地学前缘 ›› 2023, Vol. 30 ›› Issue (4): 182-195.DOI: 10.13745/j.esf.sf.2022.10.22
朱一杰1,2(), 龚承林1,2,*(
), 邵大力3, 齐昆1,2, 陈燕燕1,2, 丁梁波3, 马宏霞3
收稿日期:
2022-08-20
修回日期:
2022-09-25
出版日期:
2023-07-25
发布日期:
2023-07-07
通信作者:
*龚承林(1983—),男,博士,教授,主要从事地震解释、深水沉积与层序地层方面的教学和科研工作。E⁃mail: chenglingong@cup.edu.cn
作者简介:
朱一杰(1998-),女,博士研究生,主要从事深水沉积与层序地层研究工作。E-mail: zhuyijie621@163.com
基金资助:
ZHU Yijie1,2(), GONG Chenglin1,2,*(
), SHAO Dali3, QI Kun1,2, CHEN Yanyan1,2, DING Liangbo3, MA Hongxia3
Received:
2022-08-20
Revised:
2022-09-25
Online:
2023-07-25
Published:
2023-07-07
摘要:
深水水道是当前深水沉积学研究的前沿,多期水道往往无序迁移、无规律演化;研究发现孟加拉湾若开海域深水水道的沉积构成和形态特征自晚中新世以来呈现渐进式演化过程,其成因机制有待进一步研究。在沉积特征上,从晚中新世至今若开海域深水水道呈现渐进式的演化过程:天然堤越来越发育,水道侵蚀下切作用越来越弱。具体来说,晚中新世以两翼不发育堤岸的无堤岸水道为主,以侵蚀作用为主;上新世无堤岸水道和堤岸水道兼而有之,侵蚀作用和沉积作用兼而有之;而第四纪主要发育堤岸水道,以沉积作用为主。在形态特征上,从晚中新世至今若开海域深水水道亦呈现渐进式演化的特点:下切规模越来越小,平面弯曲度越来越大。具体来说,晚中新世水道下切规模较大,水道宽且深,横截面积大,弯曲度小;上新世水道下切规模相对减小,水道宽度、深度、横截面积及弯曲度适中;第四纪水道下切规模较小,水道窄且浅,横截面积小,弯曲度大。研究表明晚中新世至今渐进式深水水道形态-沉积演化是布拉马普特拉河沉积物分散路径自晚中新世以来渐进式迁移演化的源汇响应。伴随着布拉马普特拉河沉积物分散路径渐进式向西迁移,靠东一侧的研究区盆外供源沉积物渐进式减少,重力流发育程度亦渐进式衰减,从而导致深水水道的形态特征和沉积构成也呈现渐进式演化。
中图分类号:
朱一杰, 龚承林, 邵大力, 齐昆, 陈燕燕, 丁梁波, 马宏霞. 孟加拉湾若开陆缘晚中新世以来渐进式深水水道形态-沉积演化及其源-汇成因[J]. 地学前缘, 2023, 30(4): 182-195.
ZHU Yijie, GONG Chenglin, SHAO Dali, QI Kun, CHEN Yanyan, DING Liangbo, MA Hongxia. The gradual change in morphology and architecture of submarine channels in the Rakhine margin, Bengal Bay since the Late Miocene and its source-to-sink genesis[J]. Earth Science Frontiers, 2023, 30(4): 182-195.
