 2017. IODP 360 Preliminary Report[S/OL]. 2017, 360: 51: http://publications.iodp.org/proceedings/360/360title.html. |
| [44] | MCCAIG A, LANG S, et al. Building blocks of life, atlantis massif. IODP 399[S/OL]. 2023. https://iodp.tamu.edu/scienceops/expeditions/atlantis_massif_blocks_of_life.html. |
| [45] | LISSENBERG C J, MCCAIG A, LANG S Q, et al. A long section of serpentinized depleted mantle peridotite[J]. Science, 2024, 385(6709): 623-629. |
| [46] | CHEN Y J. Oceanic crustal thickness versus spreading rate[J]. Geophysical Research Letters, 2013, 19(8): 753-756. |
| [47] | BOWN J W, WHITE R S. Variation with spreading rate of oceanic crustal thickness and geochemistry[J]. Earth and Planetary Science Letters, 1994, 121(3/4): 435-449. |
| [48] | WHITE R S, MINSHULL T A, BICKLE M J, et al. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data[J]. Journal of Petrology, 2001, 42(6): 1171-1196. |
| [49] | MCKENZIE D, BICKLE M J. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 1988(3): 625-679. |
| [50] | LANGMUIR C H, KLEIN E M, PLANK T. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges[J]. Mantle flow and melt generation at mid-ocean ridges, AGU Geophys Monogr, 1992, 71: 183-280. |
| [51] | NIU Y L. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11: 9-46. |
| [52] | AMSOC Committee. Drilling thru the Earth’s crust: a study of the desirability and feasibility of drilling a hole to the Mohorovicic Discontinuity[J]. National Academy of Sciences-National Research Council Publication, 1959, 717: 1-21. |
| [53] | DETRICK R, COLLINS J, STEPHEN R, et al. In situ evidence for the nature of the seismic layer 2/3 boundary in oceanic crust[J]. Nature, 1994, 370(6487): 288-290. |
| [54] | NIU Y L. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth: a review and new perspectives[J]. Earth-Science Reviews, 2021, 217: 103614. |
| [55] | DICK H J B, FISHER R L, BRYAN W B. Mineralogical variability of the uppermost mantle along mid-ocean ridges[J]. Earth and Planetary Science Letters, 1984, 69(1): 88-106. |
| [56] | DICK H J B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[J]. Geological Society London Special Publications, 1989, 42(1): 71-105. |
| [57] | HéKINIAN R, BIDEAU D, FRANCHETEAU J, et al. Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern equatorial Pacific)[J]. Journal of Geophysical Research Solid Earth, 1993, 98: 8069-8094. |
| [58] | HéKINIAN R, BIDEAU D, HEBéRT R, et al. Magmatic processes at upper mantle-crustal boundary zone: garrett transform (EPR South)[J]. Journal of Geophysical Research Solid Earth, 1995, 100: 10163-10185. |
| [59] | CANNAT M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4163-4172. |
| [60] | CANNAT M. How thick is the magmatic crust at slow-spreading oceanic ridges?[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B2): 2847-2857. |
| [61] | BIDEAU D, HéKINIAN R, SICHLER B, et al. Contrasting volcanictectonic processes during the past 2 Ma on the Mid-Atlantic Ridge: submersible mapping, petrological and magnetic results at lat. lat. 34°52'N and 33°55'N[J]. Marine Geophysical Researches, 1998, 20(5): 425-458. |
