地学前缘 ›› 2023, Vol. 30 ›› Issue (6): 391-405.DOI: 10.13745/j.esf.sf.2023.5.81
杨立强1,2(), 和文言1, 高雪1, 王偲瑞1, 李楠1, 邱昆峰1, 张良1, 马强3, 苏玉平3, 李大鹏2, 张智宇4, 于红1
收稿日期:
2022-04-30
修回日期:
2023-05-07
出版日期:
2023-11-25
发布日期:
2023-11-25
作者简介:
杨立强(1971—),男,教授,博士生导师,主要从事矿床学及矿产普查与勘探的教学和科研工作。E-mail: lqyang@cugb.edu.cn
基金资助:
YANG Liqiang1,2(), HE Wenyan1, GAO Xue1, WANG Sirui1, LI Nan1, QIU Kunfeng1, ZHANG Liang1, MA Qiang3, SU Yuping3, LI Dapeng2, ZHANG Zhiyu4, YU Hong1
Received:
2022-04-30
Revised:
2023-05-07
Online:
2023-11-25
Published:
2023-11-25
摘要:
克拉通岩石圈三维物质组成架构示踪是当今地球科学研究前沿,面临系列挑战。在对已有相关成果系统梳理的基础上,分别阐述了实现由点到面、由局部到全时空、由单一方法到多学科综合约束3个战略思路转变的基本要点;并以华北克拉通为例,提出了亟待深化的研究领域和未来方向。多种地球物理方法联立约束和综合解释,不仅开拓了岩石圈物质组成研究的新思路,而且有利于获得更可信的结果。逼近实际的岩石圈物质组成架构必须符合岩石探针、岩石圈物性结构、岩石物理性质与矿物及化学组成的测试分析/模拟计算结果等观测事实,并遵循地球化学热力学-地球动力学理论框架;这就需克服单一资料和方法各自的局限性,由单一手段向多方法综合约束转变,实现多学科融合来开展岩石圈物质组成的研究。据此提出“循序渐进、逐步深化”和“反馈修正、不断逼近”的岩石圈物质组成架构的多学科综合示踪研究流程。华北克拉通岩石圈三维物质架构研究的重点在于通过多学科的深度融合,恢复不同时期的构造格架和对应的物质组成,示踪其岩石圈物质架构的演变过程。
中图分类号:
杨立强, 和文言, 高雪, 王偲瑞, 李楠, 邱昆峰, 张良, 马强, 苏玉平, 李大鹏, 张智宇, 于红. 克拉通岩石圈三维物质架构示踪方法[J]. 地学前缘, 2023, 30(6): 391-405.
YANG Liqiang, HE Wenyan, GAO Xue, WANG Sirui, LI Nan, QIU Kunfeng, ZHANG Liang, MA Qiang, SU Yuping, LI Dapeng, ZHANG Zhiyu, YU Hong. New method to trace the three-dimensional compositional structure of cratonic lithosphere[J]. Earth Science Frontiers, 2023, 30(6): 391-405.
图2 胶东半岛岩石圈三维物质架构模型 Hf-Nd同位素等值线图均在Surfer软件中根据岩浆岩的经纬度坐标和相应的εHf(t)和εNd(t)中位值,使用距离幂函数反比加权法完成。其中Hf同位素等值线图的数据源为胶东地区中生代花岗岩中U-Pb同位素年龄在160~95 Ma区间范围内的944个锆石数据点[129⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-140];Nd同位素等值线图的数据源为胶东地区130~95 Ma的基性岩全岩Nd同位素数据129件[141⇓⇓⇓⇓⇓⇓⇓⇓-150]。
Fig.2 3D compositional structural model for the Jiaodong Peninsula (isotope data from [129⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-150])
[1] | GOODWIN A M. Principles of Precambrian geology[M]. London: Academic Press, 1996. |
[2] |
KRÖNER A, LAYER P W. Crust formation and plate motion in the early Archean[J]. Science, 1992, 256(5062): 1405-1411.
PMID |
[3] | 朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去、 现在与未来: 地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490. |
[4] |
高锐, 周卉, 卢占武, 等. 深地震反射剖面揭露青藏高原陆-陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2022, 29(2): 14-27.
DOI |
[5] |
FOUNTAIN D M, SALISBURY M H. Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution[J]. Earth and Planetary Science Letters, 1981, 56: 263-277.
DOI URL |
[6] |
BROWN L, WILLE D, ZHENG L, et al. COCORP: new perspectives on the deep crust[J]. Geophysical Journal International, 1987, 89(1): 47-54.
DOI URL |
[7] | 王海燕, 高锐, 卢占武, 等. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报, 2010, 84(6): 818-839. |
[8] |
DONG S W, LI T D, LÜ Q T, et al. Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe[J]. Tectonophysics, 2013, 606: 1-13.
DOI URL |
[9] |
PING X Q, ZHENG J P, TANG H Y, et al. Hadean continental crust in the southern North China Craton: evidence from the Xinyang felsic granulite xenoliths[J]. Precambrian Research, 2018, 307: 155-174.
DOI URL |
[10] |
HACKER B R, KELEMEN P B, BEHN M D. Continental lower crust[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 167-205.
