地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 150-164.DOI: 10.13745/j.esf.sf.2024.12.87
收稿日期:
2024-04-04
修回日期:
2024-12-23
出版日期:
2025-09-25
发布日期:
2025-10-14
通信作者:
王画
作者简介:
梅冥相(1965—),男,教授,主要从事沉积学和地层学研究工作。E-mail: meimingxiang@263.net
基金资助:
MEI Mingxiang1,2(), WANG Hua1,*(
), QIN Yinglun3, HUANG Wenfang4
Received:
2024-04-04
Revised:
2024-12-23
Online:
2025-09-25
Published:
2025-10-14
Contact:
WANG Hua
摘要:
富有机质的细粒沉积物,即所谓的黑色页岩,常常形成重要的潜在性页岩气勘探目的层,其中有机质聚集作用被识别为3个基本模式:生产率、保存作用和沉积作用速率。需要指出的是,海洋的生物碳泵,是一个主要通过沉落颗粒(如浮游动物和细粒植物碎片等)向深海海底输出有机质,并最终鳌合在深部大洋沉积物之中的过程,也应该是显生宙深海沉积之中有机质聚集的又一个重要过程。在滇黔桂盆地中心地带的台间盆地相带之中,一套富有机质竹节石黑色页岩,累计厚度超过600 m,总有机碳(TOC)含量多为2%~4%,有的高达5%~6%,集中发育在广西南丹同贡剖面的埃姆斯期到弗拉斯期,代表一套品质较为优越的潜在性页岩气勘探目的层。更有意义的是,高密度保存在腐殖泥中的竹节石化石(含量超过30%)表明,浮游动物的生物碳泵,也应该是这些竹节石页岩富集有机质的另外一个重要机理。在广西罗城县小长安剖面下石炭统罗城组中,中-厚层含植物碎片的富有机质黑色页岩与中-厚层浅水灰岩一起构成潮下型米级旋回。尽管总体发育在浅缓坡台地背景之中,但是,黑色页岩层的TOC值普遍大于2%,代表一个细粒植物碎片生物碳泵的典型实例,从而间接地表明,在深水台间盆地相中,那些单层累计厚度超百米的富有机质页岩中的有机质的聚集(南丹同贡剖面的下石炭统鹿寨组),也受到相似机制的促进。这些发现和研究表明,除了经典的缺氧或生产率模型之外,确实存在着其他机制造成有机碳的聚集。
中图分类号:
梅冥相, 王画, 覃英伦, 黄文芳. 显生宙海洋中的生物碳泵:有机质聚集的又一个重要机制[J]. 地学前缘, 2025, 32(5): 150-164.
MEI Mingxiang, WANG Hua, QIN Yinglun, HUANG Wenfang. The ocean’s biological carbon pump of the Phanerozoic: Another accumulation mechanism of organic matter[J]. Earth Science Frontiers, 2025, 32(5): 150-164.
图1 泥盆纪至中三叠世华南板块中西部的沉积盆地分布图(据文献[28]) 在阴影区代表的滇黔桂盆地之中,星号表示广西南丹同贡剖面大致的地理位置。
Fig.1 Distribution of sedimentary basins from the Devonian to the Middle Triassic in the western-central part of the South-China plate. Adapted from [28].
