

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 179-209.DOI: 10.13745/j.esf.sf.2025.4.49
侯增谦1(
), 杨志明2, 张洪瑞2, 王瑞3, 宋玉财2, 刘琰2, 郑远川3, 许博3, 王庆飞3, 刘英超2
收稿日期:2025-04-21
修回日期:2025-05-29
出版日期:2025-11-25
发布日期:2025-11-12
作者简介:侯增谦(1961—),男,研究员,中国科学院院士,主要从事矿床地质研究。E-mail: houzengqian@126.com
基金资助:
HOU Zengqian1(
), YANG Zhiming2, ZHANG Hongrui2, WANG Rui3, SONG Yucai2, LIU Yan2, ZHENG Yuanchuan3, XU Bo3, WANG Qingfei3, LIU Yingchao2
Received:2025-04-21
Revised:2025-05-29
Online:2025-11-25
Published:2025-11-12
摘要:
大陆碰撞成矿理论框架已经初步构建,但在碰撞带岩石圈结构与深部致矿过程、碰撞带热状态与成矿差异控制、关键成矿过程与矿床成因机理等方面仍认识不足。近年来,通过地球物理-地球化学-岩石学-成矿学等多学科交叉研究和实验模拟,大陆碰撞成矿作用研究取得了诸多新认识和新进展。研究表明,碰撞带可以分为冷碰撞和热碰撞两种基本类型。其中,比利牛斯、阿尔卑斯和加里东造山带为冷碰撞演化序列代表,扎格罗斯、喜马拉雅和华力西造山带为热碰撞演化序列代表。冷/热结构受控于碰撞带深部过程和地幔热扰动强度。碰撞前大洋俯冲对上覆岩石圈的改造,导致岩石圈地幔交代富集、新生下地壳形成和古老地壳活化再造,为碰撞期含铜、金、稀土等岩浆系统形成提供了重要物源。碰撞期软流圈上涌交代、改造、吞噬上覆岩石圈,导致强烈的壳幔物质能量交换,为碰撞成矿提供了深部动力机制。碰撞成矿作用主要形成斑岩铜金矿床、MVT铅锌矿床、碳酸岩型稀土矿床、造山型金矿床以及淡色花岗岩有关的稀有金属矿床等。碰撞型大型斑岩铜矿床的形成要求:大陆板片中缓角度俯冲、俯冲板片垂向撕裂、新生下地壳部分熔融和壳内硫化物分解;MVT超大型铅锌矿的形成要求:褶冲系和前陆带环境、压/张构造转换、盆地卤水沿拆离带的迁移汇聚和前锋带的构造圈闭;碳酸岩型稀土矿床的形成要求:富稀土沉积物俯冲循环、碳酸岩化地幔根部分熔融、富REE碳酸岩浆壳内演化、高密度盐熔体与围岩交代反应;造山型金矿床的形成要求:岩石圈立交桥结构与壳/幔解耦变形、富水幔源超钾质岩浆集聚与去气、流体沿超壳断裂迁移与交代;与淡色花岗岩有关的稀有金属矿床的形成要求:活化改造地壳的部分熔融、拆离构造驱动的岩浆分异或者热驱动的岩浆高度分异。基于上述要素,结合典型矿床对比,建立和完善了大陆碰撞带4种典型矿床的成矿模型。
中图分类号:
侯增谦, 杨志明, 张洪瑞, 王瑞, 宋玉财, 刘琰, 郑远川, 许博, 王庆飞, 刘英超. 大陆碰撞成矿作用:新认识与新进展[J]. 地学前缘, 2025, 32(6): 179-209.
HOU Zengqian, YANG Zhiming, ZHANG Hongrui, WANG Rui, SONG Yucai, LIU Yan, ZHENG Yuanchuan, XU Bo, WANG Qingfei, LIU Yingchao. Metallogenesis in collisional orogens: New insights and advances[J]. Earth Science Frontiers, 2025, 32(6): 179-209.
图3 冷、热碰撞带热结构与演化序列 a—显示阿尔卑斯和青藏高原变质岩和火山岩包体的温度-压力资料[54];b—反映不同碰撞造山带的温度与山体规模的关系。
Fig.3 The thermal regime and evolution sequence of cold and hot collisional orogen. (a)—p-T conditions of metamorphic rocks and xenolith data from the Alpine and Himalayan-Tibetan collisional orogens[54]; (b)—the relationship between orogenic tempearature and magnitude for the typical collisional orogens.
图4 青藏高原东南缘岩石圈地震速度结果(a)与岩石圈地幔的Mg#变化(b) a—显示120 km深度vP结构、印度大陆岩石圈俯冲前缘位置(ICS-F,灰线)、地震各相异性(SKS)反映的上地幔物质运动方向(黑线)、岩石圈/软流圈界面(LAB)等值线(白线)。红色的粗虚线反映了俯冲的印度板片撕裂带位置。b—显示根据地震速度、大地热流值和地幔岩(包体)橄榄石成分反演的现今岩石圈地幔的Mg#值变化。
Fig.4 The P-velocity image (a) and Mg# ratios (b) of the lithospheric mantle beneath the southeastern Tibetan Plateau. (a) A slice of P-velocity image at depth of 120 km showing Indian continental subducted frontier (ICS-F, dark lines), mantle flow (black lines) measured by SKS splitting analysis, the lithosphere-asthenosphere boundary (LAB, white lines), and tear position of the subducted Indian slab. (b) Mapping of lithosphere mantle Mg# values calculated from seismic velocity, terrestrial heat flow and olivine xenoliths.
图5 不同碰撞造山带Hf同位素填图结果及其所反映的岩石圈物质架构 (据文献[77]) A—伊朗高原;B—青藏高原;C—秦岭造山带。
Fig.5 Zricon Hf isotope contour map showing the lithospheric architecture of the collisional orogens in Iran (A), Tibet (B) and Central China (C). Adapted from [77].
图7 大陆板片中缓角度俯冲、新生下地壳熔融与斑岩铜矿形成
Fig.7 Relationship among subduction angle of continental slab, melting of the juvenile lower crust and generation of porphyry Cu deposits a—A cartoon showing the low- and moderate-angle subduction of the Indian continent-slab during the Cenozoic collision, which resulted in a thermal regime with heat-crust and cold mantle; b—The collisional process triggered partial melting of the juvenile mafic lower crust, and generated potassic adakitic magmas with assicated collision-related porphyry Cu deposits.
图8 特提斯构造-成矿域大陆碰撞造山带MVT铅锌矿区构造演化、铅锌成矿、油气成藏的时间关系(据文献[52-53])
Fig.8 The temporal relationship among evolution of regional deformation, timing of MVT mineralization and hydrocarbon reservoir in the collisional zone witnin the Tethyan metallogenic domain. Adapted from [52-53].
图9 大陆碰撞带褶皱-逆冲带MVT成矿流体迁移机制(据文献[145])
Fig.9 A cratoon showing the migration and discharing of ore-forming fluids along the intra-crustal detachment zone beneath the collision-induced fold and thrust system for the formation of MVT deposits. Adapted from [145].
图10 特提斯大陆碰撞造山带MVT铅锌矿床储矿样式及代表性矿床(据文献[16,153-156])
Fig.10 Characteristic ore traps and their controls on typical MVT deposits within fold and thrust belts. Adapted from [16,153-156].
图11 大陆碰撞褶皱-逆冲系MVT铅锌矿床3阶段演化成矿模型(据文献[156])
Fig.11 Three-stage model for Mississippi Valley-type Zn-Pb mineralization in the collision induced fold- thrust system. Adapted from [156].
