地学前缘 ›› 2023, Vol. 30 ›› Issue (4): 196-208.DOI: 10.13745/j.esf.sf.2022.10.20
王海荣1,2(), 余承谦1,2, 樊太亮1,2, 柴京超3, 王宏语1,2, 高红芳4
收稿日期:
2022-08-05
修回日期:
2022-09-06
出版日期:
2023-07-25
发布日期:
2023-07-07
作者简介:
王海荣(1972-),男,博士,副教授,主要从事沉积学、石油地质学的教学与科研工作。E-mail: 245098254@qq.com
WANG Hairong1,2(), YU Chengqian1,2, FAN Tailiang1,2, CHAI Jingchao3, WANG Hongyu1,2, GAO Hongfang4
Received:
2022-08-05
Revised:
2022-09-06
Online:
2023-07-25
Published:
2023-07-07
摘要:
南海西北部的莺琼陆坡深水区近些年获取了大量油气发现,展示了广阔的勘探前景。深水沉积往往受控于重力流、等深流等多种机制,它们在时空中如何分布、如何相互作用,又在多大程度上影响或控制着沉积格局,对水动力方面的认识的差异会导致沉积相展布方面的不同认识,进而影响对砂体类型和展布的分析,制约了石油勘探开发。论文基于地震数据所呈现的地震相和地层叠置样式,确认莺琼陆坡在中新世以来发育两类沉积体系:重力(流)和等深流沉积体系。二者在时空上存在毗邻而居、有序进退的关系,重力流沉积呈“台阶状”逐层上超于等深流沉积之上,呈进积形态,而等深流沉积体系则呈退积样式;二者之间构成了特殊成因的、跨时的“相变”面;进而相应恢复了两种不同方向的沉积作用(重力流和等深流)的时空关联。它们这种“台阶状”进退关系根源于中中新世以来莺琼陆坡所经历的多方向物源体系充沛的碎屑供应和由此导致的活跃的重力流活动;南海深水循环导致的等深流机制作用的强度也有相当的作用;总体上,等深流沉积体系的分布范围受重力流作用强弱的控制,形成了二者彼进此退的时空关系。
中图分类号:
王海荣, 余承谦, 樊太亮, 柴京超, 王宏语, 高红芳. 南海西北部莺琼陆坡重力流和等深流的时空关联[J]. 地学前缘, 2023, 30(4): 196-208.
WANG Hairong, YU Chengqian, FAN Tailiang, CHAI Jingchao, WANG Hongyu, GAO Hongfang. Spatio-temporal relationship between two kinds of deep-water sedimentation on the Ying-Qiong slope, South China Sea[J]. Earth Science Frontiers, 2023, 30(4): 196-208.
震源 | 总容量 | 主频 | 炮间距 | 接收道数 | 道间距 | 采样率 | 记录长度 | 覆盖次数 |
---|---|---|---|---|---|---|---|---|
G/G.I.气枪阵列 | 1 600 in3 (2 000 psi) | 60~80 Hz | 37.5 m | 240 | 12.5 m | 1 ms | 9 s | 40 fold |
表1 地震采集和处理参数
Table 1 Experimental parameters for seismic data acquisition and processing
震源 | 总容量 | 主频 | 炮间距 | 接收道数 | 道间距 | 采样率 | 记录长度 | 覆盖次数 |
---|---|---|---|---|---|---|---|---|
G/G.I.气枪阵列 | 1 600 in3 (2 000 psi) | 60~80 Hz | 37.5 m | 240 | 12.5 m | 1 ms | 9 s | 40 fold |
图2 莺琼陆坡区域深水沉积体系的格架--重力流沉积体系和等深流沉积体系 右上图示意了研究区的地理位置。
Fig.2 Framework of the deep-water sedimentary system in the Yingqiong slope area. The sedimentary system can be divided into two types-gravity flow and contourite depositional systems. The inserted figure shows the geographical location of the study area.
图3 莺琼陆坡深水区域重力(流)沉积的地震响应特征 剖面位置参见图2。
Fig.3 Seismic response characteristics of gravity flow deposits in the Yingqiong slope deep-water area. See Fig.2 for section location.
图4 莺琼陆坡深水区域等深流沉积的地震响应特征 A、B、C-3条不同测线,其中B和C彼此正交。剖面位置参见图2。
Fig.4 Seismic response characteristics of contourites in deep-water area of the Yingqiong slope. See Fig.1 for section locations.