DOI |
[11] |
DUCEA M N, SALEEBY J B, BERGANTZ G. The architecture, chemistry, and evolution of continental magmatic arcs[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 299-331.
DOI URL |
[12] | 莫宣学. 岩浆与岩浆岩: 地球深部“探针”与演化记录[J]. 自然杂志, 2011, 33(5):255-259, I0003. |
[13] | 莫宣学. 岩浆作用与地球深部过程[J]. 地球科学, 2019, 44(5): 1487-1493. |
[14] | WILSON M. Igneous Petrogenesis[M]. Dordrecht: Springer, 1989. |
[15] |
HOLLAND T J B, POWELL R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 29(3): 333-383.
DOI URL |
[16] | LIU L, MORGAN J P, XU Y G, et al. Craton destruction 2: evolution of cratonic lithosphere after a rapid keel delamination event[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 10069-10090. |
[17] |
RUDNICK R L, MCDONOUGH W F, O’CONNELL R J. Thermal structure, thickness and composition of continental lithosphere[J]. Chemical Geology, 1998, 145(3/4): 395-411.
DOI URL |
[18] | 郑建平, 夏冰, 平先权, 等. 岩石探针和地震探测手段约束华北深部地壳结构组成及演化[J]. 科学通报, 2021, 66(23): 3018-3031. |
[19] |
MA Q, XU Y G, HUANG X L, et al. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths[J]. Geochimica et Cosmochimica Acta, 2020, 278: 94-109.
DOI URL |
[20] |
XIA B, THYBO H, ARTEMIEVA I M. Seismic crustal structure of the North China Craton and surrounding area: synthesis and analysis[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5181-5207.
DOI URL |
[21] |
DENG J F, MO X X, ZHAO H L, et al. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots-plume tectonics’[J]. Earth-Science Reviews, 2004, 65(3/4): 223-275.
DOI URL |
[22] | RUDNICK R L. Xenoliths-samples of the lower continental crust[M]//FOUNTAIN D, ARCULUS R, KAY R W. Continental lower crust. Amsterdam: Elservier, 1992: 269-316. |
[23] |
ZHANG H F, SUN M, ZHOU X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4373-4387.
DOI URL |
[24] |
ZHANG Z J, WU J, DENG Y F, et al. Lateral variation of the strength of lithosphere across the eastern North China Craton: new constraints on lithospheric disruption[J]. Gondwana Research, 2012, 22(3/4): 1047-1059.
DOI URL |
[25] |
ZHENG J P, GRIFFIN W L, MA Q, et al. Accretion and reworking beneath the North China craton[J]. Lithos, 2012, 149: 61-78.
DOI URL |
[26] |
ZHENG J P, SUN M, LU F X, et al. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton[J]. Tectonophysics, 2003, 361(1/2): 37-60.
DOI URL |
[27] |
GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
DOI |
[28] |
LIN A B, ZHENG J P, XIONG Q, et al. A refined model for lithosphere evolution beneath the decratonized northeastern North China Craton[J]. Contributions to Mineralogy and Petrology, 2019, 174(2): 15.
DOI |
[29] |
LIU J G, RUDNICK R L, WALKER R J, et al. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3881-3902.
DOI URL |
[30] | O’REILLY S Y, GRIFFIN W L, POUDJOM DJOMANI Y H, et al. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time[J]. GSA Today, 2001, 11(4): 4-10. |
[31] |
DAI H K, ZHENG J P, O’REILLY S Y, et al. Langshan basalts record recycled Paleo-Asian oceanic materials beneath the northwest North China Craton[J]. Chemical Geology, 2019, 524: 88-103.
DOI URL |
[32] |
GAO S, RUDNICK R L, CARLSON R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J]. Earth and Planetary Science Letters, 2002, 198(3/4): 307-322.
DOI URL |
[33] | 郑建平, 夏冰, 戴宏坤, 等. 地球物理观察和岩石包体约束华北岩石圈地幔结构、 性质及过程[J]. 中国科学: 地球科学, 2021, 51(2): 201-217. |
[34] |
CONDIE K C. Mafic crustal xenoliths and the origin of the lower continental crust[J]. Lithos, 1999, 46(1): 95-101.
DOI URL |
[35] | GRIFFIN W L, ZHANG A D, O’REILLY S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton[M]//Mantle dynamics and plate interactions in East Asia. Washington, D. C.: American Geophysical Union, 1998: 107-126. |
[36] |
JU Y W, YU K, WANG G Z, et al. Coupling response of the Meso-Cenozoic differential evolution of the North China Craton to lithospheric structural transformation[J]. Earth-Science Reviews, 2021, 223: 103859.
DOI URL |
[37] |
KOBUSSEN A F, GRIFFIN W L, O’REILLY S Y, et al. Ghosts of lithospheres past: imaging an evolving lithospheric mantle in southern Africa[J]. Geology, 2008, 36(7): 515.
DOI URL |
[38] |
MARSCHALL H R, WANLESS V D, SHIMIZU N, et al. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle[J]. Geochimica et Cosmochimica Acta, 2017, 207: 102-138.
