地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 28-45.DOI: 10.13745/j.esf.sf.2023.12.27
张艳斌1(), 翟明国1,2,*(
), 周艳艳1,2, 周李岗1
收稿日期:
2023-10-26
修回日期:
2023-11-21
出版日期:
2024-01-25
发布日期:
2024-01-25
通信作者:
*翟明国(1947—),男,研究员,中国科学院院士,主要从事大陆壳演化与大陆成矿作用研究。E-mail: 作者简介:
张艳斌(1973—),女,副研究员,主要从事花岗岩成因与地壳演化方面的研究。E-mail: zhangyanbin@mail.iggcas.ac.cn
基金资助:
ZHANG Yanbin1(), ZHAI Mingguo1,2,*(
), ZHOU Yanyan1,2, ZHOU Ligang1
Received:
2023-10-26
Revised:
2023-11-21
Online:
2024-01-25
Published:
2024-01-25
摘要:
大陆下地壳是连接岩石圈地幔和上地壳的“纽带”,是地壳与地幔交换最活跃的部位。上地幔与下地壳的部分熔融及下地壳一些岩石的拆沉还可直接导致壳-幔物质的交换、循环与重组。换言之,下地壳是壳-幔作用的一个极其重要的场所,底垫、拆沉、深熔、高级变质和其他作用都在下地壳中发生和实现。然而,下地壳是以往研究地球深部和浅部关系时被“跳”过去的部位,没有得到足够的重视。克拉通化定义为大陆原来混沌的原地壳分异并形成稳定的上地壳和下地壳,并由此构建了稳定的壳-幔结构,这种空前的稳定关系从形成起一直维持到现在,是大陆演化、洋-陆与壳-幔相互作用的基础。在板块边界的造山过程中,如洋-陆的俯冲碰撞特别是陆-陆碰撞,可以形成不同大陆地块的陆壳叠置、加厚、垮塌、拆沉、底垫和重新稳定,在造山带根部形成新的下地壳,即造山带型下地壳。本文重点讨论了克拉通型下地壳演化过程,强调了其动力学意义及其在大陆动力学研究中的重要地位,建议在深地研究和学科布局中给与充分重视。
中图分类号:
张艳斌, 翟明国, 周艳艳, 周李岗. 大陆下地壳[J]. 地学前缘, 2024, 31(1): 28-45.
ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust[J]. Earth Science Frontiers, 2024, 31(1): 28-45.
图1 地壳变质相示意图(a)和野外与实验室泊松比与P波速关系图(b)(据文献[18,21]修改) 图1b中:不同填充花纹代表不同岩石(2~3,5~12),PC代表前寒武纪,R代表裂谷,Pz代表显生宙;2—长英质角闪片麻岩,3—长英质麻粒岩,5—中性麻粒岩,6—斜长岩,7—镁铁质麻粒岩,8—斜长角闪岩,9—变泥质(麻粒岩)岩,10—辉石岩,11—榴辉岩,12—纯橄岩/橄榄岩。
Fig.1 Metamorphic phases of the lower crust (a) and Poisson ratio vs. P-Velocity diagram (b). Modified after [18,21].
图2 岩石圈厚度与年龄的关系(a)以及估计的华北克拉通岩石圈厚度随时间的变化(b)(引自文献[2,27]) Ia和Ib:>2.5 Ga的太古宙大陆岩石圈厚度; II:2.5~1.8 Ga 的大陆岩石圈厚度; III:<1.8 Ga的大陆岩石圈厚度; IV:显生宙大陆岩石圈厚度。
Fig.2 Change of lithospheric thermal thickness with geologic age. (a) General case. (b) NCC by estimation. Adapted from [2,27].
图4 下地壳岩石的K-Rb (a)、Rb-Sr (b) 和U-Th (c) 图解(据文献[31])
Fig.4 K-Rb (a), Rb-Sr (b), and U-Th (c) diagrams for lower crust rocks from the NCC. Adapted from [31].
图5 华北下地壳岩石P波和温度在0.8 GPa压力条件下的测试图(据文献[36])
Fig.5 Plot of P-wave velocity vs. temperature at 0.8 GPa for lower crust rocks from the NCC. Adapted from [36].