图2 广西南丹同贡剖面层序地层框架下的泥盆纪深水盆地相富有机质页岩沉积序列 图中的SQ1至SQ13代表13个三级沉积层序,它们分别表现为特别的沉积相序列代表的地层旋回;在深水沉积序列之中,多数大于2%的TOC值分析结果表明,一个特别的富有机质页岩沉积序列。图a-c代表典型的宏观沉积与地层学现象:a—早泥盆世洛赫考夫期莲花山组的海侵砂岩地层;b—中泥盆世罗富组的深水盆地相块状富有机质黑色页岩;c—晚泥盆世法门期的缓坡相灰岩地层。图例符号的含义分别是:(1)泥岩,(2)页岩,(3)碳质页岩,(4)钙质泥岩,(5)硅质泥岩,(6)碳质粉砂质泥岩,(7)砂质泥岩,(8)硅质岩,(9)铁质砂岩,(10)砂岩,(11)泥质砂岩,(12)泥灰岩,(13)泥晶灰岩,(14)生物屑灰岩,(15)交错层理,(16)冲刷面,(17)水平纹层,(18)沉积趋势,(19)层序界面,(20)潮坪相,(21)滨岸相,(22)陆棚相,(23)缺氧盆地相,(24)远洋盆地相。该剖面的地理位置见图1所示,据文献[25]。
Fig.2 A sedimentary succession of deep-basin organic-rich shales under the sequence-stratigraphic framework of the Devonian at the Tonggong section in Nandan County of Guangxi
图3 泥盆纪含竹节石富有机质页岩的基本宏观和微观特征,以南丹同贡村剖面下泥盆统益兰组为例 a—益兰组块状黑色页岩的远照;b—益兰组块状黑色页岩的近照,表现出丰富的竹节石化石;c—益兰组块状富有机质竹节石页岩的低倍单偏光显微镜照片;d—益兰组块状富有机质竹节石页岩的单偏光高倍显微照片(照片c的红色框所示部分放大),表现为高密度保存在腐殖泥中的竹节石化石及其碎片。
Fig.3 Images showing the fundamentally microscopic and macroscopic features of organic-rich shales of the Devonian, an example from the Yilan Fm. of the Lower Devonian at the Tonggong section in Nandan County
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ5海侵期 | 盆地相黑色页岩 | TD-1 | 3.69 |
2 | SQ5海侵期 | 盆地相黑色页岩 | TD-2 | 2.76 |
3 | SQ5海侵期 | 盆地相黑色页岩 | TD-3 | 4.14 |
4 | SQ5海侵期 | 盆地相黑色页岩 | TD-4 | 4.69 |
5 | SQ5海侵期 | 盆地相黑色页岩 | TD-5 | 2.60 |
6 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-1 | 3.53 |
7 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-2 | 2.34 |
8 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-3 | 3.94 |
9 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 4.01 |
10 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-2 | 2.75 |
11 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 3.24 |
12 | SQ5海退期 | 陆棚相暗色页岩 | TD-6 | 0.21 |
表1 南丹县同贡村剖面下泥盆统益兰组与塘丁组的TOC含量测试分析表(据文献[25])
Table 1 TOC values of samples from the Yilan and Tangding Formations of the Lower Devonian at the Tonggong section in Nandan County. Adapted from [25].
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ5海侵期 | 盆地相黑色页岩 | TD-1 | 3.69 |
2 | SQ5海侵期 | 盆地相黑色页岩 | TD-2 | 2.76 |
3 | SQ5海侵期 | 盆地相黑色页岩 | TD-3 | 4.14 |
4 | SQ5海侵期 | 盆地相黑色页岩 | TD-4 | 4.69 |
5 | SQ5海侵期 | 盆地相黑色页岩 | TD-5 | 2.60 |
6 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-1 | 3.53 |
7 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-2 | 2.34 |
8 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-3 | 3.94 |
9 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 4.01 |
10 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-2 | 2.75 |
11 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 3.24 |
12 | SQ5海退期 | 陆棚相暗色页岩 | TD-6 | 0.21 |
图4 广西南丹同贡剖面层序地层框架下的下石炭统深水盆地相富有机质页岩沉积序列 从下石炭统至二叠系乌拉尔统(二叠系下统),一个从深水盆地相富有机页岩向上变浅为浅水碳酸盐台地相灰岩的沉积序列,组成一个二级构造层序,并进一步划分为6个三级沉积层序(SQ1至SQ6);其中,鹿寨组序列代表一个富有机质黑色页岩主导的深水沉积序列,对应着较高的TOC值。图a-c代表典型的沉积学和地层学现象:a—深水盆地相块状富有机质黑色页岩,鹿寨组下部;b—三级层序SQ1的顶界面(箭头所指),盆地相富有机质泥岩,直接覆盖在陆棚相灰岩地层之上的“调相”现象是其基本特征;c—大套浅缓坡相灰岩地层,南丹组。岩性符号和其他属性代号与上文的图2相同,据文献[26]。
Fig.4 A sedimentary succession of deep-basin organic-rich shales under the sequence-stratigraphic framework of the Lower Carboniferous at the Tonggong section in Nandan County of Guangxi
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-1 | 6.97 |
2 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-2 | 4.13 |
3 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-3 | 3.72 |
4 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-1 | 0.28 |
5 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-2 | 0.58 |
6 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-3 | 1.45 |
7 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-4 | 1.59 |
8 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5 | 3.78 |
9 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5(1) | 5.80 |
10 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-6 | 4.68 |
11 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-7 | 5.19 |
12 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-8 | 4.05 |
13 | SQ2海退期 | 陆棚相暗色页岩 | TGLZ-9 | 1.86 |
表2 南丹县同贡村剖面下石炭统鹿寨组的TOC测试分析表(据文献[26])
Table 2 TOC values of samples from the Luzhai Formation of the Lower Carboniferous at the Tonggong section in Nandan County. Adapted from [26].