DOI URL |
[39] |
XU Y G. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: evidence, provenance and significance[J]. Geochimica et Cosmochimica Acta, 2014, 143: 49-67.
DOI URL |
[40] |
CHOWDHURY P, CHAKRABORTY S, GERYA T V, et al. Peel-back controlled lithospheric convergence explains the secular transitions in Archean metamorphism and magmatism[J]. Earth and Planetary Science Letters, 2020, 538: 116224.
DOI URL |
[41] |
STEIN C, MERTENS M, HANSEN U. A numerical study of thermal and chemical structures at the core-mantle boundary[J]. Earth and Planetary Science Letters, 2020, 548: 116498.
DOI URL |
[42] | ARTEMIEVA I M, MOONEY W D. Thermal thickness and evolution of Precambrian lithosphere: a global study[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B8): 16387-16414. |
[43] |
FOLEY S, O’NEILL C. Ancient continental blocks soldered from below[J]. Nature, 2021, 592(7856): 692-693.
DOI |
[44] |
WANG Y, FOLEY S F, PRELEVIĆ D. Potassium-rich magmatism from a phlogopite-free source[J]. Geology, 2017, 45(5): 467-470.
DOI URL |
[45] |
LEE C T A, LUFFI P, CHIN E J, et al. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science, 2012, 336(6077): 64-68.
DOI URL |
[46] |
LIU J G, PEARSON D G, WANG L H, et al. Plume-driven recratonization of deep continental lithospheric mantle[J]. Nature, 2021, 592(7856): 732-736.
DOI |
[47] |
POWELL W, O’REILLY S. Metasomatism and sulfide mobility in lithospheric mantle beneath eastern Australia: implications for mantle Re-Os chronology[J]. Lithos, 2007, 94(1/2/3/4): 132-147.
DOI URL |
[48] | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学:地球科学, 2019, 49(9): 1346-1356. |
[49] | 翟明国, 张艳斌, 李秋立, 等. 克拉通、 下地壳与大陆岩石圈: 庆贺沈其韩先生百年华诞[J]. 岩石学报, 2021, 37(1): 1-23. |
[50] |
PING X Q, ZHENG J P, TANG H Y, et al. Paleoproterozoic multistage evolution of the lower crust beneath the southern North China Craton[J]. Precambrian Research, 2015, 269: 162-182.
DOI URL |
[51] |
GENG Y S, DU L L, REN L D. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes[J]. Gondwana Research, 2012, 21(2/3): 517-529.
DOI URL |
[52] | FRISCH W, MESCHEDE M, BLAKEY R C. Plate tectonics: continental drift and mountain building[M]. Berlin, Heidelberg: Springer, 2011. |
[53] |
王涛, 侯增谦. 同位素填图与深部物质探测(Ⅰ): 揭示岩石圈组成演变与地壳生长[J]. 地学前缘, 2018, 25(6): 1-19.
DOI |
[54] |
CHAMPION D C, HUSTON D L. Radiogenic isotopes, ore deposits and metallogenic terranes: novel approaches based on regional isotopic maps and the mineral systems concept[J]. Ore Geology Reviews, 2016, 76: 229-256.
DOI URL |
[55] |
BORG S G, DEPAOLO D J. Laurentia, Australia, and Antarctica as a late Proterozoic supercontinent: constraints from isotopic mapping[J]. Geology, 1994, 22(4): 307-310.
DOI URL |
[56] |
MILISENDA C C, LIEWA T C, HOFMANNA A W, et al. Nd isotopic mapping of the Sri Lanka basement: update, and additional constraints from Sr isotopes[J]. Precambrian Research, 1994, 66(1/2/3/4): 95-110.
DOI URL |
[57] |
BIZIMIS M, SEN G, SALTERS V J M. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii[J]. Earth and Planetary Science Letters, 2004, 217(1/2): 43-58.
DOI URL |
[58] |
GARÇON M, CHAUVEL C, FRANCE-LANORD C, et al. Continental sedimentary processes decouple Nd and Hf isotopes[J]. Geochimica et Cosmochimica Acta, 2013, 121: 177-195.
DOI URL |
[59] |
NOWELL G M, PEARSON D G, BELL D R, et al. Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions[J]. Journal of Petrology, 2004, 45(8): 1583-1612.
DOI URL |
[60] |
MOLE D R, FIORENTINI M L, CASSIDY K F, et al. Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean craton[J]. Geological Society, London, Special Publications, 2015, 393(1): 23-80.
DOI URL |
[61] |
MOLE D R, FIORENTINI M L, THEBAUD N, et al. Archean komatiite volcanism controlled by the evolution of early continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10083-10088.
DOI PMID |
[62] |
WANG Q, JI S C, SUN S S, et al. Correlations between compressional and shear wave velocities and corresponding Poisson’s ratios for some common rocks and sulfide ores[J]. Tectonophysics, 2009, 469(1/2/3/4): 61-72.
DOI URL |
[63] |
POLLOCK J C, SYLVESTER P J, BARR S M. Lu-Hf zircon and Sm-Nd whole-rock isotope constraints on the extent of juvenile arc crust in Avalonia: examples from Newfoundland and Nova Scotia, Canada[J]. Canadian Journal of Earth Sciences, 2015, 52(3): 161-181.