| [62] | KELEMEN P B, KIKAWA E, MILLER D J, et al. Leg 209 summary:processes in a 20- km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°-16°N[C]. Proceedings of the Ocean Drilling Program, Scientific Results, 209:College Station, TX (Ocean Drilling Program), 2007: 1-33. |
| [63] | KELLEY D S, KARSON J A, BLACKMAN D K, et al. An off-axis hydrothermal vent field near the mod-Atlantic ridge at 30°N[J]. Nature, 2001, 412: 145-149. |
| [64] | KELLEY D S, KARSON J A, FRUH-GREEN G L, et al. A serpentine-hosted ecosystem: the lost City hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434. |
| [65] | REID I, JACKSON H R. Oceanic spreading rate and crustal thickness[J]. Marine Geophysical Researches, 1981, 5(2): 165-172. |
| [66] | PHIPPS MORGAN J, PARMENTIER E M, LIN J. Mechanisms for the origin of mid-ocean ridge axial topography: implications for the thermal and mechanical structure of accreting plate boundaries[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B12): 12826-12839. |
| [67] | NIU Y L. Mid-ocean ridge magmatism: Style of mantle upwelling, partial melting, crustal level processes, and spreading rate dependence: a petrologic approach[D]. PhD thesis, University of Hawaii, Honolulu, 1992: 250. |
| [68] | NIU Y L, HéKINIAN R. Spreading rate dependence of the extent of mantle melting beneath ocean ridges[J]. Nature, 1997, 385(6614): 326-329. |
| [69] | SINTON J M, DETRICK R S. Mid-ocean ridge magma chambers[J]. Journal of Geophysical Research. Solid Earth, 1992, 97(B1): 197-216. |
| [70] | BATIZA R. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity[J]. Nature, 1984, 309(5967): 440-441. |
| [71] | NIU Y L, BATIZA R. Chemical variation trends at fast and slow spreading ridges[J]. Journal of Geophysical Research Solid Earth, 1993, 98: 7887-7902. |
| [72] | NIU Y L, BATIZA R. Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic ridge[J]. Journal of Geophysical Research, 1994, 99(B10): 19719-19740. |
| [73] | NIU Y L. The meaning of global ocean ridge basalt major element compositions[J]. Journal of Petrology, 2016, 57(11/12): 2081-2104. |
| [74] | REGELOUS M, WEINZIERL C G, HAASE K M. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt composition[J]. Earth and Planetary Science Letters, 2016, 449: 1-11. |
| [75] | GALE A, LANGMUIR C H, DALTON C A. The global systematics of ocean ridge basalts and their origin[J]. Journal of Petrology, 2014(6): 1051-1082. |
| [76] | CANNAT M, SAUTER D, BEZOS A, et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2013, 9(4): Q04002. |
| [77] | PHIPPS MORGAN J, FORSYTH D W. Three-dimensional flow and temperature perturbations due to a transform offset: effects on oceanic crustal and upper mantle structure[J]. Journal of Geophysical Research: Solid Earth, 1988, 93: 2955-2966. |
| [78] | SHEN Y, FORSYTH D W. The effects of temperature-and pressure-dependent viscosity on three-dimensional passive flow of the mantle beneath a ridge-transform system[J]. Journal of Geophysical Research: Solid Earth, 1992, 97: 19717-19728. |