图12 俯冲带REE迁移方式与大陆岩石圈地幔交代富集机制显示出来自俯冲带的富REE熔/流体(a)和富REE底辟体(b)对成矿物质的输运方式 SCLM:大陆岩石圈地幔。
Fig.12 Schematic illustration showing the transfer of REE and metasomatised enriched lithospheric mantle in subduction zone. The REE may be migrated as CO2-rich fluids and melts (a) or diapirs (b) to overlying mantle wedge. SCLM: subcontinental lithospheric mantle.
图13 碰撞带碳酸岩型REE矿床成矿过程(据文献[182])
Fig.13 Schematic illustration showing the ore-forming processes of the carbonatite-associated rare earth deposit in collision zone. Adapted from [182].
图14 哀牢山金矿带岩石圈立交桥结构与造山型金成矿作用(据文献[206]) (a)—地表GPS和岩石圈地幔的SKS探测表明北西向地壳运动(地表白色箭头)与东西向地幔运动(地幔黑色线段)形成立交桥结构,板片回撤引发软流圈上涌并诱发富集地幔熔融,富水基性岩浆在壳幔解耦界面处停留-聚聚-成池-去气;(b)—底侵的基性岩浆发生脱气与硫化物熔离,形成含金流体沿区域剪切带向上输运并沉淀成矿。
Fig.14 Schematic illustration showing the overpass-type lithosphere architecture and its control on the orogenic gold depositsin the Ailaoshan gold belt. Adapted from [206]. (a) The overpass type lithosphere architecture is constituted by surface NW-trending deformation (white arrows) as shown by GPS and E-W-trending flow of mantle lithosphere (black lines) as shown by SKS splitting analysis. Slab rollback induced upwelling of hot asthenosphere and partially melting of the enriched mantle. The produced basic magma ponded and degassed at the boundary of crust-mantle decoupling. (b) The Au-bearing fluid was derived from degassing and sulfide separation of the underplated basic melts, and migrated along regional shear zone and finally precipated to form gold deposit.
图15 腾冲地块俯冲型与碰撞型锡矿床的成矿构造模型图(据文献[235])
Fig.15 Tectonic model for the formation of subduction-related and collision-related Sn deposits in the Tengchong block. Adapted from [235].
| [1] | 侯增谦. 大陆碰撞成矿论[J]. 地质学报, 2010, 84(1): 30-58. |
| [2] | HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36(1/2/3): 2-24. |
| [3] | ZHANG H R, HOU Z Q, ROLLAND Y, et al. The cold and hot collisional orogens: thermal regimes and metallogeny of the Alpine versus Himalayan-Tibetan belts[J]. Ore Geology Reviews, 2022, 141: 104671. |
| [4] | 侯增谦, 杨竹森, 徐文艺, 等. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4): 337-358. |
| [5] | 侯增谦, 潘桂棠, 王安建, 等. 青藏高原碰撞造山带: II. 晚碰撞转换成矿作用[J]. 矿床地质, 2006, 25(5) : 521-533. |
| [6] | 侯增谦. 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带: III. 后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6): 629-651. |
| [7] | SELTMANN R, FARAGHER A E. Collisional orogens and their related metallogeny: a preface[C]// SELTMANN R, KAMPF H, MOLLER P. Metallogeney of collisional orogens. Prague: Czech Geological Survey, 1994: 7-20. |
| [8] | BRADLEY D C, LEACH D L. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 2003, 38(6): 652-667. |
| [9] | LEACH D, MACQUAR J C, LAGNEAU V, et al. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Trèves, Cévennes region of southern France[J]. Geofluids, 2006, 6(1): 24-44. |
| [10] | HOU Z Q, MA H W, ZAW K, et al. The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 2003, 98(1): 125-145. |
| [11] | HOU Z Q, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6): 563-566. |
| [12] | HOU Z Q, YANG Z M, QU X M, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/2/3): 25-51. |
| [13] | HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250. |
| [14] | SUN X M, ZHANG Y, XIONG D X, et al. Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China[J]. Ore Geology Reviews, 2009, 36(1/2/3): 235-249. |
| [15] | 侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型: 成矿基本特征与构造控矿模型[J]. 矿床地质, 2008, 27(2): 123-144. |
| [16] | 刘英超, 杨竹森, 侯增谦, 等. 青海玉树东莫扎抓铅锌矿床地质特征及碳氢氧同位素地球化学研究[J]. 矿床地质, 2009, 28(6): 770-784. |
| [17] | 宋玉财, 侯增谦, 杨天南, 等. “三江” 喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J]. 岩石矿物学杂志, 2011, 30(3): 355-380. |
| [18] | HOU Z Q, GAO Y F, QU X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155. |
| [19] | YANG Z M, HOU Z Q, WHITE N C, et al. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2009, 36(1/2/3): 133-159. |
| [20] | YANG Z S, HOU Z Q, MENG X J, et al. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan Orogen[J]. Ore Geology Reviews, 2009, 36(1/2/3): 194-212. |
| [21] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8): 871-880. |
| [22] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
| [23] | 陈衍景. 陆内碰撞造山体制的流体演化模式: 理论推导和东秦岭金矿氧同位素证据[J]. 地学前缘, 1996, 3(4): 282-289. |
| [24] | 张洪瑞, 侯增谦. 大陆碰撞造山样式与过程: 来自特提斯碰撞造山带的实例[J]. 地质学报, 2015, 89(9): 1539-1559. |
| [25] | COTTLE J M, LARSON K P, KELLETT D A. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan Orogen[J]. Journal of Structural Geology, 2015, 78: 119-133. |
| [26] | PETTKE T, DIAMOND L W, KRAMERS J D. Mesothermal gold lodes in the north-western Alps: a review of genetic constraints from radiogenic isotopes[J]. European Journal of Mineralogy, 2000, 12(1): 213-230. |
| [27] | NEUBAUER F. Contrasting Late Cretaceous with Neogene ore provinces in the Alpine-Balkan-Carpathian-Dinaride collision belt[J]. Geological Society, London, Special Publications, 2002, 204(1): 81-102. |
| [28] | DAL PIAZ G V, BISTACCHI A, MASSIRONI M. Geological outline of the Alps[J]. Episodes, 2003, 26(3): 175-180. |
| [29] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
| [30] | NELSON K D, ZHAO W, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 1996, 274(5293): 1684-1688. |
| [31] | WILLETT S D, BEAUMONT C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J]. Nature, 1994, 369(6482): 642-645. |
| [32] | 侯增谦, 赵志丹, 高永丰, 等. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 2006, 22(4): 761-774. |
| [33] | CHUNG S L, CHU M F, ZHANG Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196. |
| [34] | HOU Z Q, LIU L J, ZHANG H J, et al. Cenozoic eastward growth of the Tibetan Plateau controlled by tearing of the Indian slab[J]. Nature Geoscience, 2024, 17(3): 255-263. |
| [35] | BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Crustal channel flows: 1. numerical models with applications to the tectonics of the Himalayan-Tibetan Orogen[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B6): B06406. |
| [36] | KERRICH R, GOLDFARB R J, RICHARDS J P. Metallogenic provinces in an evolving geodynamic framework[J]. Economic Geology, 2005, 100: 1097-1136. |
| [37] | RICHARDS J P. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water[J]. Economic Geology, 2011, 106(7): 1075-1081. |