DOI URL |
[64] |
VERVOORT J D, PATCHETT P J, BLICHERT-TOFT J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Planetary Science Letters, 1999, 168(1/2): 79-99.
DOI URL |
[65] |
VERVOORT J D, PLANK T, PRYTULAK J. The Hf-Nd isotopic composition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5903-5926.
DOI URL |
[66] | 郑永飞, 陈仁旭, 张少兵, 等. 大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究[J]. 岩石学报, 2007, 23(2): 317-330. |
[67] |
GAO X, YANG L Q, OROVAN E A. The lithospheric architecture of two subterranes in the eastern Yidun Terrane, East Tethys: insights from Hf-Nd isotopic mapping[J]. Gondwana Research, 2018, 62: 127-143.
DOI URL |
[68] |
TILHAC R, BEGG G C, O’REILLY S Y, et al. A global review of Hf-Nd isotopes: new perspectives on the chicken-and-egg problem of ancient mantle signatures[J]. Chemical Geology, 2022, 609: 121039.
DOI URL |
[69] |
DENG J, WANG C M, BAGAS L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272.
DOI URL |
[70] |
WANG C M, BAGAS L, DENG J, et al. Crustal architecture and its controls on mineralisation in the North China Craton[J]. Ore Geology Reviews, 2018, 98: 109-125.
DOI URL |
[71] |
HARTNADY M I H, KIRKLAND C L, DUTCH R A, et al. Evaluating zircon initial Hf isotopic composition using a combined SIMS-MC-LASS-ICP-MS approach: a case study from the Coompana Province in South Australia[J]. Chemical Geology, 2020, 558: 119870.
DOI URL |
[72] |
MOLE D R, FRIEMAN B M, THURSTON P C, et al. Crustal architecture of the south-east Superior Craton and controls on mineral systems[J]. Ore Geology Reviews, 2022, 148: 105017.
DOI URL |
[73] |
SCHOENE B, DUDAS F O L, BOWRING S A, et al. Sm-Nd isotopic mapping of lithospheric growth and stabilization in the eastern Kaapvaal Craton[J]. Terra Nova, 2009, 21(3): 219-228.
DOI URL |
[74] |
MOLE D R, KIRKLAND C L, FIORENTINI M L, et al. Time-space evolution of an Archean craton: a Hf-isotope window into continent formation[J]. Earth-Science Reviews, 2019, 196: 102831.
DOI URL |
[75] |
YANG L Q, DILEK Y, WANG Z L, et al. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: lower crustal melting products in the eastern North China Craton[J]. Geological Magazine, 2018, 155(5): 1040-1062.
DOI URL |
[76] |
WANG X X, WANG T, CASTRO A, et al. Proterozoic rapakivi granites from the North Qaidam orogen, NW China: implications for basement attribution[J]. Gondwana Research, 2015, 28(4): 1516-1529.
DOI URL |
[77] |
LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111-120.
DOI URL |
[78] |
MOLE D R, THURSTON P C, MARSH J H, et al. The formation of Neoarchean continental crust in the south-east Superior Craton by two distinct geodynamic processes[J]. Precambrian Research, 2021, 356: 106104.
DOI URL |
[79] |
XIONG L, ZHAO X F, WEI J H, et al. Linking Mesozoic lode gold deposits to metal-fertilized lower continental crust in the North China Craton: evidence from Pb isotope systematics[J]. Chemical Geology, 2020, 533: 119440.
DOI URL |
[80] | 侯增谦, 郑远川, 卢占武, 等. 青藏高原巨厚地壳: 生长、 加厚与演化[J]. 地质学报, 2020, 94(10): 2797-2815. |
[81] | 王涛, 黄河, 宋鹏, 等. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例[J]. 地球科学, 2020, 45(7): 2326-2344. |
[82] | 王涛, 黄河, 杨立强, 等. 揭示三维岩石圈物质架构的技术方法体系框架[J]. 地质学报, 2022, 96(10): 3589-3618. |
[83] |
DOUCET L S, LAURENT O, IONOV D A, et al. Archean lithospheric differentiation: insights from Fe and Zn isotopes[J]. Geology, 2020, 48(10): 1028-1032.
DOI URL |
[84] |
ZHANG J J, WANG T, ZHANG L, et al. Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: constraints on the southern boundary of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 108: 150-169.
DOI URL |
[85] |
CUI P L, SUN J G, SHA D M, et al. Oldest zircon xenocryst (4.17 Ga) from the North China Craton[J]. International Geology Review, 2013, 55(15): 1902-1908.
DOI URL |
[86] |
FURLONG K P, FOUNTAIN D M. Continental crustal underplating: thermal considerations and seismic-petrologic consequences[J]. Journal of Geophysical Research, 1986, 91(B8): 8285-8294.
DOI URL |
[87] |
O’REILLY S Y, GRIFFIN W L. 4-D lithosphere mapping: methodology and examples[J]. Tectonophysics, 1996, 262(1/2/3/4): 3-18.