图5 两种沉积体系时空分布图 A-两条相交测线所组成的复合测线,最显著的特征是等深流沉积逐渐被重力流沉积以台阶状所掩埋,直至最右侧的依然活跃的等深流沉积作用;B-A有关部分的清晰图示,重力流沉积体系中所识别的5个层位均截止于其和等深流沉积体系的交点,以表明这两类沉积体系的“台阶状”的、进退关系。剖面位置参见图8。
Fig.5 Seismic profiles. (A) Composite seismic profile along two intersecting survey lines. The most remarkable feature is that contourites are gradually buried in steps by gravity flow deposits, and this process ceases at the most active contourites on the right. (B) Enlarged profile. The five horizons identified in the gravity flow depositional system are cut off at the intersection with the contourite depositional system, which indicate a stepwise progradation-retrogradation relationship between the two sedimentary systems. See Fig.8 for section location.
图6 两种沉积体系时空关系图 A-研究区东西向的地震剖面,以剖面中部的等深流水道单元为界,左侧的等深流沉积已被来自西部和北部的重力流沉积所掩埋,而右侧不同,海床上依旧是活跃的等深流沉积作用;B、C-剖面有关部分的清晰图示。剖面位置参见图8。
Fig.6 Seismic profiles of the study area. (A) East-west seismic profile. Bounded by the channel units of contourites in the middle of the profile, contourites on the left are buried by gravity flow de-posits from the west and the north. Whereas on the right, there are still active contourites on the seabed. (B, C) Enlarged profiles. See Fig. 8 for section location.
图7 两类沉积体系有序的时空展布 A,B,C-自北而南依次排列的3条东西向地震测线,参考D所示的剖面关系,图中阴影区域表示重力流沉积,重力流沉积的厚度在不同剖面间的变化表明了重力流的有序向南推进,以及等深流机制有序的强迫性的向南退却;D-莺琼陆坡水深和剖面位置图。
Fig.7 Ordered spatio-temporal distribution of two kinds of sedimentary systems. A, B and C are three east-west seismic profiles arranged in sequence from north to south (refer to D for section locations). The shaded areas represent gravity flow deposits. The change of sediment thickness between different sections indicates the orderly southward progradation of gravity flow and the orderly forced southward retrogradation of contourites.
图9 研究区内两种沉积作用之间的时空关联的模式 A、B和C代表演化时序。
Fig.9 Spatio-temporal correlation model between two types of deposition modes in the study area, showing geological changes through stages A, B and C in chronological order.
[1] |
MASSÉ L, FAUGÈRES J C, HROVATIN V. The interplay between turbidity and contour current processes on the Columbia Channel fan drift, Southern Brazil Basin[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 111-132.
DOI URL |
[2] |
ELLIOTT G M, PARSON L M. Influence of sediment drift accumulation on the passage of gravity-driven sediment flows in the Iceland Basin, NE Atlantic[J]. Marine and Petroleum Geology, 2008, 25(3): 219-233.
DOI URL |
[3] |
MCCAVE I N. Formation of sediment waves by turbidity currents and geostrophic flows: a discussion[J]. Marine Geology, 2017, 390: 89-93.
DOI URL |
[4] |
ANSELMETTI F S, EBERLI G P, DING Z D. From the Great Bahama Bank into the Straits of Florida: a margin architecture controlled by sea-level fluctuations and ocean currents[J]. Geological Society of America Bulletin, 2000, 112(6): 829-844.
DOI URL |
[5] |
RASMUSSEN S, LYKKE-ANDERSEN H, KUIJPERS A, et al. Post-Miocene sedimentation at the continental rise of Southeast Greenland: the interplay between turbidity and contour currents[J]. Marine Geology, 2003, 196(1/2): 37-52.
DOI URL |
[6] |
SEJRUP H P, HAFLIDASON H, HJELSTUEN B O, et al. Pleistocene development of the SE Nordic Seas margin[J]. Marine Geology, 2004, 213(1/2/3/4): 169-200.
DOI URL |
[7] |
MULDER T, LECROART P, HANQUIEZ V, et al. The western part of the Gulf of Cadiz: contour currents and turbidity currents interactions[J]. Geo-Marine Letters, 2006, 26(1): 31-41.
DOI URL |
[8] |
HABGOOD E L, KENYON N H, MASSON D G, et al. Deep-water sediment wave fields, bottom current sand channels and gravity flow channel-lobe systems: gulf of Cadiz, NE Atlantic[J]. Sedimentology, 2003, 50(3): 483-510.
DOI URL |
[9] |
GONG C L, WANG Y M, REBESCO M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels?[J]. Geology, 2018, 46(6): 551-554.