图8 Alps造山带示意剖面图(据文献[47]修改) E—External地块,Be—Bemhard推覆体,MR—Monte Ros推覆体,DB—Dent Blanche推覆体,Se—Sesia带,Iv—Ivrea带,SC—Strona-Ceneri带,IL—Insubric构造线,PL—Pogallo构造线, CL—Cremosina构造线; Adriatic plate—亚德里亚板块,European plate—欧洲板块。
Fig.8 Simplified Ivrea section across the Alps. Modified after [47].
图9 挪威Bamble地区变质峰期后隆起的p-T条件(据文献[60]修改) ①~⑩:N2,CH4,CO2 和H2O在熔化范围中代表性均一温度等值线;a-g:矿物组合计算的压力p;a-c, 葡萄石-绿纤石相; d-g, 峰期变质组合;阴影区是Songe斜长角闪岩的深熔条件;点线:模型抬升路径;A-E变质后隆升期间的连续流体状态。
Fig.9 p-T conditions during post-metamorphic uplift, Bamble, Norway. Modified after [60]. 1-10: ‘representative isochores’; a to g: estimates from mineral assemblages; a to c: prehnite-pumpelleyite; d to g: peak metamorphic associations. Shaded square at the lower left corner of c: ‘preferred’ for anatexis in Songe amphibolite; Doted line: modeled uplift path; A to E: successive fluid regimes during post-metamorphic uplift.
图10 H2O和CO2的蒸发温度与压力图解(据文献[61]) ×表示临界条件,短虚线表示“密集”超临界水和二氧化碳存在的温度。长虚线表示了不同条件下的H2O, CO2和它们的混合物的变化路线。
Fig.10 Phase diagrams for H2O and CO2. Adapted from [61]. × marks the critical conditions of these materials. The short-dashed lines indicate the temperatures below which the “dense” supercritical H2O and CO2 exist.
图11 超高温变质条件下孔兹岩(泥质麻粒岩)与深熔花岗岩的REE配分型式(a)(据文献[74])和冀东太平寨麻粒岩的部分熔融的温压条件(b)(据文献[75])
Fig.11 REE patterns of argillaceous granulite (Khondalite) and anatectic granite (a, adapted from [74] ) and p-T conditions for partial melting of mafic granulite under different depth ranges (b, adapted from [75])
[1] | WINDLEY B F. Overview and history of investigation of early Earth history[M]//VAN KRANENDONK M J, SMITH R H, BENNETT V C. Earth's oldest rocks. Amsterdam: Elsevier, 2007: 3-7. |
[2] | 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41(8): 1037-1046. |
[3] | 翟明国, 张艳斌, 李秋立, 等. 克拉通、下地壳与大陆岩石圈: 庆贺沈其韩先生百年华诞[J]. 岩石学报, 2021, 37(1): 1-23. |
[4] |
ROGERS J J W, SANTOSH M T. Tectonics and surface effects of the Supercontinent Columbia[J]. Gondwana Research, 2009, 15: 373-380.
DOI URL |
[5] | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356. |
[6] | 吴福元, 徐义刚, 朱日祥, 等. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 2014, 44 (11): 2358-2372. |
[7] |
BOHLEN S R, MERZGER K. Origin of granulite terrenes and the formation of the lowermost continental crust[J]. Science, 1989, 244: 326-329.
DOI URL |
[8] | 钱祥麟, 崔文元, 王时麒. 内蒙冀东太古界麻粒岩相带的演化[G]//地质论文集. 北京: 北京大学出版社, 1985: 20-29. |
[9] | 赵宗溥等. 中朝准地台前寒武纪地壳演化[M]. 北京: 科学出版社, 1993: 389-439. |
[10] | 沈其韩, 徐惠芬, 张宗清, 等. 中国前寒武纪麻粒岩[M]. 北京: 地质出版社, 1992: 221-223. |
[11] | MA X Y. Geological observation for southern and northern parts along the geological profile of Xiangshui, Jiangsu-Mandula, Inner Mongolia[J]. Journal of Earth Science, 1989, 14: 1-6. |
[12] |
GAO S, RUDNICK R L, YUAN H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432: 892-897.
DOI |
[13] |
KERN H, Gao S, LIU Q S L. 1996. Seismic properties and densities of middle and lower crustal rocks exposed along the North China geoscience transect[J]. Earth and Planetary Science Letters, 1996, 139: 439-455.
DOI URL |
[14] |
RUDNICK R L, FOUTAIN D M. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33: 267-309.