DOI URL |
[88] | SNELSON C M, KELLER G R, MILLER K C, et al. Regional crustal structure derived from the CD-ROM 99 seismic refraction/wide-angle reflection profile: the lower crust and upper mantle[M]//The Rocky Mountain region: an evolving lithosphere: tectonics, geochemistry, and geophysics. Washington, D.C.: American Geophysical Union, 2005: 271-291. |
[89] | ZHANG Z J, ZHANG X, BADAL J. Composition of the crust beneath southeastern China derived from an integrated geophysical data set[J]. Journal of Geophysical Research, 2008, 113(B4): B04417. |
[90] |
AFONSO J C, BEN-MANSOUR W, O’REILLY S Y, et al. Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa[J]. Nature Geoscience, 2022, 15(5): 405-410.
DOI |
[91] | 杨立强. 大陆深部地震结构及其成盆成矿效应:兼论青藏高原壳幔形变[D]. 北京: 中国科学院地质与地球物理研究所, 2004. |
[92] |
ZHANG X, BROWN D, DENG Y F. Crustal composition model across the Bangong-Nujiang suture belt derived from INDEPTH III velocity data[J]. Journal of Geophysics and Engineering, 2011, 8(4): 549-559.
DOI URL |
[93] |
READING A M, KENNETT B L N. Lithospheric structure of the Pilbara Craton, Capricorn Orogen and northern Yilgarn Craton, western Australia, from teleseismic receiver functions[J]. Australian Journal of Earth Sciences, 2003, 50(3): 439-445.
DOI URL |
[94] |
BETTAC S P, UNSWORTH M J, PEARSON D G, et al. New constraints on the structure and composition of the lithospheric mantle beneath the Slave Craton, NW Canada from 3-D magnetotelluric data-Origin of the Central Slave Mantle Conductor and possible evidence for lithospheric scale fluid flow[J]. Tectonophysics, 2023, 851: 229760.
DOI URL |
[95] |
DRANSFIELD M H, BUCKINGHAM M J, VAN KANN F J. Lithological mapping by correlating magnetic and gravity gradient airborne measurements[J]. Exploration Geophysics, 1994, 25(1): 25-30.
DOI URL |
[96] |
PRICE A D, DRANSFIELD M H. Lithological mapping by correlation of the magnetic and gravity data from Corsair W.A.[J]. Exploration Geophysics, 1994, 25(4): 179-187.
DOI URL |
[97] |
RUDNICK R L, FOUNTAIN D M. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33(3): 267-309.
DOI URL |
[98] |
MCLENNAN S M, TAYLOR S R. Heat flow and the chemical composition of continental crust[J]. The Journal of Geology, 1996, 104(4): 369-377.
DOI URL |
[99] | 汪洋, 邓晋福. 大地热流研究揭示的中国地壳成分横向变化[J]. 地球科学: 中国地质大学学报, 2001, 26(6): 597-602. |
[100] |
PRIESTLEY K, MCKENZIE D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle[J]. Earth and Planetary Science Letters, 2013, 381: 78-91.
DOI URL |
[101] | 单斌, 周万里, 肖阳. 多地球物理观测联合反演华南岩石圈温度和化学组分结构[J]. 中国科学: 地球科学, 2021, 51(1): 120-133. |
[102] | 严加永, 吕庆田, 陈向斌, 等. 基于重磁反演的三维岩性填图试验: 以安徽庐枞矿集区为例[J]. 岩石学报, 2014, 30(4): 1041-1053. |
[103] | CHRISTENSEN N I, MOONEY W D. Seismic velocity structure and composition of the continental crust: a global view[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9761-9788. |
[104] |
KERN H, SCHENK V. A model of velocity structure beneath Calabria, southern Italy, based on laboratory data[J]. Earth and Planetary Science Letters, 1988, 87(3): 325-337.
DOI URL |
[105] |
GAO S, LUO T C, ZHANG B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959-1975.
DOI URL |
[106] | CUI D D, GUO J L, SHINEVAR W J, et al. Geophysical-geochemical modeling of deep crustal compositions: examples of continental crust in typical tectonic settings and North China Craton[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(6): e2022JB025536. |
[107] | SNYDER D B, SAVARD G, KJARSGAARD B A, et al. Multidisciplinary modeling of mantle lithosphere structure within the Superior Craton, North America[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(4): e2020GC009566. |
[108] |
ZHANG Z J, YANG L Q, TENG J W, et al. An overview of the Earth crust under China[J]. Earth-Science Reviews, 2011, 104(1/2/3): 143-166.
DOI URL |
[109] |
ZHANG Y Q, TENG J W, WANG Q S, et al. Composition model of the crust beneath the Ordos Basin and the Yinshan Mountains in China, based on seismic velocity, heat flow and gravity data[J]. Tectonophysics, 2014, 634: 246-256.
DOI URL |
[110] |
SHILLINGTON D J, VAN AVENDONK H J A, BEHN M D, et al. Constraints on the composition of the Aleutian arc lower crust from vP /vS[J]. Geophysical Research Letters, 2013, 40(11): 2579-2584.