图2 研究区典型地震剖面(剖面位置见图1)及其解释示例了若开陆缘晚中新世以来的沉积演化 图中粉色线条指示了图3~5所示的RGB混相分频属性的剖面位置。
Fig.2 Seismic transect and geological interpretation showing the depositional evolution of the Rakhine margin (seismic line locations see Fig.1)
图3 RGB混相分频属性及其解释示意了晚中新世若开盆地深水水道的平面地震地貌学特征以及如图6A所示的地震剖面的平面位置
Fig.3 RGB spectral decomposition-attribute map showing plan-view seismic geomorphological features of submarine channels in the Late Miocene Rakhine Basin (survey area location see Fig.1)
图4 RGB混相分频属性及其解释刻画了上新世若开盆地深水水道的平面地震地貌学特征以及如图6B所示的地震剖面的平面位置
Fig.4 RGB spectral decomposition-attribute map showing plan-view seismic geomorphological features of submarine channels in the Pliocene Rakhine Basin (survey area location see Fig.1)
图5 RGB混相分频属性及其解释示意了第四纪若开盆地深水水道的平面地震地貌学特征以及如图6C所示的地震剖面的平面位置
Fig.5 RGB spectral decomposition-attribute map showing plan-view seismic geomorphological features of submarine channels in Quaternary Rakhine Basin (survey area location see Fig.1)
图6 地震剖面(剖面位置见图3~5)及其对应解释刻画了若开陆缘晚中新世(图A和A')、上新世(图B和B')和第四纪(图C和C')深水水道的剖面形态和沉积构成之对比
Fig.6 Uninterpreted and interpreted seismic transects comparing cross-section view features and architectural elements between the Late Miocene (upper panel), Pliocene (middle panel), and Quaternary (lower panel) Rakhine submarine channels
图7 柱状图量化了若开海域晚中新世、上新世和第四纪深水水道的横截面积(图A)和发育程度(图B)之对比
Fig.7 Histograms comparing cross-section sizes (A) and channel development levels (B) between the Late Miocene, Pliocene, and Quaternary Rakhine submarine channels
图8 柱状图量化了若开海域晚中新世、上新世和第四纪深水水道的宽度(图A)和深度(图B)之对比
Fig.8 Histograms comparing channel widths (A) and depths (B) between the muti-stage Rakhine submarine channels
图9 布拉马普特拉河沉积物分散路径(区域位置见图1)自晚中新世以来渐进式迁移演化过程(A-C)(据文献[40,51⇓-53]修改);地震剖面及其解释示例了孟加拉湾若开陆缘自晚中新世以来渐进式深水水道形态-沉积演化过程(D)
Fig.9 Evolution of submarine channels in the Rakhine Basin since the Late Miocene. (A-C) Gradual change of the Brahmaput River sediment-routing system (see Fig.1 for the map-view locations). Modified after [40,51⇓-53]. (D) Gradual change in morphologic and architectural properties of submarine channels.
[1] |
邹才能, 马锋, 潘松圻, 等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘, 2023, 30(1): 128-142.
DOI |
[2] |
徐旭辉, 陆建林, 王保华, 等. 中国海相盆地油气资源动态评价与有利勘探方向[J]. 地学前缘, 2022, 29(6): 73-83.
DOI |
[3] |
卢双舫, 王峻, 李文镖, 等. 从能耗比论低熟富有机质页岩原位改质转化的经济可行性及增效途径[J]. 地学前缘, 2023, 30(1): 187-198.
DOI |
[4] |
赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127.
DOI |
[5] |
王香增. 鄂尔多斯盆地延长探区低渗致密油气成藏理论进展及勘探实践[J]. 地学前缘, 2023, 30(1): 143-155.
DOI |
[6] |
吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6): 146-155.
DOI |
[7] | 李华, 何幼斌, 谈梦婷, 等. 深水重力流水道-朵叶体系形成演化及储层分布: 以鄂尔多斯盆地西缘奥陶系拉什仲组露头为例[J]. 石油与天然气地质, 2022, 43(4): 917-928. |
[8] | 汪品先. 深海沉积与地球系统[J]. 海洋地质与第四纪地质, 2009, 29(4): 1-11. |
[9] | 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5): 922-930. |
[10] |
HARRIS P T, WHITEWAY T. Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins[J]. Marine Geology, 2011, 285(1/2/3/4): 69-86.
DOI URL |
[11] | 李华, 何幼斌, 冯斌, 等. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化[J]. 地球科学, 2018, 43(6): 2149-2159. |
[12] | 李全, 吴伟, 康洪全, 等. 西非下刚果盆地深水水道沉积特征及控制因素[J]. 石油与天然气地质, 2019, 40(4): 917-929. |
[13] | 陈亮, 赵千慧, 王英民, 等. 深水水道沉积单元及演化分析[J]. 海洋地质前沿, 2020, 36(3): 12-19. |
[14] |
MAYALL M, JONES E, CASEY M. Turbidite channel reservoirs: key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
DOI URL |
[15] |
PIPER D J W, SHAW J, SKENE K I. Stratigraphic and sedimentological evidence for late Wisconsinan sub-glacial outburst floods to Laurentian Fan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(1): 101-119.
DOI URL |
[16] | 田冬梅, 姜涛, 张道军, 等. 海底水道特征及其成因机制: 以莺歌海盆地乐东区莺歌海组一段为例[J]. 地球科学, 2017, 42(1): 130-141. |
[17] |
GONG C L, STEEL R J, QI K, et al. Deep-water channel morphologies, architectures, and population densities in relation to stacking trajectories and climate states[J]. GSA Bulletin, 2021, 133(1/2): 287-306.