| [38] | HOU Z Q, LIU Y, TIAN S H, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5: 10231. |
| [39] | GRIFFIN W, BEGG G, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910. |
| [40] | RICHARDS J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3): 247-250. |
| [41] | HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110(6): 1541-1575. |
| [42] | ZHU D C, WANG Q, WEINBERG R F, et al. Interplay between oceanic subduction and continental collision in building continental crust[J]. Nature Communications, 2022, 13: 7141. |
| [43] | ZHENG Y F, MAO J W, CHEN Y J, et al. Hydrothermal ore deposits in collisional orogens[J]. Science Bulletin, 2019, 64(3): 205-212. |
| [44] | SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41. |
| [45] | GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 7-27. |
| [46] | GOLDFARB R J, HART C, DAVIS G, et al. East Asian gold: deciphering the anomaly of Phanerozoic gold in Precambrian cratons[J]. Economic Geology, 2007, 102(3): 341-345. |
| [47] | VERGÉS J, FERNÀNDEZ M. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: the Betic-Rif orogenic system[J]. Tectonophysics, 2012, 579: 144-172. |
| [48] | HENJES-KUNST E, RAITH J G, BOYCE A J. Micro-scale sulfur isotope and chemical variations in sphalerite from the Bleiberg Pb-Zn deposit, Eastern Alps, Austria[J]. Ore Geology Reviews, 2017, 90: 52-62. |
| [49] | HORNER J, NEUBAUER F, PAAR W H, et al. Structure, mineralogy, and Pb isotopic composition of the As-Au-Ag deposit Rotgülden, Eastern Alps (Austria): significance for formation of epigenetic ore deposits within metamorphic domes[J]. Mineralium Deposita, 1997, 32(6): 555-568. |
| [50] | HOU Z Q, ZHANG H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015, 70: 346-384. |
| [51] | 张洪瑞, 侯增谦. 大陆碰撞带成矿作用: 年轻碰撞造山带对比研究[J]. 中国科学: 地球科学, 2018, 48(12): 1629-1654. |
| [52] | SONG Y C, YANG Z M, ZHUANG L L. Enrichment of Mississippi Valley-type (MVT) deposits in the Tethyan domain linked to organic matter-rich sediments[J]. Science China Earth Sciences, 2023, 66(12): 2853-2870. |
| [53] | SONG Y C, HOU Z Q, LIU Y C, et al. Mississippi Valley-type Zn-Pb deposits in orogenic thrust belts: ore formation in response to synorogenic crustal transpression or extension[J]. Mineralium Deposita, 2023, 58(7): 1333-1350. |
| [54] | 张洪瑞, 侯增谦. 碰撞带热结构与碰撞成矿系统[J]. 地学前缘, 2022, 29(2): 1-13. |
| [55] | KIMURA J I, ARISKIN A A. Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1494-1514. |
| [56] | WIEDERKEHR M, BOUSQUET R, SCHMID S M, et al. From subduction to collision: thermal overprint of HP/LT meta-sediments in the north-eastern Lepontine Dome (Swiss Alps) and consequences regarding the tectono-metamorphic evolution of the Alpine orogenic wedge[J]. Swiss Journal of Geosciences, 2008, 101(1): 127-155. |
| [57] | BROUWER F M, VAN DE ZEDDE D M A, WORTEL M J R, et al. Late-orogenic heating during exhumation: Alpine p-T-t trajectories and thermomechanical models[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 185-199. |
| [58] | VON BLANCKENBURG F, DAVIES J H. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14(1): 120-131. |
| [59] | 张洪瑞, 侯增谦. 大陆碰撞成矿作用: 深部动力学机制与成矿[J]. 东华理工大学学报(自然科学版), 2023, 46(6): 525-536. |
| [60] | 侯增谦, 许博, 郑远川, 等. 地幔通道流: 青藏高原大规模生长的深部机制[J]. 科学通报, 2021, 66(21): 2671-2690. |
| [61] | KAISLANIEMI L, VAN HUNEN J, ALLEN M B, et al. Sublithospheric small-scale convection: a mechanism for collision zone magmatism[J]. Geology, 2014, 42(4): 291-294. |
| [62] | MOLE D R, FIORENTINI M L, THEBAUD N, et al. Archean komatiite volcanism controlled by the evolution of early continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10083-10088. |
| [63] | XU B, HOU Z Q, GRIFFIN W L, et al. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet[J]. Earth-Science Reviews, 2021, 214: 103472. |
| [64] | ZHANG H J, LÜ Q T, WANG X L, et al. Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China[J]. Nature Communications, 2023, 14: 2718. |
| [65] | XU B, YIN R S, CHIARADIA M, et al. Mercury isotope evidence for the importance of recycled fluids in collisional ore systems[J]. Science Advances, 2024, 10(34): eadp7383. |
| [66] | XU B, GRIFFIN W L, XIONG Q, et al. Ultrapotassic rocks and xenoliths from South Tibet: contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision[J]. Geology, 2017, 45(1): 51-54. |
| [67] | XU B, HOU Z Q, GRIFFIN W L, et al. Recycled volatiles determine fertility of porphyry deposits in collisional settings[J]. American Mineralogist, 2021, 106(4): 656-661. |
| [68] | 侯增谦, 王涛. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25(6): 20-41. |
| [69] | FOLEY S F, YAXLEY G M, ROSENTHAL A, et al. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar[J]. Lithos, 2009, 112(Suppl 1): 274-283. |
| [70] | XU B, HOU Z Q, GRIFFIN W L, et al. Apatite halogens and Sr-O and zircon Hf-O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet[J]. Chemical Geology, 2022, 605, 120924. |
| [71] | YANG Z M, LU Y J, HOU Z Q, et al. High-Mg diorite from qulong in southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56(2): 227-254. |
| [72] | LEE C T, RUDNICK R L, BRIMHALL JR G H. Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(12): 1053. |
| [73] | GRIFFIN W L, BEGG G C, DUNN D, et al. Archean lithospheric mantle beneath Arkansas: continental growth by microcontinent accretion[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1763-1775. |
| [74] | 汪在聪, 王焰, 汪翔, 等. 交代岩石圈地幔与金成矿作用[J]. 地球科学, 2021, 46(12): 4197-4229. |
| [75] | WANG Q F, LIU X F, YIN R S, et al. Metasomatized mantle sources for orogenic gold deposits hosted in high-grade metamorphic rocks: evidence from Hg isotopes[J]. Geology, 2024, 52(2): 115-119. |
| [76] | HOU Z Q, XU B, ZHANG H J, et al. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 2023, 4: 293. |
| [77] | HOU Z Q. Formation, preservation, and metallogenic fertility of juvenile crust in the Eastern Tethyan collisional orogens[M]// MO X X, DENG J F, HOU Z Q, et al. Magmatism of the Tibet-Qinghai Plateau. Berlin: Springer, 2024: 321-363. |
| [78] | COLLINS W J, BELOUSOVA E A, KEMP A I S, et al. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data[J]. Nature Geoscience, 2011, 4: 333-337. |