DOI URL |
[111] |
YANG L Q, BADAL J. Mirror symmetry of the crust in the oil/gas region of Shengli, China[J]. Journal of Asian Earth Sciences, 2013, 78: 327-344.
DOI URL |
[112] |
YANG L Q, DENG J, DILEK Y, et al. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics[J]. Lithos, 2016, 245: 258-273.
DOI URL |
[113] |
DENG J, WANG Q F, SANTOSH M, et al. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, Eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274.
DOI |
[114] |
DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, Eastern China[J]. Earth-Science Reviews, 2020, 208: 103274.
DOI URL |
[115] |
YANG L Q, DENG J, WANG Q F, et al. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong peninsula, Eastern China[J]. Acta Geologica Sinica (English Edition), 2010, 80(3): 400-411.
DOI URL |
[116] | CHRISTENSEN N I. Poisson’s ratio and crustal seismology[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B2): 3139-3156. |
[117] |
ZHANG S Y, YANG L Q, HE W Y, et al. Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions: a case study at Pulang porphyry Cu-Au deposit, China[J]. Ore Geology Reviews, 2021, 139: 104509.
DOI URL |
[118] |
YANG L Q, DENG J, DILEK Y, et al. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen, China[J]. Geological Society of America Bulletin, 2015, 127(11/12): 1831-1854.
DOI URL |
[119] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[120] |
CONDIE K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37.
DOI URL |
[121] | 鄢明才, 迟清华. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社, 1997. |
[122] |
YU X F, SHAN W, XIONG Y X, et al. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: a new understanding based on high-resolution reflective seismic survey[J]. Acta Geologica Sinica (English Edition), 2018, 92(5): 1823-1840.
DOI URL |
[123] | 李文辉. 深地震反射与深地震测深联合探测及其在地壳结构研究中的应用[D]. 北京: 中国地质科学院, 2013. |
[124] | 刘子龙, 卢占武, 贾君莲, 等. 利用深地震反射剖面开展矿集区深部结构的探测: 现状与实例[J]. 地球科学, 2019, 44(6): 2084-2105. |
[125] |
WILLMAN C E, KORSCH R J, MOORE D H, et al. Crustal-scale fluid pathways and source rocks in the Victorian gold province, Australia: insights from deep seismic reflection profiles[J]. Economic Geology, 2010, 105(5): 895-915.
DOI URL |
[126] | HAALAND M L. Modelling geophysical properties of crustal igneous rocks[D]. Trondheim: Norwegian University of Science and Technology, 2017. |
[127] | 邓晋福, 肖庆辉, 苏尚国, 等. 火成岩组合与构造环境: 讨论[J]. 高校地质学报, 2007, 13(3): 392-402. |
[128] | 邓晋福, 冯艳芳, 狄永军, 等. 岩浆弧火成岩构造组合与洋陆转换[J]. 地质论评, 2015, 61(3): 473-484. |
[129] |
ZHANG J, ZHAO Z F, ZHENG Y F, et al. Postcollisional magmatism: geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China[J]. Lithos, 2010, 119(3/4): 512-536.
DOI URL |
[130] |
JIANG N, CHEN J Z, GUO J H, et al. In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China Craton: evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion[J]. Lithos, 2012, 142/143: 84-94.
DOI URL |
[131] |
MA L, JIANG S Y, DAI B Z, et al. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, Eastern China: zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2013, 162/163: 251-263.
DOI URL |
[132] |
YANG Q Y, SANTOSH M, SHEN J F, et al. Juvenile vs. recycled crust in NE China: zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula[J]. Gondwana Research, 2014, 25(4): 1445-1468.
DOI URL |
[133] |
CHENG S B, LIU Z J, WANG Q F, et al. Mineralization age and geodynamic background for the Shangjiazhuang Mo deposit in the Jiaodong gold province, China[J]. Ore Geology Reviews, 2017, 80: 876-890.
DOI URL |
[134] |
LUO X D, YANG X Y, DUAN L A, et al. Geochemical studies of Sr-Nd-Pb-Hf isotopes on the Guojialing granite suite: implications to region Au mineralization in the Jiaodong ore-cluster region[J]. Geochemistry, 2021, 81(4): 125828.
DOI URL |
[135] | 滕雪明. 华北克拉通北缘中段龙王庙岩体和上庄岩体的岩石成因及构造指示[D]. 北京: 中国地质大学(北京), 2017. |
[136] | 王立功, 祝德成, 郭瑞朋, 等. 胶西北仓上、 三山岛岩体二长花岗岩地球化学、 锆石U-Pb年龄及Lu-Hf同位素研究[J]. 地质学报, 2018, 92(10): 2081-2095. |
[137] | 董学, 李大鹏, 赵睿, 等. 胶东泽头岩体锆石U-Pb年代学和岩石成因: 对区域早白垩世晚期成岩成矿作用的指示[J]. 岩石学报, 2020, 36(5): 1501-1514. |
[138] | 郭云成, 段留安, 韩小梦, 等. 胶东前垂柳金矿区花岗岩锆石U-Pb年代学和地球化学特征及其地质意义[J]. 现代地质, 2022, 36(3): 876-897. |
[139] | 李秀章, 王立功, 李衣鑫, 等. 胶东艾山岩体二长花岗岩地球化学、 锆石U-Pb年代学及Lu-Hf同位素特征研究[J]. 现代地质, 2022, 36(1): 333-346. |
[140] | 王栋, 李红艳, 王天齐, 等. 胶东地区东部晚侏罗世花岗岩锆石U-Pb定年、 Hf同位素特征及其对金成矿构造背景的限定[J]. 岩石学报, 2022, 38(1): 41-62. |
[141] |
GUO F, FAN W M, WANG Y J, et al. Origin of Early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in Eastern China: implications for enrichment processes beneath continental collisional belt[J]. Lithos, 2004, 78(3): 291-305.