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-1 | 6.97 |
2 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-2 | 4.13 |
3 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-3 | 3.72 |
4 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-1 | 0.28 |
5 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-2 | 0.58 |
6 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-3 | 1.45 |
7 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-4 | 1.59 |
8 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5 | 3.78 |
9 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5(1) | 5.80 |
10 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-6 | 4.68 |
11 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-7 | 5.19 |
12 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-8 | 4.05 |
13 | SQ2海退期 | 陆棚相暗色页岩 | TGLZ-9 | 1.86 |
图5 广西罗城小长安剖面罗城组中的富有机页岩层的基本分布与产出特征 a—中薄层陆棚相富有机质暗色页岩、与中厚层浅缓坡相灰岩层互层组成的潮下型米级旋回及其所表现出的1∶4的叠加样式(箭头所指);b—浅缓坡相厚层灰岩层中的珊瑚化石(箭头所指);c—浅缓坡相中厚层灰岩层中的薄层暗色富有机质页岩(箭头所指);d—发育在中薄层中的富有机质暗色页岩中的植物化石碎片(箭头所指,岩层层面照片)。该剖面的位置,大致在罗城县城东北约20 km,位于图1所示的南丹同贡剖面之东约150 km,据文献[26]。
Fig.5 Images showing the fundamental distribution and outputting features for organic-matter-rich shale beds of the Luocheng Formation at the Xiaochangan section in Luocheng County of Guangxi
序号 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|
1 | 陆棚相灰黑色页岩 | QT-LC-1 | 3.37 |
2 | 陆棚相灰黑色页岩 | QT-LC-2 | 4.14 |
3 | 陆棚相灰黑色页岩 | QT-LC-3 | 3.47 |
4 | 陆棚相灰黑色页岩 | QT-LC-4 | 3.64 |
5 | 陆棚相灰黑色页岩 | QT-LC-5 | 0.82 |
6 | 陆棚相灰黑色页岩 | QT-LC-6 | 2.43 |
7 | 陆棚相灰黑色页岩 | QT-LC-7 | 0.76 |
8 | 陆棚相灰黑色页岩 | QT-LC-8 | 1.16 |
9 | 陆棚相灰黑色页岩 | QT-LC-9 | 1.35 |
表3 广西罗城小长安镇剖面下石炭统罗城组与浅缓坡相灰岩层所互层的陆棚相富有机质页岩夹层的TOC测试分析表(据文献[26])
Table 3 TOC values of samples from the organic-matter-rich shales of the shelf facies interbedded with the limestones of the shallow ramp facies within the Luocheng Formation of the Lower Carboniferous at the Xiaochangan section in Luocheng County of Guangxi. Adapted from [26].