| [79] | ZHANG Z M, DING H X, PALIN R M, et al. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continentalcrust[J]. Gondwana Research, 2020, 77: 136-146. |
| [80] | LU Y J, LOUCKS R R, FIORENTINI M L, et al. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet[J]. Geology, 2015, 43(7): 583-586. |
| [81] | SUN X, LU Y J, MCCUAIG T C, et al. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. Journal of Petrology, 2018, 59(3): 341-386. |
| [82] | XU B, HOU Z Q, GRIFFIN W L, et al. Elevated magmatic chlorine and sulfur concentrations in the eocene-oligocene Machangqing Cu-Mo porphyry system[J]. SEG Special Publications, 2021, 24(2): 257-276. |
| [83] | HOGGARD M J, CZARNOTA K, RICHARDS F D, et al. Global distribution of sediment-hosted metals controlled by craton edge stability[J]. Nature Geoscience, 2020, 13(7): 504-510. |
| [84] | LEACH D L, SONG Y C. Chapter 9 sediment-hosted zinc-lead and copper deposits in China[M]// CHANG Z S, GOLDFARB R J. Mineral deposits of China. Littleton: Society of Economic Geologists, 2019: 325-409. |
| [85] | LI N, CHEN Y J, PIRAJNO F, et al. Timing of the Yuchiling giant porphyry Mo system, and implications for ore genesis[J]. Mineralium Deposita, 2013, 48(4): 505-524. |
| [86] | LI N, PIRAJNO F. Early Mesozoic Mo mineralization in the Qinling Orogen: an overview[J]. Ore Geology Reviews, 2017, 81: 431-450. |
| [87] | YANG Z M, GOLDFARB R, CHANG Z. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate[M]// RICHARD J P. Tectonics and metallogeny of the Tethyan Orogenic Belt. Littleton: Society of Economic Geologists, 2016: 279-300. |
| [88] | WANG R, RICHARDS J P, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 2015, 150: 68-94. |
| [89] | 侯增谦, 潘小菲, 杨志明, 等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2): 332-351. |
| [90] | 侯增谦, 郑远川, 杨志明, 等. 大陆碰撞成矿作用: Ⅰ. 冈底斯新生代斑岩成矿系统[J]. 矿床地质, 2012, 31(4): 647-670. |
| [91] | 杨志明, 侯增谦. 初论碰撞造山环境斑岩铜矿成矿模型[J]. 矿床地质, 2009, 28(5): 515-538. |
| [92] | WANG R, RICHARDS J P, HOU Z Q, et al. Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu-Mo Au mineralization[J]. Economic Geology, 2014, 109(7): 1943-1965. |
| [93] | WANG R, RICHARDS J P, HOU Z, et al. Increased magmatic water content: the key to oligo-miocene porphyry Cu-Mo Au formation in the eastern Gangdese Belt, Tibet[J]. Economic Geology, 2014, 109(5): 1315-1339. |
| [94] | HOU Z Q, WANG R, ZHANG H J, et al. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate[J]. Earth-Science Reviews, 2023, 243: 104482. |
| [95] | LUO C H, WANG R, WEINBERG R F, et al. Isotopic spatial-temporal evolution of magmatic rocks in the Gangdese belt: implications for the origin of Miocene post-collisional giant porphyry deposits in southern Tibet[J]. GSA Bulletin, 2022, 134(1/2): 316-324. |
| [96] | 王瑞, 张京渤, 罗晨皓, 等. 深部过程和物质架构对大陆碰撞带Cu-REE成矿系统的控制: 以冈底斯和三江碰撞带为例[J]. 地学前缘, 2024, 31(1): 211-225. |
| [97] | KAY S M, MPODOZIS C, COIRA B. Neogene magmatism, tectonism, and mineral deposits of the central ande (22° to 33° S latitude)[M]// SKINNER B J. Geology and ore deposits of the central Andes. Littleton: Society of Economic Geologists, 1999: 27-59. |
| [98] | KAY S M, MPODOZIS C. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust[J]. GSA Today, 2001, 11(3): 4. |
| [99] | MUNGALL J E. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 2002, 30(10): 915. |
| [100] | BISSIG T, CLARK A H, LEE J K W, et al. Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au-Ag-Cu belt, Chile/Argentina[J]. Mineralium Deposita, 2003, 38(7): 844-862. |
| [101] | ZHOU Q S, WANG R. Shallow subduction of Indian slab and tectono-magmatic control on post-collisional porphyry mineralization in southeastern Tibet[J]. Ore Geology Reviews, 2023, 155: 105360. |
| [102] | CHEN Y, LI W, YUAN X H, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24. |
| [103] | LI J T, SONG X D. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8296-8300. |
| [104] | HOU Z. Low-crustal juvenility and continental slab shallow subduction control the formation of post-colisional porphyry Cu systems in east Tibet[C]. The 37th International Geology Congress. Busan: IUGS, 2024. |
| [105] | BAI D H, UNSWORTH M J, MEJU M A, et al. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 2010, 3(5): 358-362. |
| [106] | PALLISTER J S, MCCAUSLAND W A, JÓNSSON S, et al. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia[J]. Nature Geoscience, 2010, 3: 705-712. |
| [107] | PRELEVI D, AKAL C, ROMER R L, et al. Magmatic response to slab tearing: constraints from the Afyon alkaline volcanic complex, western Turkey[J]. Journal of Petrology, 2015, 56(3): 527-562. |
| [108] | OBAYASHI M, YOSHIMITSU J, FUKAO Y. Tearing of stagnant slab[J]. Science, 2009, 324(5931): 1173-1175. |
| [109] | BRANDL P A, REGELOUS M, BEIER C, et al. High mantle temperatures following rifting caused by continental insulation[J]. Nature Geoscience, 2013, 6: 391-394. |
| [110] | RICHARDS J P. Lineaments revisited[J]. SEG Discovery, 2000(42): 1-20. |
| [111] | UNSWORTH M J, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81. |
| [112] | GONG J Y, LI J T, LI M K. Isolated crustal partial melting in the southern Tibetan Plateau from H-κ-c method[J]. Geophysical Research Letters, 2023, 50(21): e2023GL106363. |
| [113] | PANG Y J, ZHANG H, GERYA T V, et al. The mechanism and dynamics of N-S rifting in southern Tibet: insight from 3-D thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 859-877. |
| [114] | JARQUÍN E, WANG R, SUN W R, et al. Impact of slab tearing along the Yadong-Gulu Rift on Miocene alkaline volcanism from the Lhasa terrane to the Himalayas, southern Tibet[J]. Geological Society of America Bulletin, 2023, 136 (5/6): 1950-1964. |
| [115] | SUN W R, WANG R, ZHONG X, et al. Ultrahigh-temperature metamorphism revealed by felsic granulite xenoliths in southern Tibet[J]. Geological Society of America Bulletin, 2025, 137(1/2): 481-494. |
| [116] | WANG R, WEINBERG R F, ZHU D C, et al. The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan Orogen[J]. GSA Bulletin, 2022, 134(3/4): 681-690. |
| [117] | WANG R, WEINBERG R F, COLLINS W J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181: 122-143. |
| [118] | ZHENG Y C, LIU S A, WU C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 47(2): 135-138. |