DOI URL |
[18] |
POSAMENTIER H W, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388.
DOI URL |
[19] |
WYNN R B, CRONIN B T, PEAKALL J. Sinuous deep-water channels: genesis, geometry and architecture[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 341-387.
DOI URL |
[20] |
FONNESU M, PALERMO D, GALBIATI M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: the giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology, 2020, 111: 179-201.
DOI URL |
[21] | 李华, 何幼斌. 深水重力流水道沉积研究进展[J]. 古地理学报, 2020, 22(1):161-174. |
[22] |
PEAKALL J, SUMNER E J. Submarine channel flow processes and deposits: a process-product perspective[J]. Geomorphology, 2015, 244: 95-120.
DOI URL |
[23] |
FILDANI A. Submarine canyons:a brief review looking forward[J]. Geology, 2017, 45(4): 383-384.
DOI URL |
[24] |
SYMONS W O, SUMNER E J, PAULL C K, et al. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon[J]. Geology, 2017, 45(4): 367-370.
DOI URL |
[25] |
MIRAMONTES E, EGGENHUISEN J T, JACINTO R S, et al. Channel-levee evolution in combined contour current-turbidity current flows from flume-tank experiments[J]. Geology, 2020, 48(4): 353-357.
DOI URL |
[26] |
JANOCKO M, NEMEC W, HENRIKSEN S, et al. The diversity of deep-water sinuous channel belts and slope valley-fill complexes[J]. Marine and Petroleum Geology, 2013, 41: 7-34.
DOI URL |
[27] | 姚悦, 周江羽, 雷振宇, 等. 西沙海槽盆地强限制性中央峡谷水道地震相与内部结构的分段特征[J]. 沉积学报, 2018, 36(4):787-795. |
[28] |
GONG C L, WANG Y M, STEEL R J, et al. Flow processes and sedimentation in unidirectionally migrating deep-water channels: from a three-dimensional seismic perspective[J]. Sedimentology, 2016, 63(3): 645-661.
DOI URL |
[29] | NORMARK W R. Growth patterns of deep-sea fans[J]. AAPG Bulletin, 1970, 54(11): 2170-2195. |
[30] | CLARK J D, PICKERING K T. Submarine channels: processesand architecture[M]. London: Vallis Press, 1996. |
[31] |
MOODY J D, PYLES D R, CLARK J, et al. Quantitative outcrop characterization of an analog to weakly confined submarine channel systems: Morillo 1 member, Ainsa Basin, Spain[J]. AAPG Bulletin, 2012, 96(10): 1813-1841.
DOI URL |
[32] | 张文彪, 段太忠, 刘志强, 等. 深水浊积水道沉积构型模式及沉积演化: 以西非M油田为例[J]. 地球科学, 2017, 42(2): 273-285. |
[33] | 陈华, 林畅松, 张忠民, 等. 西非下刚果-刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J]. 石油实验地质, 2021, 43(3):476-486. |
[34] |
DORRELL R M, BURNS A D, MCCAFFREY W D. The inherent instability of leveed seafloor channels[J]. Geophysical Research Letters, 2015, 42(10): 4023-4031.
DOI URL |
[35] |
HODGSON D M, KANE I A, FLINT S S, et al. Time-transgressive confinement on the slope and the progradation of basin-floor fans:implications for the sequence stratigraphy of deep-water deposits[J]. Journal of Sedimentary Research, 2016, 86(2): 73-86.
DOI URL |
[36] |
JOBE Z R, HOWES N C, AUCHTER N C. Comparing submarine and fluvial channel kinematics:implications for stratigraphic architecture[J]. Geology, 2016, 44(11): 931-934.
DOI URL |
[37] |
BEAUBOUEF R T. Deep-water leveed-channel complexes of the Cerro Toro Formation, Upper Cretaceous, southern Chile[J]. AAPG Bulletin, 2004, 88(11): 1471-1500.
DOI URL |
[38] |
LABOURDETTE R. Integrated three-dimensional modeling approach of stacked turbidite channels[J]. AAPG Bulletin, 2007, 91(11): 1603-1618.
DOI URL |
[39] |
周立宏, 孙志华, 汤戈, 等. 孟加拉湾若开盆地D区块上新统异重流特征与沉积模式[J]. 石油勘探与开发, 2020, 47(2):297-308.