DOI URL |
[15] | PERCIVAL J A, FOUTAIN D M, SALIBURY M H. Exposed crustal cross-sections as windows of the lower crust[M]//FOUTAIN D M, ARCILUS R, KAY W A. Continental lower crust. New York: Elsevier, 1992: 317-319. |
[16] | CHRISTENSEN N I, MOONEY W D. Seismic velocity structure and composition of the continental crust: a global view[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 9761-9788. |
[17] | WEAVER B L, TARNEY J. Elemental depletion in Archaean granilite facies rocks[M]//ATHERTON M P, GRIBBLE C D. Migmatite, melting and metamorphism. Nantwich, Cheshire: Shiva Publication, 1983: 250-263. |
[18] | FOUNTAIN D M, PERCIVAL J A, SALIBURY M H. Exposed cross-sections of the continental crust-synopsis[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 653-662. |
[19] | WEBER W, MEGER K. An oblique cross section of Archaean continental crust at the northwestern margin of Superior Province, Manitoba, Canada[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 327-341. |
[20] | NEWTON R C. The late Archaean high-grade terrene of south India and the deep structure of the Dharwar craton[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 305-326. |
[21] | HOLBROOK W S, MOONEY W D, CHRISTENSEN N I. The seismic velocity structure of the deep continental crust[M]//FOUTAIN D M, ARCILUS R, KAY W A. Continental lower crust. New York: Elsevier, 1992: 1-43. |
[22] |
BOHLERN S R. Pressure-temperature-time paths and a tectonic model for the evolution of granulites[J]. Journal of Geology, 1987, 95: 617-632.
DOI URL |
[23] | RUDNICK R L, PRESPER T. Geochemistry of intermediate- to high-pressure granulites[M]//VIELZEUF D, VIDAL P. Granulites and crustal evolution. Amsterdam: Kluwer Academic Publishers, 1990: 523-550. |
[24] | NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle: a retrospective essay[J]. Gondwana Research, 2013, 25(1). http://dx.doi.org/10.1016/j.gr.2012.12.026. |
[25] | WAN Y S, LIU D Y, XIE H Q, et al. Formation ages and environments of Early Precambrian banded iron formation in the North China Carton[M]//ZHAI M G, ZHAO Y, ZHAO T. Main tectonic events and metallogeny of the North China Craton. Singapore: Springer, 2016: 65-83. |
[26] |
GENG Y S, DU L L, REN LD. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes[J]. Gondwana Research, 2012, 21: 517-529.
DOI URL |
[27] | ARTEMIEVA I, MOONEY W D. Thermal thickness and evolution of Precambrian lithosphere: a global study[J]. Journal of Geophysical Research: Solid Earth, 2001, 106: 16387-16414. |
[28] |
MOYEN J F, VAN HUNEN J. Short-termepisodicity of Archean plate tectonics[J]. Geology, 2012, 40: 451-454.
DOI URL |
[29] | 翟明国, 郭敬辉, 阎月华, 等. 太古宙克拉通型下地壳剖面: 华北怀安-丰镇-尚义的麻粒岩-角闪岩系[J]. 岩石学报, 1996, 12(2): 222-238. |
[30] | CARSWELL D A. Eclogites and eclogite facies, definitions and classifications[M]//CARSWELL D A. Eclogite facies rocks. New York: Blackie, 1990: 1-13. |
[31] | 翟明国, 郭敬辉, 阎月华, 等. 中国华北太古宙高压基性麻粒岩的发现及其初步研究[J]. 中国科学: B辑, 1992, 12: 1325-1330. |
[32] | 阎月华. 大同孤山含石榴石麻粒岩的成因讨论[M]//钱祥麟, 王仁民.华北北部麻粒岩带地质演化. 北京: 地震出版社, 1994: 199-209. |
[33] | 刘宇光. 冀西北及相邻地区的早前寒武纪地质及地壳演化[D]. 北京: 中国科学院地质研究所, 1988. |
[34] | PERCIVAL J A. A field guide to the Kapuskasing uplift: a cross section through the Archaean superior province[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 227-286. |
[35] | ATAL B S, BHALLA N S, LALL Y, et al. Radioactive elemental distribution in the granulite terrains and Dharwar schist belts of Peninsular India[J]. Developments in Precambrian Geology, 1978, 5: 205-220. |
[36] | 张友南, 孙君秀. 华北地壳岩石波速类型及其地质意义[J]. 地震地质, 1998, 20(1): 73-81. |
[37] | 祝治平, 张先康, 张建狮, 等. 北京-怀来-丰镇剖面地壳上地幔构造与速度结构图[J]. 地震学报, 1997, 19: 99-505. |
[38] | ZHAI M G, GUO J H, LIU W J. An oblique cross-section of Precambrian lower crust in the North China Craton[J]. Physics and Chemistry of the Earth, 2001, 26: 781-792. |