| [79] | DICK H J B, LIN J, SCHOUTEN H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426: 405-412. |
| [80] | CASTILLO P R, CLAGUE D A, DAVIS A S, et al. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific[J]. Geochemistry Geophysics Geosystems, 2013, 11(2): Q02005. |
| [81] | NIU Y L, GREEN D H. The petrological control on the lithosphere-asthenosphere boundary (LAB) beneath ocean basins[J]. Earth-Science Reviews, 2018, 185: 301-307. |
| [82] | MACDONALD K C. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10(1): 155-190. |
| [83] | STANDISH J J, SIMS K W W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge[J]. Nature Geoscience, 2010, 3(4): 286-292. |
| [84] | MICHAEL P J, LANGMUIR C H, DICK H J B, et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean[J]. Nature, 2003, 423: 956-961. |
| [85] | SMALL C. A global analysis of mid-ocean ridge axial topography[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 116(1): 64-84. |
| [86] | BUCK W R, LAVIER L L, POLIAKOV A N B. Modes of faulting at mid-ocean ridges[J]. Nature, 2005, 434(7034): 719-723. |
| [87] | CANN J R, BLACKMAN D K, SMITH D K, et al. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge[J]. Nature, 1997, 385(6614): 329-332. |
| [88] | TUCHOLKE B E, LIN J, KLEINROCK M. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B5): 9857-9866. |
| [89] | MACLEOD C J, ESCARTIN J, BANERJI D, et al. First direct evidence for oceanic detachment faulting: the Mid-Atlantic Ridge, 15°45’N[J]. Geology, 2002, 30(10): 879-882. |
| [90] | BLACKMAN D K, KARSON J K, KELLEY D S, et al. Geology of the Atlantis Massif (MAR 308N): implications for the evolution of an ultramafic core complex[J]. Marine Geophysical Research, 2004, 23: 443-469. |
| [91] | SMITH D K, CANN J R, ESCARTIN J. Widespread active detachment faulting and core complex formation near 13° N on the Mid-Atlantic Ridge[J]. Nature, 2006, 4442: 440-443. |
| [92] | DICK H J B, TIVEY M A, TUCHOLKE B E. Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30’N, 45°20’W[J]. Geochemistry, Geophysics, Geosystems, 2008. 9(5): Q05014. |
| [93] | MACLEOD C J, SEARLE R C, MURTON B J, et al. Life cycle of oceanic core complexes[J]. Earth and Planetary Science Letters, 2009, 287(3/4): 333-344. |
| [94] | DICK H J B, THOMPSON G, BRYAN W B. Low-angle faulting and steady-state emplacement of plutonic rocks at ridge-transform intersections[J]. EOS, Transaction American Geophysical Union, 1981, 62(17): 406. |
| [95] | KARSON J A, DICK H J B. Tectonics of ridge-transform intersections at the Kane Fracture Zone[J]. Marine Geophysical Researches, 1983, 6(1): 51-98. |
| [96] | BATIZA R, MELSON W G, O’HEARN T. Simple magma supply geometry inferred beneath a segment of the Mid-Atlantic Ridge[J]. Nature, 1988, 335(6189): 428-431. |
| [97] | MICHAEL P J, FORSYTH D W, BLACKMAN D K, et al. Mantle control of a dynamically evolving spreading center: Mid-Atlantic Ridge 31-34°S[J]. Earth & Planetary Science Letters, 1994, 121(3/4): 451-468. |