DOI |
[40] |
PICKERING K T, POUDEROUX H, MCNEILL L C, et al. Sedimentology, stratigraphy and architecture of the Nicobar fan (Bengal-Nicobar fan system), Indian Ocean: results from international ocean discovery program expedition 362[J]. Sedimentology, 2020, 67(5): 2248-2281.
DOI URL |
[41] |
CURRAY J R. Sediment volume and massbeneath the Bay of Bengal[J]. Earth and Planetary Science Letters, 1994, 125(1/2/3/4): 371-383.
DOI URL |
[42] | 王雪峰, 吕福亮, 范国章, 等. 孟加拉湾若开盆地构造特征及演化[J]. 成都理工大学学报(自然科学版), 2013, 40(4):424-430. |
[43] | 马宏霞, 孙辉, 邵大力, 等. 缅甸若开盆地上中新统-上新统深水沉积层序地层划分及控制因素[J]. 石油与天然气地质, 2015, 36(1): 136-141. |
[44] |
CURRAY J R, EMMEL F J, MOORE D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes[J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223.
DOI URL |
[45] |
YANG S Y, KIM J W. Pliocene basin-floor fan sedimentation in the Bay of Bengal (offshore northwest Myanmar)[J]. Marine and Petroleum Geology, 2014, 49: 45-58.
DOI URL |
[46] | 王芝尧, 钱茂路, 苏俊清, 等. 缅甸若开海域生物气藏气源成因分析[J]. 油气地质与采收率, 2017, 24(2): 46-51. |
[47] |
MA H X, FAN G Z, SHAO D L, et al. Deep-water depositional architecture and sedimentary evolution in the Rakhine Basin, northeast Bay of Bengal[J]. Petroleum Science, 2020, 17(3): 598-614.
DOI |
[48] |
PEAKALL J, AMOS K J, KEEVIL G M, et al. Flow processes and sedimentation in submarine channel bends[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 470-486.
DOI URL |
[49] |
HOWLETT D M, GAWTHORPE R L, GE Z Y, et al. Turbidites, topography and tectonics: evolution of submarine channel-lobe systems in the salt-influenced Kwanza Basin, offshore Angola[J]. Basin Research, 2021, 33(2): 1076-1110.
DOI URL |
[50] |
MAYALL M, KNELLER B. Seismic interpretation workflows for deep-water systems:a practical guide for the subsurface[J]. AAPG Bulletin, 2021, 105(11): 2127-2157.
DOI URL |
[51] |
NAJMAN Y, ALLEN R, WILLETT E A F, et al. The record of Himalayan erosion preserved in the sedimentary rocks of the Hatia Trough of the Bengal Basin and the Chittagong Hill Tracts, Bangladesh[J]. Basin Research, 2012, 24(5): 499-519.
DOI URL |
[52] |
GOVIN G, NAJMAN Y, COPLEY A, et al. Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland[J]. Geology, 2018, 46(3): 279-282.
DOI URL |
[53] |
MCNEILL L C, DUGAN B, BACKMAN J, et al. Understanding Himalayan erosion and the significance of the Nicobar Fan[J]. Earth and Planetary Science Letters, 2017, 475: 134-142.
DOI URL |
[54] |
ROMANS B W, CASTELLTORT S, COVAULT J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
DOI URL |
[55] |
GONG C L, BLUM M D, WANG Y M, et al. Can climatic signals be discerned in a deep-water sink?: an answer from the Pearl River source-to-sink sediment-routing system[J]. Geological Society of America Bulletin, 2018, 130(3/4): 661-677.
DOI URL |
[56] | 张克信, 王国灿, 洪汉烈, 等. 青藏高原新生代隆升研究现状[J]. 地质通报, 2013, 32(1): 1-18. |
[57] |
CLIFT P D, HODGES K V, HESLOP D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12): 875-880.
DOI |
[58] |
MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
DOI PMID |
[59] |
SINCAVAGE R, BETKA P M, THOMSON S N, et al. Neogene shallow-marine and fluvial sediment dispersal, burial, and exhumation in the ancestral Brahmaputra delta: Indo-Burman Ranges, India[J]. Journal of Sedimentary Research, 2020, 90(9): 1244-1263.
DOI URL |
[1] | 由雪莲,孙枢,朱井泉,刘玲,何凯. 微生物白云岩模式研究进展[J]. 地学前缘, 2011, 18(4): 52-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||