| [119] | SHAFIEI B, HASCHKE M, SHAHABPOUR J. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran[J]. Mineralium Deposita, 2009, 44(3): 265-283. |
| [120] | PETTKE T, OBERLI F, HEINRICH C A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions[J]. Earth and Planetary Science Letters, 2010, 296(3/4): 267-277. |
| [121] | HARRIS C R, PETTKE T, HEINRICH C A, et al. Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu-Au-Te mineralizing magmas, Apuseni Mountains (Romania)[J]. Earth and Planetary Science Letters, 2013, 366(1): 122-136. |
| [122] | CHIARADIA M. Copper enrichment in arc magmas controlled by overriding plate thickness[J]. Nature Geoscience, 2014, 7: 43-46. |
| [123] | ZHANG Z M, DING H X, PALIN R M, et al. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust[J]. Gondwana Research, 2020, 77: 136-146. |
| [124] | XU W, ZHU D C, WANG Q, et al. Constructing the early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation[J]. Journal of Petrology, 2019, 60(3): 515-552. |
| [125] | ZHANG J B, CHANG J, WANG R, et al. Can post-subduction porphyry Cu magmas form by partial melting of typical lower crustal amphibole-rich cumulates? petrographic and experimental constraints from samples of the kohistan and Gangdese arc roots[J]. Journal of Petrology, 2022, 63(11): egac101. |
| [126] | WANG R, LUO C H, XIA W J, et al. Role of alkaline magmatism in formation of porphyry deposits in nonarc settings: Gangdese and Sanjiang metallogenic belts[M]// SHOLEHA, WANGR. Tectonomagmatic influences on metallogeny and hydrothermal ore deposits:a tribute to Jeremy P. Richards (Volume II). Littleton: Society of Economic Geologists, 2021: 205-229. |
| [127] | RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533. |
| [128] | LIU D, ZHAO Z D, ZHU D C, et al. Identifying mantle carbonatite metasomatism through Os-Sr-Mg isotopes in Tibetan ultrapotassic rocks[J]. Earth and Planetary Science Letters, 2015, 430: 458-469. |
| [129] | GENG X L, TIAN S H, XU W, et al. A two-stage geodynamic model for post-collisional potassic-ultrapotassic magmatism in southeast Tibet[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(8): e2024JB028887. |
| [130] | YANG Z M, COOKE D R. Chapter 5 porphyry copper deposits in China[M]// CHANG Z S, GOLDFARB R J. Mineral deposits of China. Littleton: Society of Economic Geologists, 2019: 133-187. |
| [131] | LIU Y C, HOU Z Q, YANG Z S, et al. Geology and chronology of the Zhaofayong carbonate-hosted Pb-Zn ore cluster: implication for regional Pb-Zn metallogenesis in the Sanjiang belt, Tibet[J]. Gondwana Research, 2016, 35(1): 15-26. |
| [132] | 宋玉财, 侯增谦, 刘英超, 等. 特提斯域的密西西比河谷型(MVT)铅锌矿床[J]. 中国地质, 2017, 44(4): 664-689. |
| [133] | LEACH D, SANGSTER D, KELLEY K, et al. Sediment-hosted lead-zinc deposits: a global perspective[J]. Economic Geology, 2005, 100: 561-607. |
| [134] | REYNOLDS N A, LARGE D. Tethyan zinc-lead metallogeny in Europe, North Africa, and Asia[M]// GOLDFARB R J, MARSH E E, MONECKE T. The challenge of finding new mineral resources: global metallogeny, innovative exploration, and new discoveries. Littleton: Society of Economic Geologists, 2010. |
| [135] | 刘英超, 侯增谦, 于玉帅, 等. 西藏昌都地区拉拢拉类 MVT 铅锌矿床矿化特征与成因研究[J]. 岩石学报, 2013, 29(4): 1407-1426. |
| [136] | LIU Y C, HOU Z Q, YANG Z S, etal. Formation of the dongmozhazhua Pb-Zn deposit in the thrust-fold setting of the Tibetan Plateau, China: evidence from fluid inclusion and stable isotope data[J]. Resource Geology, 2011, 61(4): 384-406. |
| [137] | LIU Y C, YANG Z S, TIAN S H, et al. Fluid origin of fluorite-rich carbonate-hosted Pb-Zn mineralization of the Himalayan-Zagros collisional orogenic system: a case study of the Mohailaheng deposit, Tibetan Plateau, China[J]. Ore Geology Reviews, 2015, 70: 546-561. |
| [138] | LIU Y C, KENDRICK M A, HOU Z Q, et al. Hydrothermal fluid origins of carbonate-hosted Pb-Zn deposits of the Sanjiang thrust belt, Tibet: indications from noble gases and halogens[J]. Economic Geology, 2017, 112(5): 1247-1268. |
| [139] | LIU Y C, SONG Y C, HOU Z Q, et al. Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China[J]. Science China Earth Sciences, 2022, 65(1): 167-181. |
| [140] | 黄世强. 金顶超大型铅锌矿床有机流体与围岩/蒸发岩的相互作用及其对成矿的意义[D]. 北京: 中国地质大学(北京), 2019: 1-96. |
| [141] | HUANG S Q, SONG Y C, ZHOU L M, et al. Influence of organic matter on Re-Os dating of sulfides: insights from the giant Jinding sediment-hosted zn-pb deposit, China[J]. Economic Geology, 2021, 117(4): 737-745. |
| [142] | YALIKUN Y, XUE C J, SYMONS D T A. Paleomagnetic age and tectonic constraints on the genesis of the giant Jinding Zn-Pb deposit, Yunnan, China[J]. Mineralium Deposita, 2018, 53(2): 245-259. |
| [143] | SONG Y C, YANG T N, ZHANG H R, et al. The Chaqupacha Mississippi Valley-type Pb-Zn deposit, central Tibet: ore formation in a fold and thrust belt of the India-Asia continental collision zone[J]. Ore Geology Reviews, 2015, 70: 533-545. |
| [144] | ZHUANG L L, SONG Y C, LEACH D, et al. Vanished evaporites, halokinetic structure, and Zn-Pb mineralization in the world-class Angouran deposit, northwestern Iran[J]. Geological Society of America Bulletin, 2023, 136(3/4): 1569-1586. |
| [145] | LIU Y C, XIONG X S, YU N, et al. Intra-crustal décollement and magma chamber key to formation of world-class Mississippi Valley-type lead-zinc deposit at Jinding in the Tibetan-Himalayan orogen[J]. Nature Geoscience, 2024, under review. |
| [146] | 郝宏达, 宋玉财, 庄天明, 等. 金顶超大型铅锌矿床的成矿金属来源: 来自铅同位素组成的制约[J]. 矿床地质, 2017, 36(2): 379-390. |
| [147] | LIU Y C, YANG Z S, YUE L L, et al. Geological characteristics and genesis of the Jiamoshan MVT Pb-Zn deposit in the Sanjiang belt, Tibetan Plateau[J]. Acta Geologica Sinica- English Edition, 2020, 94(4): 1238-1255. |
| [148] | YUE L L, LIU Y C, SONG Y C, et al. Metal sources and fluid pathways of Karst-hosted Mississippi Valley-type Zn-Pb deposits in the fold-thrust belt: a case study of the Changdong deposit in the southeastern Himalayan-Tibetan Orogen[J]. Ore Geology Reviews, 2024, 164: 105850. |
| [149] | WANG X H, HOU Z Q, SONG Y C, et al. Geological fluid inclusion and isotopic studies of the Baiyangping Pb-Zn-Cu-Ag polymetallic deposit, Lanping basin, Yunnan province, China[J]. Journal of Asian Earth Sciences, 2015, 111: 853-871. |