序号 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|
1 | 陆棚相灰黑色页岩 | QT-LC-1 | 3.37 |
2 | 陆棚相灰黑色页岩 | QT-LC-2 | 4.14 |
3 | 陆棚相灰黑色页岩 | QT-LC-3 | 3.47 |
4 | 陆棚相灰黑色页岩 | QT-LC-4 | 3.64 |
5 | 陆棚相灰黑色页岩 | QT-LC-5 | 0.82 |
6 | 陆棚相灰黑色页岩 | QT-LC-6 | 2.43 |
7 | 陆棚相灰黑色页岩 | QT-LC-7 | 0.76 |
8 | 陆棚相灰黑色页岩 | QT-LC-8 | 1.16 |
9 | 陆棚相灰黑色页岩 | QT-LC-9 | 1.35 |
[1] | MIKHAIL S, FURI E. On the origin(s) and evolution of earth’s carbon[J]. Elements, 2019, 15: 307-312. |
[2] | 蔡进功, 曾翔, 韦海伦, 等. 从水体到沉积物: 探寻有机质的沉积过程及其意义[J]. 古地理学报, 2019, 21(1): 49-66. |
[3] | JARVIE D M. Shale resource systems for oil and gas: Part 2[M]//BREYER J A. Shale-oil resource systems: shale reservoirs: giant resources for the 21st century. American Association of Petroleum Geologists, 2012: 89-119. |
[4] | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. |
[5] | 郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016, 23(1): 29-43. |
[6] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. |
[7] | 郭旭升, 赵永强, 申宝剑, 等. 中国南方海相页岩气勘探理论: 回顾与展望[J]. 地质学报, 2022, 96(1): 172-182. |
[8] | NEGRI A, FERRETTI A, WAGNER T, et al. Organic-carbon-rich sediments through the Phanerozoic: processes, progress, and perspectives[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273: 213-217. |
[9] | 张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1): 74-86. |
[10] | DONG T, HARRIS N, AYRANCI K. Relative sea-level cycles and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: insights into sediment flux, redox conditions, and bioproductivity[J]. The Geological Society of America Bulletin, 2018, 30: 859-880. |
[11] | ZOU C N, ZHU R K, CHEN Z Q, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78. |
[12] | PEDERSEN T F, CALVERT S E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? (1)[J]. AAPG Bulletin, 1990, 74: 454-466. |
[13] | TYSON R V. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339. |
[14] | SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273. |
[15] | ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. |
[16] | ARTHUR M. Marine shales: depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 22: 499-551. |
[17] | HETZEL A, BÖTTCHER M E, WORTMANN U G, et al. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3/4): 302-328. |
[18] | CHEN L, JIANG S, CHEN P, et al. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China[J]. Marine and Petroleum Geology, 2021, 124: 104809. |
[19] | CHEVROT V, GOTTARDI R. Heterogeneity of the transgressive systems tract of the eagle ford formation, Val Verde County, Texas[J]. AAPG Bulletin, 2022, 106(8): 1581-1603. |
[20] | ZHANG Y J, CEN W P, HUANG W F, et al. Sequence stratigraphic analysis of Devonian organic-rich shales in northern Guangxi[J]. Marine and Petroleum Geology, 2023, 156: 106450. |
[21] | ZHANG Y J, CEN W P, CHAI K Q, et al. Sequence stratigraphic analysis and distribution features of Lower Carboniferous organic-rich shales in northern Guangxi[J]. Marine and Petroleum Geology, 2024, 162:106727. |
[22] | TURNER J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130: 205-248. |
[23] | 张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵: 有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1624-1643. |
[24] | 谢树成, 焦念志, 罗根明, 等. 海洋生物碳泵的地质演化: 微生物的碳汇作用[J]. 科学通报, 2022, 67(15): 1715-1726. |
[25] | 梅冥相, 岑文攀, RIAZ M. 黔桂地区泥盆纪富有机质竹节石页岩: 一个重要的潜在性页岩其勘探目的层[J]. 地质学报, 2025, 99(4): 1332-1352. |
[26] | 梅冥相, 陈基瑜, 张英杰. 黔桂地区下石炭统富有机质页岩的页岩气勘探意义[J]. 地质学报, 2024, 98(7): 2193-2215. |