DOI URL |
[142] |
LIU S, HU R Z, GAO S, et al. Petrogenesis of Late Mesozoic mafic dykes in the Jiaodong Peninsula, eastern North China Craton and implications for the foundering of lower crust[J]. Lithos, 2009, 113(3/4): 621-639.
DOI URL |
[143] |
CAI Y C, FAN H R, SANTOSH M, et al. Evolution of the lithospheric mantle beneath the southeastern North China Craton: constraints from mafic dikes in the Jiaobei terrain[J]. Gondwana Research, 2013, 24(2): 601-621.
DOI URL |
[144] |
MA L, JIANG S Y, HOFMANN A W, et al. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: a consequence of rapid lithospheric thinning beneath the North China Craton?[J]. Geochimica et Cosmochimica Acta, 2014, 124: 250-271.
DOI URL |
[145] |
MA L, JIANG S Y, HOFMANN A W, et al. Rapid lithospheric thinning of the North China Craton: new evidence from Cretaceous mafic dikes in the Jiaodong peninsula[J]. Chemical Geology, 2016, 432: 1-15.
DOI URL |
[146] |
LI L, LI S R, SANTOSH M, et al. Dyke swarms and their role in the genesis of world-class gold deposits: insights from the Jiaodong Peninsula, China[J]. Journal of Asian Earth Sciences, 2016, 130: 2-22.
DOI URL |
[147] | 李全忠, 谢智, 陈江峰, 等. 山东胶州大西庄辉石巨晶Sr-Nd同位素组成及其源区性质[J]. 地质科学, 2009, 44(1): 193-201. |
[148] | 李全忠. 中国东部早白垩世基性岩Pb-Sr-Nd同位素特征:下地壳对其地幔源区的贡献[D]. 合肥: 中国科学技术大学, 2007. |
[149] | 梁亚运, 刘学飞, 李龚健, 等. 胶东地区脉岩成因与金成矿关系的研究: 年代学及Sr-Nd-Pb同位素的约束[J]. 地质科技情报, 2014, 33(3): 10-24. |
[150] | 梁亚运. 胶东早白垩世基性脉岩岩石成因与成矿动力学驱动[D]. 北京: 中国地质大学(北京), 2017. |
[151] |
FERNÁNDEZ-VIEJO G, CLOWES R M, WELFORD J K. Constraints on the composition of the crust and uppermost mantle in northwestern Canada: vP/vS variations along Lithoprobe’s SNorCLE transect[J]. Canadian Journal of Earth Sciences, 2005, 42(6): 1205-1222.
DOI URL |
[152] | MUSACCHIO G, MOONEY W D, LUETGERT J H, et al. Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from vP/vS ratios[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 15225-15241. |
[153] |
ZANDT G, AMMON C J. Continental crust composition constrained by measurements of crustal Poisson’s ratio[J]. Nature, 1995, 374(6518): 152-154.
DOI |
[154] | FINGER N P, KABAN M K, TESAURO M, et al. A thermo-compositional model of the cratonic lithosphere of South America[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(4): e2020GC009307. |
[155] |
SNYDER D B, HILLIER M J, KJARSGAARD B A, et al. Lithospheric architecture of the Slave craton, Northwest Canada, as determined from an interdisciplinary 3-D model[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(5): 1895-1910.
DOI URL |
[156] |
TUNINI L, JIMÉNEZ-MUNT I, FERNANDEZ M, et al. Geophysical-petrological model of the crust and upper mantle in the India-Eurasia collision zone[J]. Tectonics, 2016, 35(7): 1642-1669.
DOI URL |
[157] | 许文良, 任建国, 章军锋. 实验地球科学的前沿与发展战略[J]. 地球科学, 2022, 47(8): 2667-2678. |
[158] | FULLEA J, AFONSO J C, CONNOLLY J A D, et al. LitMod3D: an interactive 3-D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8): Q08019. |
[159] |
FULLEA J. On joint modelling of electrical conductivity and other geophysical and petrological observables to infer the structure of the lithosphere and underlying upper mantle[J]. Surveys in Geophysics, 2017, 38(5): 963-1004.
DOI |
[160] | PISTONE M, ZIBERNA L, HETÉNYI G, et al. Joint geophysical-petrological modeling on the Ivrea geophysical body beneath Valsesia, Italy: constraints on the continental lower crust[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(12): e2020GC009397. |
[161] | SOBH M, EBBING J, MANSI A H, et al. The lithospheric structure of the Saharan metacraton from 3-D integrated geophysical-petrological modeling[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2019JB018747. |
[162] |
LIU D Y, NUTMAN A P, COMPSTON W, et al. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, 20(4): 339-342.