[39] | GOU L L, ZHAI M G, ZHANG C L, et al. Ultrahigh temperature metamorphism and isobaric cooling of Neoarchean ultramafic-mafic granulites in the southern granulite terrain, India: phase equilibrium modelling and SHRIMP zircon U-Pb dating[J]. Journal of Metamorphic Geology, 2022, 40(5). DOI: 10.1111/jmg.12654. |
[40] | 赵磊, 张儒诚, 孙伟清, 等. 华北克拉通东部胶北地体早前寒武纪表壳岩系: 研究进展与综述[J]. 岩石学报, 2023, 39 (8): 2211-2237. |
[41] |
ZOU Y, LI Q L, CHU X. Older orogens cooled slower: new constraints on Orosirian tectonics from garnet difusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton[J]. Contributions to Mineralogy and Petrology, 2021, 176: 91.
DOI |
[42] | 翟明国. 华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题[J]. 岩石学报, 2009, 25: 1753-1771. |
[43] |
ZHOU L G, ZHAI M G, LU J S, et al. Paleoproterozoic metamorphism of high-grade granulite facies rocks in the North China Craton: study advances, questions and new issues[J]. Precambrian Research, 2017, 303: 520-547.
DOI URL |
[44] | 侯泉林, 郭谦谦, 陈艺超, 等. 山脉与造山带及有关问题讨论[J]. 岩石学报, 2021, 37(8): 2287-2302. |
[45] |
LIN S F. Synchronous vertical and horizontal tectonism in the Neoarchean: kinematic evidence from a synclinal keel in the northwestern Superior Craton, Canada[J]. Precambrian Research, 2005, 139: 181-194.
DOI URL |
[46] |
LIN S F, PARKS J, HEAMAN L M, et al. Diapirism and sagduction as a mechanism for deposition and burial of “Timiskaming-type” sedimentary sequences, Superior Province: evidence from detrital zircon geochronology and implications for the Borden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift[J]. Precambrian Research, 2013, 238: 148-157.
DOI URL |
[47] |
FOUNTAIN D M, SALISBURY M H. Exposed cross-sections through the continental crust: implications for crustal structure, petrology and evolution[J]. Earth and Planetary Science Letters, 1981, 56: 263-277.
DOI URL |
[48] |
WANG E, BURCHFIEL B C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis[J]. International Geology Review, 1997, 39 (3): 191-219.
DOI URL |
[49] |
WANG Q, ZHANG P Z, FREYMUELLER J T, et al. Present-day crustal deformation in China constrained by Global Positioning System measurement[J]. Science, 2001, 294 (5542): 574-577.
DOI URL |
[50] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276: 788-790.
PMID |
[51] |
CLARK M K, ROYDEN L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28 (8): 703-706.
DOI URL |
[52] | 陈小宇, 刘俊来, 翁少腾. 青藏高原东南缘晚渐新世-早中新世中下地壳流动: 滇西瑶山与玉龙变质杂岩构造解析[J]. 岩石学报, 2020, 36 (8): 2558-2570. |
[53] | 王椿镛, 王溪莉, 苏伟, 等. 青藏高原东缘下地壳流动的地震学证据[J]. 四川地震, 2006, 4: 1-4. |
[54] | 翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 2020, 8(1): 2249-2275 |
[55] | 翟明国. 新太古代全球克拉通事件与太古宙-元古宙分界的地质涵义[J]. 大地构造与成矿, 2006, 30(4): 419-421. |
[56] | CONDIE K C. Precambrian superplume event[M]//ERIKSSON P G, ALTERMANN W, NELSON D R, et al. The Precambrian Earth tempos and events. Amsterdam: Elsevier, 2004: 163-172. |
[57] | CONDIE K C, KRÖNER A. When did plate tectonics begin? Evidence from the geologic record[J]. Geological Society of America, Special Paper, 2008, 440: 281-294. |
[58] | TURET J. Fluid inclusions in high grade metamorphic rocks[M]//HOLIISTER L S, CRAWFORD M L. Short course in fluid inclusions: application to petrology. Waterloo: Mineralogyical Association of Canada, 1981: 182-208. |
[59] | TURET J. DIETVORST P. Fluid inclusions in high grade anatectic metamorphites[M]//HOLIISTER L S, CRAWFORD M L. Short course in fluid inclusions: application to geology. London: Mineralogical Association, 1983: 635-649. |
[60] | 梅冥相. 冥古宙的地层学属性: 了解地球形成初期古地理背景和演变历史的重要线索[J]. 古地理学报, 2016, 18(4): 513-524. |
[61] |
LIU L. The inception of the oceans and CO2: atmosphere in the early history of the Earth[J]. Earth and Planetary Science Letters, 2004, 227: 179-184.