| [98] | NIU Y L, BIDEAU D, HéKINIAN R, et al. Mantle compositional control on the extent of melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33-35°N[J]. Earth and Planetary Science Letters, 2001, 186(3): 383-399. |
| [99] | BACH W, GL FRÜH-GREEN G L. Alteration of the oceanic lithosphere and implications for seafloor processes[J]. Elements, 2010, 6: 173-178. |
| [100] | FORSYTH D, UYEDA S. On the relative importance of the driving forces of plate motion[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 43: 163-200. |
| [101] | NIU Y L. Geological understanding of plate tectonics: basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2014, 10(1): 23-46. |
| [102] | NIU Y L. On the cause of continental breakup: a simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes[J]. Journal of Asian Earth Sciences, 2020, 194: 104367. |
| [103] | NIU Y L. Shallow origin of continental mantle materials beneath slow-spreading ocean ridges[J]. Science Bulletin, 2025, 70(10): 533-1537. |
| [104] | NIU Y L. Using D/V Meng Xiang to drill intact magmatic crust in the Pacific to reveal the petrological nature of the oceanic Moho[J]. Geoscience Frontiers, 2025, 16(1): 101954. |
| [105] | NIU Y L, O’HARA M J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective[J]. Journal of Petrology, 2008, 49, (4): 633-664. |
| [106] | VOOSEN P. With venerable ships’s retirement, U.S.-led ocean-drilling program ends[J]. Science, 2024, 386(6727): 1203-1204. |
| [107] | NATLAND J H, Steering Committee Members (DOLCUM), (Natland J H). Deep drilling in the ocean crust and upper mantle: past commitments, present prospects and future plans[M]. Woods Hole, MA (Woods Hole Oceanographic Institution): DICK, H J B, et al. Drilling the oceanic lower crust and upper mantle, 1989: 9-19. |
| [108] | MICHIBAYASHI K, TOMINAGA M, ILDEFONSE B, et al. What Lies Beneath: the formation and evolution of oceanic lithosphere[J]. Oceanography, 2019, 32(1): 138-149. |
| [109] | XU Y, NIU Y L, ZHANG X, et al. D/V Meng Xiang is coming to revive the 60-year-old dream of Moho drilling and enter a new phase of international scientific ocean drilling[J]. Science Bulletin, 2025, 70(12): 2023-2024. |
| [110] | SUN Z, XU Y, DENG Y N. The Moho is in reach of ocean drilling with the Meng Xiang[J]. Nature Geoscience, 2025, 18(4): 275-276. |
| [111] | NORMILE D. China’s ‘dreamy’ scientific drilling ship takes global command - As U.S. leadership falters, Meng Xiang prepares for bold mission to retrieve rocks from Earth’s mantle[J]. Science, 2024, 386: 1202-1203. |
| [112] | SHI X F, ZOU J J, WANG K S. Paleo environmental changes in the Okhotsk Sea since late Pleistocene and its driving force[J]. Marine Geology and Quaternary Geology, 2012, 31(31): 1-12. |
| [113] | YAO Z Q, SHI X F, YIN Q, et al. Ice sheet and precession controlled subarctic Pacific productivity and upwelling over the last 550, 000 years[J]. Nature Communications, 2024, 15(1): 3489. |
| [114] | ZHU R X, ZHANG S C, WANG H J, et al. Multi-spheric interactions driven differential formation and accumulation of hydrocarbon resources in the North Sea Basin[J]. Science China Earth Sciences, 2024, 67: 3397-3420. |