DOI URL |
[10] |
NORMANDEAU A, CAMPBELL D C, CARTIGNY M J B. The influence of turbidity currents and contour currents on the distribution of deep-water sediment waves offshore eastern Canada[J]. Sedimentology, 2019, 66(5): 1746-1767.
DOI URL |
[11] |
ERCILLA G, JUAN C, PERIÁÑEZ R, et al. Influence of alongslope processes on modern turbidite systems and canyons in the Alboran Sea (southwestern Mediterranean)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 144: 1-16.
DOI URL |
[12] |
FAUGÈRES J C, GONTHIER E, MULDER T, et al. Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[J]. Marine Geology, 2002, 182(3/4): 279-302.
DOI URL |
[13] |
CHEN H J, ZHAN W H, LI L Q, et al. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea[J]. Journal of Earth System Science, 2017, 126(5): 1-28.
DOI URL |
[14] |
WANG D X, WANG Q, CAI S Q, et al. Advances in research of the mid-deep South China Sea circulation[J]. Science China Earth Sciences, 2019, 62(12): 1992-2004.
DOI |
[15] |
WANG H R, YU C Q, HUO Z P. Origin of deep-water sediment wave fields in the Northern Continental Slope, South China Sea[J]. Arabian Journal of Geosciences, 2021, 14(13): 1233.
DOI |
[16] | 王海荣. 南海北部大陆边缘深水沉积过程-响应及其主控因素[D]. 北京: 中国石油大学(北京), 2007. |
[17] |
孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270.
DOI |
[18] |
SUN Q L, CARTWRIGHT J, LÜDMANN T, et al. Three-dimensional seismic characterization of a complex sediment drift in the South China Sea: evidence for unsteady flow regime[J]. Sedimentology, 2017, 64(3): 832-853.
DOI URL |
[19] | 张功成, 贾庆军, 王万银, 等. 南海构造格局及其演化[J]. 地球物理学报, 2018, 61(10):4194-4215. |
[20] | 王海荣, 王英民, 邱燕, 等. 南海北部陆坡的地貌形态及其控制因素[J]. 海洋学报, 2008, 30(2): 70-79. |
[21] | 王海荣, 王英民, 邱燕, 等. 南海北部大陆边缘深水环境的沉积物波[J]. 自然科学进展, 2007, 17(9):1235-1243. |
[22] |
FAUGÈRES J C, STOW D A V, IMBERT P, et al. Seismic features diagnostic of contourite drifts[J]. Marine Geology, 1999, 162(1): 1-38.
DOI URL |
[23] |
REBESCO M, HERNÁNDEZ-MOLINA F J, VAN ROOIJ D, et al. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations[J]. Marine Geology, 2014, 352: 111-154.
DOI URL |
[24] | 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统-中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2):145-151. |
[25] | 庞雄. 深水重力流沉积的层序地层结构与控制因素: 南海北部白云深水区重力流沉积层序地层学研究思路[J]. 中国海上油气, 2012, 24(2):1-8. |
[26] | 任建业, 雷超. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区[J]. 地球物理学报, 2011, 54(12):3303-3314. |
[27] | 林畅松, 张燕梅, 李思田, 等. 中国东部中新生代断陷盆地幕式裂陷过程的动力学响应和模拟模型[J]. 地球科学:中国地质大学学报, 2004, 29(5): 583-588. |
[28] | 李思田, 林畅松, 张启明, 等. 南海北部大陆边缘盆地幕式裂陷的动力过程及10 Ma以来的构造事件[J]. 科学通报, 1998, 43 (8): 797-809.. |
[29] | CHE PERCY P H, Chen Z Y, Zhang Q M. Sequence stratigraphy and continental margin development of the northwestern shelf of the South China Sea[J]. AAPG Bulletin, 1993, 77(5): 842-862. |
[30] |
马畅, 葛家旺, 赵晓明, 等. 南海北部琼东南盆地第四系陆架边缘轨迹迁移及深水沉积模式[J]. 地学前缘, 2022, 29(4): 55-72.
DOI |
[31] | ZHAO Q H, LI Q Y, JIAN Z M. Deep Waters and Oceanic Connection[M]// WANG P, LI Q. The South China Sea. Dordrecht: Springer, 2009: 395-437. |
[32] |
XIE Q, XIAO J G, WANG D X, et al. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs[J]. Chinese Science Bulletin, 2013, 58(32): 4000-4011.
DOI URL |
[33] | FAUGHN J L. NAGA Report, vol. 1, Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959-1961[R]. La Jolla, California: Scripps Institution of Oceanography, 1974: 1-177. |
[34] | LÜDMANN T. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters, 2005, 32(5): L05614. |
[35] |
ZHU M Z, GRAHAM S, PANG X, et al. Characteristics of migrating submarine canyons from the middle Miocene to present: implications for paleoceanographic circulation, northern South China Sea[J]. Marine and Petroleum Geology, 2010, 27(1): 307-319.