DOI URL |
[62] | 沈昆, 张泽明, 孙晓明, 等. 超高压变质流体的组成与演化: 中国大陆科学钻探工程主孔岩心的流体包裹体研究[J]. 岩石学报, 2005, 21(2): 489-504. |
[63] |
LU J S, ZHAI M G, ZHAO L. P-T-t evolution of Neoarchaean to Paleoproterozoic pelitic granulites from the Jidong terrane, eastern North China Craton[J]. Precambrian Research, 2017, 290: 1-15
DOI URL |
[64] | 魏春景. 冀东地区新太古代麻粒岩相变质作用及其大地构造意义[J]. 岩石学报, 2018, 34(4): 895-912. |
[65] |
LIU T, WEI C J. Metamorphic p-T paths and zircon U-Pb ages of Archean ultrahigh temperature paragranulites from the Qian’an gneiss dome, East Hebei Terrane, North China Craton[J]. Journal of Metamorphic Geology, 2020, 38(4): 329-356.
DOI URL |
[66] | 崔润泽, 魏春景, 段站站. 华北克拉通清原地体新太古代和古元古代两期麻粒岩相变质作用[J]. 岩石学报, 2023, 39(8): 2257-2278. |
[67] |
FROST B R, FROST C D. CO2, melts, and granulite metamorphism[J]. Nature, 1987, 327: 503-506.
DOI |
[68] |
HARLEY S L. Refining the p-T records of UHT crustal metamorphism[J]. Journal of Metamorphic Geology, 2008, 26(2): 125-154.
DOI URL |
[69] |
DHARMAPRIYA P L. MALAVIARACHCHI S R K, GALLI A, et al. p-T evolution of a spinel + quartz bearing khondalite from the Highland Complex, Sri Lanka: implications for non-UHT metamorphism[J]. Journal of Asian Earth Sciences, 2014, 95: 99-113.
DOI URL |
[70] |
GUO J H, PENG P, CHEN Y, et al. UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research, 2012, 222/223: 124-142.
DOI URL |
[71] |
WU J L, ZHANG H F, ZHAI M G, et al. Pelitic high-pressure granulite from the Huai’an Complex, North China Craton: metamorphic p-T evolution and geological implications[J]. Precambrian Research, 2016, 278: 323-336.
DOI URL |
[72] |
YANG Q Y, SANTOSH M, WADA H. Graphite mineralization in Paleoproterozoic khondalites of the North China Craton: a carbon isotope study[J]. Precambrian Research, 2014, 255: 641-652.
DOI URL |
[73] |
YIN C Q, ZHAO G C, SUN M, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: constraints on the evolution of the Khondalite Belt in the western block of the North China Craton[J]. Precambrian Research, 2009, 174: 78-94.
DOI URL |
[74] |
ZHAI M G, GUO J H, LI Y G, et al. Two linear granite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaeoproterozoic continental evolution[J]. Precambrian Research, 2003, 127: 267-283.
DOI URL |
[75] | 张喜松. 下地壳超高温深熔和-2.5 Ga的克拉通化[D]. 北京: 中国科学院地质与地球物理研究所, 2023. |
[76] | 翟明国, 李永刚, 郭敬辉, 等. 晋冀内蒙交界地区麻粒岩地体中两条花岗岩带及其对早前寒武纪地壳生长的意义[J]. 岩石学报, 1996, 12(2): 299-314. |
[77] |
HE H L, WANG Y Q, BAO Z A, et al. Role of magma injection and mixing in the formation of chromitite in Archean anorthosites: evidence from the Sittampundi Complex, southern India[J]. Precambrian Research, 2020, 350: 105914.