| [115] | ZHANG T, LI J B, NIU X W, et al. Highly variable magmatic accretion at the ultraslow-spreading Gakkel Ridge[J]. Nature, 2024, 633, 109-113. |
| [116] | ZHANG T, LI J B, DING W W, et al. Magnetotelluric evidence for highly focused mantle melting along the ultraslow-spreading Gakkel Ridge, Arctic Ocean[J]. National Science Review, 2025, 12(5): nwaf077. |
| [117] | LI C F, LU Y, WANG J. A global reference model of Curie-point depths based on EMAG2[J]. Scientific Reports, 2017, 7: 45129. |
| [118] | ZHOU D, LI C F, ZLOTNIK S, et al. Correlations between oceanic crustal thickness, melt volume, and spreading rate from global gravity observation[J]. Marine Geophysical Researches, 2020, 41: 14. |
| [119] | 邓晋福, 赵海玲, 莫宣学, 等. 中国大陆根-柱构造: 大陆动力学的钥匙[M]. 北京: 地质出版社, 1996. |
| [120] | DENG J F, MO X X, ZHAO H L, et al. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots-plume tectonics’[J]. Earth-Science Reviews, 2004, 65: 223-275. |
| [121] | DENG J F, SU S G, NIU Y L, et al. A possible model for the lithospheric thinning of North China Craton: evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism[J]. Lithos, 2007, 96(1/2): 22-35. |
| [122] | SU S G, NIU Y L, DENG J F, et al. Petrology and geochronology of Xuejiashiliang igneous complex and their genetic link to the lithospheric thinning during the Yanshanian orogenesis in eastern China[J]. Lithos, 2007, 96(1/2): 90-107. |
| [1] | 梅冥相, 王画, 覃英伦, 黄文芳. 显生宙海洋中的生物碳泵:有机质聚集的又一个重要机制[J]. 地学前缘, 2025, 32(5): 150-164. |
| [2] | 索艳慧, 姜兆霞, 李三忠, 吴立新. 海底氢气成藏模式与全球分布[J]. 地学前缘, 2024, 31(4): 175-182. |
| [3] | 陈飞, 曾维特, 仝长亮, 张从伟, 付标, 陈旸, 陈波. 琼州海峡第四纪层序格架及其沉积演化[J]. 地学前缘, 2024, 31(3): 100-112. |
| [4] | 沈禄银, 潘仁芳, 吕海涛, 段太忠, 贺婷婷, 刘义生, 赵磊. 基于沉积模拟的总可容空间定量分析[J]. 地学前缘, 2024, 31(2): 391-401. |
| [5] | 李三忠, 索艳慧, 戴黎明, 王亮亮, 姜兆霞, 曹现志, 苏国辉, 刘丽军, 周建平, 李玺瑶, 刘洁, 朱俊江, 乔璐璐, 王光增, 姜素华, 王秀娟, 刘琳, 管红香, 李晓辉, 胡军, 刘鹏, 刘泽, 董冬冬, 郭玲莉, 邹志辉, 董昊, 钟世华, 孙国正, 刘洋, 于胜尧, 吴立新, 邹卓延, 孙毅. 元地球与数字孪生:思想突破、技术变革与范式转换[J]. 地学前缘, 2024, 31(1): 46-63. |
| [6] | 王家昊, 胡修棉, 蒋璟鑫, 马超, 马鹏飞. 重建南海27 Ma以来高分辨率碳酸盐补偿深度[J]. 地学前缘, 2024, 31(1): 500-510. |
| [7] | 吴淳, 刘航宇, 芦飞凡, 刘波, 石开波, 何卿. 北京西山下苇甸中上寒武统风暴沉积特征及模式[J]. 地学前缘, 2023, 30(6): 110-124. |
| [8] | 张念念, 范天来, 黄春菊, 张明望, 李钰淳, 韦露, 余克服. 西沙群岛琛科2井珊瑚礁钻孔天文年代标尺的建立及天文周期记录[J]. 地学前缘, 2023, 30(6): 436-450. |
| [9] | 陈雯霖, 郑求根, 黄一鸣, 张懿, 林畅松. 南海南缘礼乐盆地在南海扩张前的位置恢复[J]. 地学前缘, 2023, 30(5): 420-429. |
| [10] | 仝长亮, 朱钰, 吴祥柏, 莫颖明, 王雪木. 基于数值模拟的琼州海峡东口推移质输运量估算[J]. 地学前缘, 2023, 30(5): 553-566. |
| [11] | 王海荣, 余承谦, 樊太亮, 柴京超, 王宏语, 高红芳. 南海西北部莺琼陆坡重力流和等深流的时空关联[J]. 地学前缘, 2023, 30(4): 196-208. |
| [12] | 张元福, 王敏, 张森, 孙世坦, 李鑫鑫, 袁晓冬, 黄云英, 张晓晗. 现代河流扇的全球分布、类型及控制因素[J]. 地学前缘, 2023, 30(4): 389-404. |
| [13] | 鄢伟, 樊太亮, 张光学, 高志前, 李一凡, 张国庆, 李福元, 孙鸣, 吕瑶瑶. 塔里木盆地塔中—顺托果勒地区奥陶系鹰山组碳酸盐岩颗粒滩沉积特征[J]. 地学前缘, 2023, 30(4): 76-87. |
| [14] | 沈禄银, 潘仁芳, 段太忠, 刘彦锋, 李蒙, 廉培庆, 黄渊, 张德民. 基于地层沉积反演的深时海平面变化曲线恢复方法[J]. 地学前缘, 2023, 30(2): 109-121. |
| [15] | 刘晓磊, 李伟甲, 陆杨, 李星宇, 张淑玉, 余和雨. 南海北部大陆边缘沉积物波分布特征及形成机制研究进展[J]. 地学前缘, 2023, 30(2): 81-95. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