DOI URL |
[36] |
LI Q Y, ZHAO Q H, ZHONG G F, et al. Deepwater ventilation and stratification in the Neogene South China Sea[J]. Journal of China University of Geosciences, 2007, 18(2): 95-108.
DOI URL |
[37] | 谢玲玲. 西北太平洋环流及其与南海水交换研究[D]. 青岛: 中国海洋大学, 2009. |
[38] | LEI C, ALVES T M, REN J Y, et al. Rift structure and sediment infill of hyperextended continental crust: insights from 3D seismic and well data (Xisha trough, South China Sea)[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018610. |
[39] | 苏明, 李俊良, 姜涛, 等. 琼东南盆地中央峡谷的形态及成因[J]. 海洋地质与第四纪地质, 2009, 29(4): 85-93. |
[40] | 姚根顺, 袁圣强, 吴时国, 等. 琼东南盆地深水区双物源沉积模式及勘探前景[J]. 石油勘探与开发, 2008, 35(6):685-691. |
[41] | 吕明. 莺-琼盆地低位沉积模式的新探讨[J]. 中国海上油气(地质), 2002, 16(4):222-230. |
[42] | 卓海腾, 王英民, 徐强, 等. 南海北部莺歌海盆地东方区上新统侧积复合体沉积特征及成因[J]. 古地理学报, 2013, 15(6):787-794. |
[1] | 王家昊, 胡修棉, 蒋璟鑫, 马超, 马鹏飞. 重建南海27 Ma以来高分辨率碳酸盐补偿深度[J]. 地学前缘, 2024, 31(1): 500-510. |
[2] | 陈雯霖, 郑求根, 黄一鸣, 张懿, 林畅松. 南海南缘礼乐盆地在南海扩张前的位置恢复[J]. 地学前缘, 2023, 30(5): 420-429. |
[3] | LIANG Guanghe. 南海中央海盆高精度地震勘探揭示的大陆漂移过程[J]. 地学前缘, 2023, 30(5): 430-449. |
[4] | 朱一杰, 龚承林, 邵大力, 齐昆, 陈燕燕, 丁梁波, 马宏霞. 孟加拉湾若开陆缘晚中新世以来渐进式深水水道形态-沉积演化及其源-汇成因[J]. 地学前缘, 2023, 30(4): 182-195. |
[5] | 陈飞, 范洪军, 范廷恩, 张会来, 赵卫平, 井涌泉. 西非尼日尔三角洲盆地A油田深水浊积水道沉积体系沉积特征[J]. 地学前缘, 2023, 30(4): 209-217. |
[6] | 刘晓磊, 李伟甲, 陆杨, 李星宇, 张淑玉, 余和雨. 南海北部大陆边缘沉积物波分布特征及形成机制研究进展[J]. 地学前缘, 2023, 30(2): 81-95. |
[7] | 叶涛, 牛成民, 王德英, 王清斌, 代黎明, 陈安清. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J]. 地学前缘, 2022, 29(5): 133-146. |
[8] | 季春生, 贾永刚, 朱俊江, 胡乃利, 范智涵, 胡聪, 冯学志, 余和雨, 刘博. 深海海底边界层原位观测系统研发与应用[J]. 地学前缘, 2022, 29(5): 265-274. |
[9] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[10] | 阎贫, 王彦林, 靳永斌, 赵美霞, 钟广见. 东沙海区海丘发现多底栖方式深水珊瑚[J]. 地学前缘, 2022, 29(4): 202-210. |
[11] | 梁光河. 南海中央海盆高精度地震勘探揭示的大陆漂移过程[J]. 地学前缘, 2022, 29(4): 293-306. |
[12] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[13] | 马畅, 葛家旺, 赵晓明, 廖晋, 姚哲, 朱继田, 方小宇, 向柱. 南海北部琼东南盆地第四系陆架边缘轨迹迁移及深水沉积模式[J]. 地学前缘, 2022, 29(4): 55-72. |
[14] | 王明健, 潘军, 高红芳, 黄龙, 李霞. 南海北部—东海南部中生代盆地演化与油气资源潜力[J]. 地学前缘, 2022, 29(2): 294-302. |
[15] | 杨文卿, 谢周清, 孙立广. 南海古海啸重建与海啸沉积研究进展[J]. 地学前缘, 2021, 28(2): 246-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||