| [150] | YANG T N, DING Y, ZHANG H R, et al. Two-phase subduction and subsequent collision defines the Paleotethyan tectonics of the southeastern Tibetan Plateau: evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, southwest China[J]. Geological Society of America Bulletin, 2014, 126(11/12): 1654-1682. |
| [151] | 刘英超, 杨竹森, 于玉帅, 等. 西藏昌都赵发勇溶洞控矿 MVT 铅锌矿床地质特征与矿床成因[J]. 地球学报, 2019, 40(6): 853-870. |
| [152] | YUE L L, LIU Y C, SONG Y C, et al. Karst-hosted Mississippi Valley-type Pb-Zn mineralization in fold-thrust systems: a case study of the Changdong deposit in the Sanjiang Belt, China[J]. Mineralium Deposita, 2022, 57(5): 663-684. |
| [153] | TIAN L D, SONG Y C, ZHUANG L L, et al. Characteristic and genesis of dolostone reservoirs around the Proterozoic/Cambrian boundary in the Upper Yangtze Block for Mississippi valley-type Zn-Pb ores: a review[J]. Ore Geology Reviews, 2022, 150: 105179. |
| [154] | LIU Y C, SONG Y C, FARD M, et al. The characteristics and origin of barite in the giant mehdiabad Zn-Pb-Ba deposit, Iran[J]. Economic Geology, 2023, 118(6): 1495-1519. |
| [155] | 刘英超, 杨竹森, 侯增谦, 等. 青海玉树东莫扎抓铅锌矿床围岩蚀变和黄铁矿-闪锌矿矿物学特征及意义[J]. 岩石矿物学杂志, 2011, 30(3): 490-506. |
| [156] | SONG Y C. A novel three-stage tectonic model for Mississippi valley-type Zn-Pb deposits in orogenic fold-and-thrust belts[J]. Acta Geologica Sinica - English Edition, 2024, 98(4): 843-849. |
| [157] | LEACH D L, SONG Y C, HOU Z Q. The world-class Jinding Zn-Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China[J]. Mineralium Deposita, 2017, 52(3): 281-296. |
| [158] | SONG Y C, HOU Z Q, XUE C D, et al. New mapping of the world-class Jinding Zn-Pb deposit, Lanping Basin, southwest China: genesis of ore host rocks and records of hydrocarbon-rock interaction[J]. Economic Geology, 2020, 115(5): 981-1002. |
| [159] | SONG Y C, LIU Y C, HOU Z Q, et al. Sediment-hosted Pb-Zn deposits in the Tethyan domain from China to Iran: characteristics, tectonic setting, and ore controls[J]. Gondwana Research, 2019, 75: 249-281. |
| [160] | 赵思博, 刘英超, 岳龙龙, 等. 会泽铅锌矿区摆佐组地层白云石类型、 特征及成因[J]. 地球科学, 2025, 50(4): 1353-1379. |
| [161] | XIE Y, LI Y, HOU Z, et al. A model for carbonatite hosted REE mineralisation: the Mianning-Dechang REE belt, western Sichuan Province, China[J]. Ore Geology Reviews, 2015, 70: 595-612. |
| [162] | HOU Z, TIAN S, YUAN Z, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication[J]. Earth and Planetary Science Letters, 2006, 244(1/2): 234-250. |
| [163] | GUO Z F, HERTOGEN J, LIU J Q, et al. Potassic magmatism in western Sichuan and Yunnan Provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis[J]. Journal of Petrology, 2005, 46(1): 33-78. |
| [164] | MCDONOUGH W F, SUN S S, RINGWOOD A E, et al. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001-1012. |
| [165] | RUDNICK R L, GAO S. Composition of the continental crust[M]// H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
| [166] | KATO Y, FUJINAGA K, NAKAMURA K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4: 535-539. |
| [167] | YASUKAWA K, LIU H J, FUJINAGA K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25-36. |
| [168] | BI D J, SHI X F, HUANG M, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318. |
| [169] | MANCEAU A, PAUL S A L, SIMIONOVICI A, et al. Fossil bioapatites with extremely high concentrations of rare earth elements and yttrium from deep-sea pelagic sediments[J]. ACS Earth and Space Chemistry, 2022, 6(8): 2093-2103. |
| [170] | LIU Y, JING Y T, ZHAO W C. Distribution of rare earth elements and implication for Ce anomalies in the clay-sized minerals of deep-sea sediment, western Pacific Ocean[J]. Applied Clay Science, 2023, 235: 106876. |
| [171] | PINTÉR Z, FOLEY S F, YAXLEY G M. Diamonds, dunites, and metasomatic rocks formed by melt/rock reaction in craton roots[J]. Communications Earth & Environment, 2022, 3: 296. |
| [172] | ZHU X X, LIU Y, HOU Z Q. Massive rare earth element storage in sub-continental lithospheric mantle initiated by diapirism, not by melting[J]. Geology, 2024, 52(2): 105-109. |
| [173] | XU Y H, LI D Y, YANG Y A, et al. Uptake time and enrichment mechanism of rare earth elements in deep-sea bioapatite[J]. Chemical Geology, 2024, 669: 122371. |
| [174] | LIU Y, CHAKHMOURADIAN A R, REGUIR E P, et al. The origin and evolution of rare earth element mineralization in the muluozhai deposit (sichuan, China): insights from mineralogical, trace element, and Sr-Nd-Pb-C-O-Ca isotope data[J]. Economic Geology, 2024, 119(3): 681-712. |
| [175] | ZHENG X, LIU Y, SMITH M P, et al. Carbonatitic magma fractionation and contamination generate rare earth element enrichment and mineralization in the maoniuping giant REE deposit, SW China[J]. Journal of Petrology, 2023, 64(6): egad037. |
| [176] | SONG W L, XU C, VEKSLER I V, et al. Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization[J]. Contributions to Mineralogy and Petrology, 2016, 171(1): 1-12. |
| [177] | YUAN X Y, YANG Z M, MAYANOVIC R A, et al. Experimental evidence reveals the mobilization and mineralization processes of rare earth elements in carbonatites[J]. Science Advances, 2024, 10(27): eadm9118. |
| [178] | ANENBURG M, MAVROGENES J A. Carbonatitic versus hydrothermal origin for fluorapatite REE-Th deposits: experimental study of REE transport and crustal “antiskarn” metasomatism[J]. American Journal of Science, 2018, 318(3): 335-366. |
| [179] | BOUABDELLAH M, BOUKIROU W, JÉBRAK M, et al. Discovery of antiskarn-hosted strategic metal mineralization in the Upper Cretaceous Twihinate carbonatite intrusion (West African Craton Margin, Moroccan Sahara)[J]. Ore Geology Reviews, 2022, 149: 105105. |
| [180] | GIEBEL R J, PARSAPOOR A, WALTER B F, et al. Evidence for magma-wall rock interaction in carbonatites from the kaiserstuhl volcanic complex (southwest Germany)[J]. Journal of Petrology, 2019, 60(6): 1163-1194. |
| [181] | ANENBURG M, WALTERS J B. Metasomatic ijolite, glimmerite, silicocarbonatite, and antiskarn formation: carbonatite and silicate phase equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-O2-CO2[J]. Contributions to Mineralogy and Petrology, 2024, 179(5): 40. |