DOI URL |
[78] |
BRANDT S, RAITH M M, SCHENK V, et al. Crustal evolution of the southern Granulite Terrane, South India: new geochronological and geochemical data for felsic orthogneisses and granites[J]. Precambrian Research, 2014, 246: 91-122.
DOI URL |
[79] | HE H L, WANG Y Q, GEORGE, P M, et al. Formation of -2.5 Ga Sittampundi anorthosite complex in southern India: implications to lower crustal stabilization of Dharwar Craton[J]. Precambrian Research, 2021, Lithos, 380/381: 105836. |
[80] | 翟明国, 樊棋诚, 张宏福, 等. 华北东部岩石圈减薄作用中的下地壳过程: 岩浆底侵、置换与拆沉作用[J]. 岩石学报, 2005, 21(6): 1509-1526. |
[81] | FAN W M, MENZIES M A. Destruction of aged lower lithosphere and asthenosphere mantle beneath eastern China[J]. Geotectonica et Metallogenia, 1992, 16: 171-179. |
[82] |
GAO S, RUDNICK R L, CARLSON R W. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J]. Earth and Planetary Science Letters, 2002, 198: 307-322.
DOI URL |
[83] |
ZHANG H F, MIN S, ZHOU X H et al. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications[J]. Lithos, 2005, 81: 297-317.
DOI URL |
[84] | 樊祺诚, 张宏福, 隋建立, 等. 岩浆底侵作用与汉诺坝现今壳-幔边界组成[J]. 中国科学D辑: 地球科学, 2005, 35: 1-14. |
[85] | 钱祥麟. 早期大陆地壳研究的意义和问题[M]//钱祥麟, 王仁民. 华北北部麻粒岩相带地质演化. 北京: 地震出版社, 1994: 1-6. |
[1] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[2] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[3] | 张进江, 郑剑磊, 王海滨, 郭磊, 刘江, 戚国伟. 内蒙古大青山-盘羊山晚中生代-早新生代构造事件及其对华北北缘构造演化的启示[J]. 地学前缘, 2024, 31(1): 127-141. |
[4] | 任纪舜, 刘建辉, 朱俊宾. 中国东部中生代上叠造山系[J]. 地学前缘, 2024, 31(1): 142-153. |
[5] | 金之钧, 陈书平, 张瑞. 沉积盆地波动过程分析:研究现状与展望[J]. 地学前缘, 2024, 31(1): 284-296. |
[6] | 万渝生, 董春艳, 颉颃强, 李鹏川, 刘守偈, 李源, 王宇晴, 王堃力, 刘敦一. 华北克拉通新太古代晚期岩浆作用:对构造体制和克拉通化的启示[J]. 地学前缘, 2024, 31(1): 77-94. |
[7] | 魏春景, 赵亚男, 初航. 冀北红旗营杂岩多期变质作用:古元古代俯冲/碰撞—晚古生代伸展—早中生代挤压的记录[J]. 地学前缘, 2024, 31(1): 95-110. |
[8] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[9] | 杨立强, 和文言, 高雪, 王偲瑞, 李楠, 邱昆峰, 张良, 马强, 苏玉平, 李大鹏, 张智宇, 于红. 克拉通岩石圈三维物质架构示踪方法[J]. 地学前缘, 2023, 30(6): 391-405. |
[10] | 张保建, 雷玉德, 赵振, 唐显春, 罗银飞, 王贵玲, 高俊, 张代磊. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘, 2023, 30(5): 384-401. |
[11] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[12] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[13] | 叶涛, 牛成民, 王德英, 王清斌, 代黎明, 陈安清. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J]. 地学前缘, 2022, 29(5): 133-146. |
[14] | 曾忠诚, 洪增林, 边小卫, 陈宁, 张若愚, 李琦. 阿尔金造山带南缘晚奥陶世赞岐质闪长岩的发现及其地质意义[J]. 地学前缘, 2022, 29(4): 345-357. |
[15] | 张洪瑞, 侯增谦. 碰撞带热结构与碰撞成矿系统[J]. 地学前缘, 2022, 29(2): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||