DOI URL |
[163] |
ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25.
DOI URL |
[164] | CARLSON R W, PEARSON D G, JAMES D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1): G1001. |
[165] |
FANG W, DAI L Q, ZHENG Y F, et al. Syn-exhumation magmatism in an active continental margin above a continental subduction zone: evidence from Late Triassic mafic igneous rocks in the southeastern North China Block[J]. Geological Society of America Bulletin, 2021, 133(5/6): 1267-1282.
DOI URL |
[166] | 朱日祥, 陈凌, 吴福元, 等. 华北克拉通破坏的时间、 范围与机制[J]. 中国科学: 地球科学, 2011, 41(5): 583-592. |
[167] | 王恺, 熊熊, 周宇明, 等. 联合多种资料确定华北岩石圈三维热-流变结构: 对裂陷形成的意义[J]. 中国科学: 地球科学, 2020, 50(7): 946-961. |
[168] |
YANG L Q, DENG J, GROVES D I, et al. Metallogenic ‘factories’ and resultant highly anomalous mineral endowment on the craton margins of China[J]. Geoscience Frontiers, 2022, 13(2): 101339.
DOI URL |
[169] |
WANG T, HUANG H, ZHANG J J, et al. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 2023, 10(2): nwac283.
DOI URL |
[170] |
WANG T, XIAO W J, COLLINS W J, et al. Quantitative characterization of orogens through isotopic mapping[J]. Communications Earth and Environment, 2023, 4: 110.
DOI |
[1] | 张进江, 郑剑磊, 王海滨, 郭磊, 刘江, 戚国伟. 内蒙古大青山-盘羊山晚中生代-早新生代构造事件及其对华北北缘构造演化的启示[J]. 地学前缘, 2024, 31(1): 127-141. |
[2] | 万渝生, 董春艳, 颉颃强, 李鹏川, 刘守偈, 李源, 王宇晴, 王堃力, 刘敦一. 华北克拉通新太古代晚期岩浆作用:对构造体制和克拉通化的启示[J]. 地学前缘, 2024, 31(1): 77-94. |
[3] | 魏春景, 赵亚男, 初航. 冀北红旗营杂岩多期变质作用:古元古代俯冲/碰撞—晚古生代伸展—早中生代挤压的记录[J]. 地学前缘, 2024, 31(1): 95-110. |
[4] | 叶涛, 牛成民, 王德英, 王清斌, 代黎明, 陈安清. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J]. 地学前缘, 2022, 29(5): 133-146. |
[5] | 徐盛林, 丁伟翠, 陈宣华, 李廷栋, 韩乐乐, 刘勇, 马飞宙, 王叶. 西准噶尔晚古生代地壳组成与生长:来自Sr-Nd-Pb同位素填图的证据[J]. 地学前缘, 2022, 29(2): 261-280. |
[6] | 万渝生, 董春艳, 李鹏川, 苗培森, 王惠初, 李建荣. 五台地区高凡群形成时代新证据:锆石SHRIMP U-Pb定年[J]. 地学前缘, 2022, 29(2): 45-55. |
[7] | 邵济安, 周新华, 张履桥. 华北克拉通北缘显生宙四次底侵作用及其构造-岩浆活动与深部背景[J]. 地学前缘, 2020, 27(4): 124-134. |
[8] | 彭润民, 王建平. 华北克拉通北缘西段新元古代裂谷的确认与成矿[J]. 地学前缘, 2020, 27(2): 420-441. |
[9] | 王盟,钱加慧,张进江,张波. 龙泉关剪切带眼球状花岗质片麻岩锆石U-Pb年代学和Lu-Hf同位素特征及其地质意义[J]. 地学前缘, 2019, 26(3): 171-182. |
[10] | 刘典波,王小琳,张恒,石成龙. 华北串岭沟组凝灰岩锆石SHRIMP年龄及其地层学意义[J]. 地学前缘, 2019, 26(3): 183-189. |
[11] | 赵远方, 胡健民, 公王斌, 陈虹. 华北克拉通中部带中段古元古代构造格架与主要变形事件研究 [J]. 地学前缘, 2019, 26(2): 104-119. |
[12] | 王涛,侯增谦. 同位素填图与深部物质探测(Ⅰ):揭示岩石圈组成演变与地壳生长[J]. 地学前缘, 2018, 25(6): 1-19. |
[13] | 侯增谦,王涛. 同位素填图与深部物质探测(Ⅱ):揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25(6): 20-41. |
[14] | 陈威宇,陈衍景,李秋根,李建荣,李凯月,疏孙平,陈西,佟子达. 山西五台山滹沱群四集庄冰碛岩碎屑锆石年龄及其对大氧化事件研究意义[J]. 地学前缘, 2018, 25(5): 1-18. |
[15] | 张拴宏,赵越. 华北克拉通北部13.3~13.0亿年基性大火成岩省与稀土铌成矿事件[J]. 地学前缘, 2018, 25(5): 34-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||