| [182] | ZHENG X, LIU Y, SMITH M P, et al. Carbonatitic magma fractionation and contamination generate rare earth element enrichment and mineralization in the Maoniuping Giant REE Deposit, SW China[J]. Journal of Petrology, 2023, 64(6): EGAD037. |
| [183] | LIU Y, HOU Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China[J]. Journal of Asian Earth Sciences, 2017, 137: 35-79. |
| [184] | CARRASCO BUSTURIA D. The temperature - pressure phase diagram of the calcite I - calcite II phase transition: a first-principles investigation[J]. Journal of Physics and Chemistry of Solids, 2021, 154: 110045. |
| [185] | GOLDFARB R, QIU K F, DENG J, et al. Chapter 8 orogenic gold deposits of China[M]// CHANG Z S, GOLDFARB R J. Mineral deposits of China. Littleton: Society of Economic Geologists, 2019: 263-324. |
| [186] | GROVES D I, ZHANG L, SANTOSH M. Subduction, mantle metasomatism, and gold: a dynamic and genetic conjunction[J]. GSA Bulletin, 2020, 132: 1419-1426. |
| [187] | GOLDFARB R J, GROVES D I. Orogenic gold: common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. |
| [188] | KERRICH R. Nature’s gold factory[J]. Science, 1999, 284(5423): 2101-2102. |
| [189] | PHILLIPS G N, POWELL R. Formation of gold deposits: a metamorphic devolatilization model[J]. Journal of Metamorphic Geology, 2010, 28(6): 689-718. |
| [190] | TOMKINS A G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis[J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 3246-3259. |
| [191] | DENG J, QIU K F, WANG Q F, et al. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685. |
| [192] | WANG Q F, GROVES D I, DENG J, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2020, 55(6): 1085-1104. |
| [193] | GROVES D I, SANTOSH M, DENG J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55(2): 275-292. |
| [194] | WANG Q F, YANG L, ZHAO H S, et al. Towards a universal model for orogenic gold systems: a perspective based on Chinese examples with geodynamic, temporal, and deposit-scale structural and geochemical diversity[J]. Earth-Science Reviews, 2022, 224: 103861. |
| [195] | ZHAO H S, WANG Q F, KENDRICK M A, et al. Metasomatized mantle lithosphere and altered ocean crust as a fluid source for orogenic gold deposits[J]. Geochimica et Cosmochimica Acta, 2022, 334: 316-337. |
| [196] | GAO L, WANG Q F, DENG J, et al. Relationship between orogenic gold mineralization and crustal shearing along ailaoshan-red river belt, southeastern Tibetan Plateau: new constraint from paleomagnetism[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2225-2242. |
| [197] | YANG L, WANG Q F, GROVES D I, et al. Multiple orogenic gold mineralization events in a collisional orogen: insights from an extruded terrane along the southeastern margin of the Tibetan Plateau[J]. Journal of Structural Geology, 2021, 147: 104333. |
| [198] | YANG L, WANG Q F, LARGE R R, et al. Fluid source and metal precipitation mechanism of sediment-hosted Chang’an orogenic gold deposit, SW China: constraints from sulfide texture, trace element, S, Pb, and He-Ar isotopes and calcite C-O isotopes[J]. American Mineralogist, 2021, 106(3): 410-429. |
| [199] | YANG L, WANG Q F, GROVES D I, et al. Mineral assemblages, fluid inclusions, pyrite trace elements, and S-O isotopes of gold ores from the Cenozoic daping deposit, SW China: implications for the genesis of complex orogenic lode gold systems[J]. Economic Geology, 2023, 118(4): 903-926. |
| [200] | 王庆飞, 邓军, 翁伟俊, 等. 青藏高原新生代造山型金成矿系统[J]. 岩石学报, 2020, 36(5): 1315-1359. |
| [201] | 胡瑞忠, 毕献武, TURNER G, 等. 哀牢山金矿带金成矿流体He和Ar同位素地球化学[J]. 中国科学D辑, 1999, 29(4): 321-330. |
| [202] | DENG J, WANG Q F, LI G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299. |
| [203] | LI H J, WANG Q F, DENG J, et al. Alteration and mineralization styles of the orogenic disseminated Zhenyuan gold deposit, southeastern Tibet: contrast with Carlin gold deposit[J]. Geoscience Frontiers, 2019, 10(5): 1849-1862. |
| [204] | DENG J, WANG Q F, SUN X, et al. Tibetan ore deposits: a conjunction of accretionary orogeny and continental collision[J]. Earth-Science Reviews, 2022, 235: 104245. |
| [205] | WANG Y N, WANG Q F, GROVES D I, et al. Volatile budgets and gold mobilization in metasomatized sub-continental lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 2024, 376: 1-13. |
| [206] | HOU Z Q, WANG Q F, ZHANG H J, et al. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits[J]. National Science Review, 2022, 10(3): nwac257. |
| [207] | ZHANG P Z, SHEN Z K, WANG M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809. |
| [208] | GAN W J, ZHANG P Z, SHEN Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B8): B08416. |
| [209] | LEV E, LONG M, VANDERHILST R. Seismic anisotropy in eastern Tibet from shear wave splitting reveals changes in lithospheric deformation[J]. Earth and Planetary Science Letters, 2006, 251(3/4): 293-304. |
| [210] | 常利军, 丁志峰, 王椿镛. 南北构造带北段上地幔各向异性特征[J]. 地球物理学报, 2015, 58(11): 4052-4067. |
| [211] | SHI Y T, GAO Y, SU Y J, et al. Shear-wave splitting beneath Yunnan area of Southwest China[J]. Earthquake Science, 2012, 25(1): 25-34. |
| [212] | HU J F, YANG H Y, LI G Q, et al. Seismic upper mantle discontinuities beneath Southeast Tibet and geodynamic implications[J]. Gondwana Research, 2015, 28(3): 1032-1047. |
| [213] | 夏萍, 徐义刚. 滇东南马关地区新生代钾质玄武岩中幔源包体研究: 深部物质组成与动力学过程探讨[J]. 地球化学, 2006, 35(1): 27-40. |
| [214] | YANG S Y, HUMAYUN M, SALTERS V J M. Elemental constraints on the amount of recycled crust in the generation of mid-oceanic ridge basalts (MORBs)[J]. Science Advances, 2020, 6(26): eaba2923. |
| [215] | YU N, UNSWORTH M, WANG X B, et al. New insights into crustal and mantle flow beneath the red river fault zone and adjacent areas on the southern margin of the Tibetan Plateau revealed by a 3-D magnetotelluric study[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(10): e2020JB019396. |
| [216] | DENG J, WANG Q F, ZHANG L, et al. Metallogenetic model of Jiaodong-type gold deposits, Eastern China[J]. Science China Earth Sciences, 2023, 66(10): 2287-2310. |
| [217] | 李光明, 董磊, 黄勇, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4): 1003-1008. |
| [218] | XU P Y, ZHENG Y C, YANG Z S, et al. Metallogeny of the continental collision-related Jiagang W-Mo deposit, Tibet: evidence from geochronology and petrogenesis[J]. Ore Geology Reviews, 2020, 122: 103519. |