[27] | POHL A, DONNADIEU Y, LEHIR G, et al. The climatic significance of Late Ordovician - Early Silurian black shales[J]. Paleoceanography, 2017, 32(4): 397-423. |
[28] | 赵自强, 丁启秀. 中南区区域地层[M]. 武汉: 中国地质大学出版社, 1996. |
[29] | 梅冥相, 马永生, 邓军, 等. 加里东运动构造古地理及滇黔桂盆地的形成: 兼论滇黔桂盆地深层油气勘探潜力[J]. 地学前缘, 2005, 12(3): 227-236. |
[30] | MEI M X, MA Y S, DENG J, et al. Late Paleozoic sequence-stratigraphic frameworks and sea level changes in Dianqiangui Basin and its adjacent areas with systematic revision of regional unconformities[J]. Journal of China University of Geosciences, 2004, 15(1): 55-69. |
[31] | 梅冥相. 层序地层学发展历程中的三个误判[J]. 地学前缘, 2014, 21(2): 67-80. |
[32] | CATUNEANU O. Model-independent sequence stratigraphy[J]. Earth-Science Reviews, 2019, 188: 312-388. |
[33] | SLOSS L L. Sequences in the cratonic interior of North America[J]. Geological Society of America Bulletin, 1963, 74(2): 93. |
[34] | MEYERS S R, PETERS S E. A 56 million year rhythm in North American sedimentation during the Phanerozoic[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 174-180. |
[35] | CATUNEANU O. Sequence stratigraphy of deep-water systems[J]. Marine and Petroleum Geology, 2020, 114: 104238. |
[36] | STANLEY S M, LUCZAJ J A. Earth system history[M]. 4th ed. New York: W H Freeman and Company, 2015: 329-355. |
[37] | SCOTESE C R. An atlas of Phanerozoic paleogeographic maps: the seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728. |
[38] | SCOTESE C R, SONG H J, MILLS B J W, et al. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503. |
[39] | BECKER R T, MARSHALL J E A, DASILVA A C, et al. The Devonian Period[M]//Geologic time scale 2020. Amsterdam: Elsevier, 2020: 733-810. |
[40] | HUNT D, TUCKER M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9. |
[41] | SCHLAGER W, WARRLICH G. Record of sea-level fall in tropical carbonates[J]. Basin Research, 2009, 21(2): 209-224. |
[42] | 阮亦萍, 穆道成. 竹节石[M]. 北京: 科学出版社, 1987: 5-116. |
[43] | 钟铿, 吴诒, 殷保安, 等. 广西的泥盆系: 广西地层之一[M]. 武汉: 中国地质大学出版社, 1992: 1-370. |
[44] | 魏凡, 龚一鸣. 竹节石研究进展与展望[J]. 古生物学报, 2011, 50(1): 48-63. |
[45] | KIM J H, BUSCAIL R, BOURRIN F, et al. Transport and depositional process of soil organic matter during wet and dry storms on the Têt inner shelf (NW Mediterranean)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3/4): 228-238. |
[46] | 邱振, 邹才能, 李熙喆, 等. 论笔石对页岩气源储的贡献: 以华南地区五峰组-龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615. |
[47] | 杨惠民, 刘炳温, 邓宗淮, 等. 滇黔桂海相碳酸盐岩地区最佳油气保存单元的评价与选择[M]. 贵阳: 贵州科技出版社, 1999: 4-63. |
[48] | 黄羚, 徐政语, 王鹏万, 等. 桂中坳陷上古生界页岩气资源潜力分析[J]. 中国地质, 2012, 39(2): 497-506. |
[49] | BOUCOT A J. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate[M]. Tulsa, Okla.: Society for Sedimentary Geology, 2013. |
[50] | BEAULIEU S. Accumulation and fate of phytodetritus on the sea floor[M]//Oceanography and marine biology, an annual review, volume 40. Boca Raton: CRC Press, 2002: 171-232. |
[51] | OSLEGER D. Subtidal carbonate cycles: implications for allocyclic vs. autocyclic controls[J]. Geology, 1991, 19: 917-920. |
[52] | MEI M X, XU D B, ZHOU H R. Genetic types of meter-scale sequences and fabric natures of facies succession[J]. Journal of China University of Geosciences, 2000, 11(4): 375-382. |
[53] | 梅冥相. 从旋回的有序叠加形式到层序的识别和划分: 层序地层学进展之三[J]. 古地理学报, 2011, 13(1): 37-54. |
[54] | SCHWARZACHER W. Cyclostratigraphy and the Milankovitch theory[M]. London: Elsevier, 1993: 1-196. |
[55] | 周瑞琦, 张聪, 魏洪刚, 等. 紫云-罗甸地区下石炭统打屋坝组页岩气保存条件分析[J]. 科技通报, 2018, 34(8): 28-34. |
[56] | HOFFMAN P F, KAUFMAN A J, HALVERSON G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346. |
[57] | RIDGWELL A. Evolution of the ocean’s “biological pump”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(40): 16485-16486. |
[58] | TZIPERMAN E, HALEVY I, JOHNSTON D T, et al. Biologically induced initiation of Neoproterozoic snowball-Earth events[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15091-15096. |
[59] | CARON D A. The rise of rhizaria[J]. Nature, 2016, 532(7600): 444-445. |
[60] | BIARD T, STEMMANN L, PICHERAL M, et al. In situ imaging reveals the biomass of giant protists in the global ocean[J]. Nature, 2016, 532(7600): 504-507. |
[61] | GUIDI L, CHAFFRON S, BITTNER L, et al. Plankton networks driving carbon export in the oligotrophic ocean[J]. Nature, 2016, 532(7600): 465-470. |
[62] | 蔡进功. 泥质沉积物和泥岩中有机黏土复合体[M]. 北京: 科学出版社, 2004. |
[63] | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984. |
[64] | ADAM P, SCHMID J C, MYCKE B, et al. Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum[J]. Geochimica et Cosmochimica Acta, 1993, 57(14): 3395-3419. |
[65] | SALMON V, DERENNE S, LALLIER-VERGÈS E, et al. Protection of organic matter by mineral matrix in a Cenomanian black shale[J]. Organic Geochemistry, 2000, 31(5): 463-474. |
[66] | 蔡进功, 包于进, 杨守业, 等. 泥质沉积物和泥岩中有机质的赋存形式与富集机制[J]. 中国科学D辑: 地球科学, 2007, 37(2): 234-243. |
[67] | 蔡进功, 徐金鲤, 杨守业, 等. 泥质沉积物颗粒分级及其有机质富集的差异性[J]. 高校地质学报, 2006, 12(2): 234-241. |
[68] | 冯晓萍, 蔡进功. 沉积物的颗粒大小与所含有机质关系的研究进展[J]. 海洋地质与第四纪地质, 2010, 30(6): 141-148. |
[69] | LENTON T M, DAHL T W, DAINES S J, et al. Earliest land plants created modern levels of atmospheric oxygen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9704-9709. |
[70] | BUESSELER K O, BOYD P W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean[J]. Limnology and Oceanography, 2009, 54(4): 1210-1232. |
[71] | LEGENDRE L, RIVKIN R B. Fluxes of carbon in the upper ocean: regulation by food-web control nodes[J]. Marine Ecology Progress Series, 2002, 242: 95-109. |
[72] | MONTAÑEZ I P. A Late Paleozoic climate window of opportunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2334-2336. |
[73] | 孙军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1-21. |
[74] | ARETZ M, HERBIG H G, WANG X D. The Carboniferous Period (Chapter 23)[M]//GRADSTEIN F M, OGG J G, SCHMITZ M D, et al. The geologic time scale 2020. Amsterdam: Elsevier, 2020, 811-893. |
[75] | CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119. |
[76] | 王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678. |
[77] | 张君峰, 周志, 宋腾, 等. 中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示[J]. 石油学报, 2022, 43(12): 1687-1701. |
[78] | 窦立荣, 黄文松, 孔祥文, 等. 西加拿大盆地都沃内(Duvernay)海相页岩油气富集机制研究[J]. 地学前缘, 2024, 31(4): 191-205. |
[79] | 郭彤楼. 多旋回盆地叠合复合控藏在常规非常规天然气勘探中的实践[J]. 地学前缘, 2022, 29(6): 109-119. |
[1] | 罗欢, 邵德勇, 孟康, 张瑜, 宋辉, 闫建萍, 张同伟. 鄂西宜昌地区寒武系页岩过剩钡成因及其对有机质富集的指示[J]. 地学前缘, 2023, 30(3): 66-82. |
[2] | 吴陈君, 刘新社, 文志刚, 妥进才. 黔北地区牛蹄塘组页岩有机质富集及有机质孔隙发育机制研究[J]. 地学前缘, 2023, 30(3): 101-109. |
[3] | 邵济安, 周新华, 张履桥. 华北克拉通北缘显生宙四次底侵作用及其构造-岩浆活动与深部背景[J]. 地学前缘, 2020, 27(4): 124-134. |
[4] | 耳闯, 罗安湘, 赵靖舟, 张忠义, 白玉彬, 程党性, 吴伟涛, 魏之焜, 张杰. 鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征[J]. 地学前缘, 2016, 23(2): 108-117. |
[5] | 王玉满,王淑芳,董大忠. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 2016, 23(1): 119-133. |
[6] | 何碧竹, 焦存礼, 许志琴, 蔡志慧, 刘士林, 张建新, 李海兵, 张淼. 塔里木盆地显生宙古隆起的分布及迁移[J]. 地学前缘, 2015, 22(3): 277-289. |
[7] | 邵济安,张舟,佘宏全,刘东盛. 华北克拉通北缘赤峰地区显生宙麻粒岩的发现及其意义[J]. 地学前缘, 2012, 19(3): 188-198. |
[8] | 龙鹏宇, 张金川, 李玉喜, 唐玄, 程礼军, 刘珠江, 韩双彪. 重庆及其周缘地区下古生界页岩气成藏条件及有利区预测[J]. 地学前缘, 2012, 19(2): 221-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||