| [219] | 吴福元, 王汝成, 刘小驰, 等. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 2021, 37(11): 3261-3276. |
| [220] | 秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286. |
| [221] | 李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13. |
| [222] | LIU X C, KOHN M J, WANG J M, et al. Formation of lithium-rich pegmatites via rapid crystallization and shearing-case study from the South Tibetan Detachment, Himalaya[J]. Earth and Planetary Science Letters, 2024, 629: 118598. |
| [223] | 高利娥, 曾令森, 严立龙, 等. 喜马拉雅淡色花岗岩: 关键金属Sn-Cs-Tl的富集机制[J]. 岩石学报, 2021, 37(10): 2923-2943. |
| [224] | 秦克章, 周起凤, 赵俊兴, 等. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报, 2021, 95(10): 3146-3162. |
| [225] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36. |
| [226] | SUN X, LI R Y, SUN H Y, et al. Genesis of Pb-Zn-Ag-Sb mineralization in the Tethys Himalaya, China: early magmatic-hydrothermal Pb-Zn (-Ag) mineralization overprinted by Sb-rich fluids[J]. Mineralium Deposita, 2024, 59(7): 1275-1293. |
| [227] | ZHENG Y C, HOU Z Q, FU Q, et al. Mantle inputs to Himalayan anatexis: insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 2016, 264: 125-140. |
| [228] | LIU Z C, WANG J G, LIU X C, et al. Middle Miocene ultrapotassic magmatism in the Himalaya: a response to mantle unrooting process beneath the orogen[J]. Terra Nova, 2021, 33(3): 240-251. |
| [229] | 吴福元, 郭春丽, 胡方泱, 等. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 2023, 39(1): 1-36. |
| [230] | CAO H W, LI G M, ZHANG R Q, et al. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: evidence from geology, geochronology, fluid inclusions and multiple isotopes[J]. Gondwana Research, 2021, 92: 72-101. |
| [231] | WANG J M, HOU K S, YANG L, et al. Mineralogy, petrology and P-T conditions of the spodumene pegmatites and surrounding meta-sediments in Lhozhag, eastern Himalaya[J]. Lithos, 2023, 456: 107295. |
| [232] | 黄勇, 付建刚, 李光明, 等. 藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现[J]. 地球科学, 2019, 44(7): 2197-2206. |
| [233] | 谢磊, 王汝成, 田恩农, 等. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用[J]. 科学通报, 2021, 66(35): 4574-4591. |
| [234] | 任春萌, 郑远川, 李鑫, 等. 藏南然巴晚中新世矽卡岩型钨矿化特征及地质意义[J]. 地球科学, 2024, 49(10): 3610-3628. |
| [235] | LI X, ZHENG Y C, SHEN Y, et al. Comparison of Sn-related granitoids in subduction and collision settings by accessory mineral geochemistry: a case study in the Tengchong-Lianghe tin belt, SW China[J]. Ore Geology Reviews, 2024, 165: 105862. |
| [236] | ZHANG Z Y, HOU Z Q, LV Q T, et al. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping[J]. Geology, 2023, 51(8): 738-742.. |
| [237] | WU C D, ZHENG Y C, XU B, et al. The genetic relationship between JTA-like magmas and typical adakites: an example from the Late Cretaceous Nuri complex, southern Tibet[J]. Lithos, 2018, 320/321: 265-279. |
| [238] | 徐兴旺, 洪涛, 李杭, 等. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 2020, 36(12): 3572-3592. |
| [239] | ZHENG Y C, WU C D, TIAN S H, et al. Magmatic and structural controls on the tonnage and metal associations of collision-related porphyry copper deposits in southern Tibet[J]. Ore Geology Reviews, 2020, 122: 103509. |
| [240] | TANG G J, WYMAN D A, WANG Q, et al. Large-scale rare-metal pegmatite deposit formation driven by supercontinent assembly[J]. Geology, 2023, 51(9): 880-884. |
| [241] | WOLF M, ROMER R L, FRANZ L, et al. Tin in granitic melts: the role of melting temperature and protolith composition[J]. Lithos, 2018, 310-311: 20-30. |
| [242] | ZHAO P L, CHU X, WILLIAMS-JONES A E, et al. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces[J]. Geology, 2022, 50(1): 121-125. |
| [243] | KUNZ B E, WARREN C J, JENNER F E, et al. Critical metal enrichment in crustal melts: the role of metamorphic mica[J]. Geology, 2022, 50(11): 1219-1223. |
| [244] | LIU Z C, WU F Y, JI W Q, et al. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J]. Lithos, 2014, 208: 118-136. |
| [245] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
| [246] | GAO L E, ZENG L S, ASIMOW P D. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites[J]. Geology, 2017, 45(1): 39-42. |
| [247] | ZHENG Y F, CHEN Y X. Continental versus oceanic subduction zones[J]. National Science Review, 2016, 3(4): 495-519. |
| [248] | 宋述光, 王梦珏, 王潮, 等. 大陆造山带碰撞俯冲折返垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学: 地球科学, 2015, 45(7): 916-940. |
| [249] | KISSLING E, SCHLUNEGGER F. Rollback orogeny model for the evolution of the Swiss Alps[J]. Tectonics, 2018, 37(4): 1097-1115. |
| [1] | 王新雨, 王书来, 刘明, 祝新友, 刘家军, 杨新雨, 王幻, 王玉往, 吴锦荣. 青海省祁漫塔格牛苦头铅锌矿床年代学与矿物微量元素特征研究[J]. 地学前缘, 2025, 32(5): 326-344. |
| [2] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
| [3] | 王瑞, 张京渤, 罗晨皓, 周秋石, 夏文杰, 赵云. 深部过程和物质架构对大陆碰撞带Cu-REE成矿系统的控制:以冈底斯和三江碰撞带为例[J]. 地学前缘, 2024, 31(1): 211-225. |
| [4] | 李建康, 李鹏, 黄志飚, 周芳春, 张立平, 黄小强. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25. |
| [5] | 董小宇, 孔若颜, 颜丹平, 邱亮, 邱骏挺. 辽东半岛青城子地区晚三叠世构造岩脉成因及其金成矿意义[J]. 地学前缘, 2023, 30(2): 215-238. |
| [6] | 张洪瑞, 侯增谦. 碰撞带热结构与碰撞成矿系统[J]. 地学前缘, 2022, 29(2): 1-13. |
| [7] | 刘宝山, 程招勋, 寇林林, 邓昌州, 杨晓平, 张春鹏, 李成禄, 韩仁萍. 黑龙江多宝山地区晚三叠世岩浆活动对蒙古—鄂霍茨克洋南向俯冲的响应[J]. 地学前缘, 2022, 29(2): 132-145. |
| [8] | 邓淼, 韦春婉, 许成, 石爱国, 李卓骐, 范朝熙, 匡光喜. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28. |
| [9] | 郑有业, 王达, 易建洲, 余泽章, 蒋宗洋, 李晓霞, 史功文, 许剑, 梁遇春, 豆孝芳, 任欢. 西藏北喜马拉雅成矿带锑金属成矿作用及找矿方向[J]. 地学前缘, 2022, 29(1): 200-230. |
| [10] | 郑有业, 次琼, 高顺宝, 吴松, 姜晓佳, 陈鑫. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向[J]. 地学前缘, 2021, 28(3): 379-402. |
| [11] | Svetlana S. Timofeeva, Evgeniy V. Kislov, Lyudmila I. Khudyakova. 俄罗斯贝加尔湖北部 Yoko-Dovyren 层状纯橄岩-橄长岩-辉长岩地块: 结构、成分以及作为矿物原材料的用途[J]. 地学前缘, 2020, 27(5): 262-279. |
| [12] | 陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘成军, 陈有炘, 王盟, 高峰, 魏均启. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 2020, 27(4): 33-48. |
| [13] | 刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. Au-(Ag)-Te-Se成矿系统与成矿作用[J]. 地学前缘, 2020, 27(2): 79-98. |
| [14] | 刘家军,刘冲昊,王建平,朱赖民,张静,翟德高,王银宏,柳振江,张方方. 西秦岭地区金矿类型及其成矿作用[J]. 地学前缘, 2019, 26(5): 1-16. |
| [15] | 贺昕宇,王长明,袁继明,刘军,刘海鹏. 熊耳山—外方山矿集区中生代Au-Mo成矿系统[J]. 地学前缘, 2019, 26(5): 33-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||