地学前缘 ›› 2023, Vol. 30 ›› Issue (4): 299-316.DOI: 10.13745/j.esf.sf.2023.5.1
徐大良1,2(), 邓新1,2, 彭练红1,*(
), 田洋1,2, 金巍1,2,3, 金鑫镖1,2
收稿日期:
2023-02-24
修回日期:
2023-05-04
出版日期:
2023-07-25
发布日期:
2023-07-07
通信作者:
*彭练红(1966-),男,教授级高级工程师,从事区域大地构造研究。E-mail: 245737309@qq.com
作者简介:
徐大良(1983-),男,高级工程师,从事基础地质调查与研究工作。E-mail: xdl2003geo@163.com
基金资助:
XU Daliang1,2(), DENG Xin1,2, PENG Lianhong1,*(
), TIAN Yang1,2, JIN Wei1,2,3, JIN Xinbiao1,2
Received:
2023-02-24
Revised:
2023-05-04
Online:
2023-07-25
Published:
2023-07-07
摘要:
蕴藏在年轻造山带中的古老陆壳基底是揭示陆块早期构造事件和演化的良好载体。碰撞造山带中俯冲盘大陆基底一般位于多层次地壳结构的下部而难以在地表广泛出露,而浅表火成岩中的捕获/继承锆石可以用来示踪大陆地壳深部古老物质的组成和演化。本文报道了在大别山南缘8件中生代脉岩(140~127 Ma)中新发现捕获/继承锆石的U-Pb年龄和Hf同位素组成特征,用以探讨鲜有关注的大别山碰撞造山带俯冲盘陆壳基底的组成和演化等关键问题。捕获/继承锆石U-Pb年龄显示出显著的前寒武纪峰值年龄,记录了丰富的3.44~3.23 Ga、2.99~2.82 Ga、2.79~2.60 Ga、2.47 Ga、2.00 Ga、1.82 Ga、0.89 Ga、0.82~0.78 Ga和0.71~0.59 Ga等多阶段岩浆事件,以及3.28 Ga、2.87 Ga、2.73 Ga、2.51 Ga、1.98 Ga和0.80 Ga等六期变质事件。捕获/继承锆石的Hf同位素显示大别山南缘在太古宙发生过显著的陆壳生长,主要集中在古太古代(3.6~3.3 Ga)和新太古代(2.7~2.6 Ga),并经历了多期次的陆壳再造(3.4~3.2 Ga、3.0~2.8 Ga、2.7~2.5 Ga、2.0~1.8 Ga、0.9~0.6 Ga和0.1 Ga)。综合分析认为大别山南缘应代表了未卷入深俯冲的俯冲盘早前寒武纪陆壳基底,并至少经历了古元古代、新元古代等多期次岩浆构造热事件的叠加改造,其形成分别与Columbia超大陆和Rodinia超大陆的聚合与裂解有关。
中图分类号:
徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316.
XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes[J]. Earth Science Frontiers, 2023, 30(4): 299-316.
图1 大别山南缘区域构造简图(据文献[10,23,27-28]修编)
Fig.1 Geological sketch map showing major tectonic units of the southern Dabie orogen. Modified after [10,23,27-28].
图2 大别山南缘中生代侵入岩脉的野外和镜下特征 a-正长岩脉侵入到变质表壳岩中;b-闪长岩脉侵入到花岗质片麻岩中;c-变基性岩脉侵入到花岗质片麻岩中;d-正长岩脉;e-闪长岩脉;f-变基性岩脉。Qtz-石英;Pl-斜长石;Ab-钠长石;Hbl-角闪石;Bt-黑云母。
Fig.2 Terrain feature and microscopic characteristics of Mesozoic intrusive dykes in the southern Dabie orogen
样品号 | 点位 | 名称 | 分析 点数 | 捕获/继承锆 石数量 | 捕获/继承锆 石峰值年龄/Ma | 年龄解释 |
---|---|---|---|---|---|---|
D904-2 | 30°17'13.7″ 115°30'20.9″ | 正长岩脉 | 130 | 74 | 812、1 985、2 470、688、2 932~2 602 | 岩浆锆石 |
2 433 | 变质锆石 | |||||
D964 | 30°13'50.7″ 115°32'57.6″ | 正长岩脉 | 70 | 47 | 799、1 985、2 380、2 652 | 岩浆锆石 |
2 566、2 054、1 976 | 变质锆石 | |||||
D912 | 30°13'59.1″ 115°32'38.3″ | 正长岩脉 | 110 | 82 | 2 003、803、2 479、2 873~2 591 | 岩浆锆石 |
2 733、2 024、2 013、1 902、804、470 | 变质锆石 | |||||
D910-2 | 30°13'13.1″ 115°33'15.6″ | 闪长岩脉 | 55 | 14 | 2 004、2 455、791~724 | 岩浆锆石 |
D961-7 | 30°19'11.4″ 115°55'21.8″ | 闪长岩脉 | 70 | 47 | 1 985、2 735、2 902、2 612 | 岩浆锆石 |
2 736、2 298、1 973 | 变质锆石 | |||||
D966-6 | 30°16'54.1″ 115°29'55.8″ | 变基性岩脉 | 90 | 61 | 1 822、3 376、2 958~2 198 | 岩浆锆石 |
3 285 | 变质锆石 | |||||
D7466n | 30°16'55.9″ 115°30'36.2″ | 变基性岩脉 | 90 | 85 | 2 929、1 994、2 776~2 443、821 | 岩浆锆石 |
2 915~2 861、2 510、2 155、2 072、2 040、 1 984~1 980 | 变质锆石 | |||||
D9523-1 | 30°11'17.7″ 115°17'43.4″ | 变基性岩脉 | 105 | 67 | 2 460、813、2 007、3 287~2 822 | 岩浆锆石 |
2 502 | 变质锆石 |
表1 大别山南缘中生代脉岩中捕获/继承锆石年龄统计表
Table 1 Statistical Table of xenocrystic/inherited zircon ages of Mesozoic dykes in the southern Dabie orogen
样品号 | 点位 | 名称 | 分析 点数 | 捕获/继承锆 石数量 | 捕获/继承锆 石峰值年龄/Ma | 年龄解释 |
---|---|---|---|---|---|---|
D904-2 | 30°17'13.7″ 115°30'20.9″ | 正长岩脉 | 130 | 74 | 812、1 985、2 470、688、2 932~2 602 | 岩浆锆石 |
2 433 | 变质锆石 | |||||
D964 | 30°13'50.7″ 115°32'57.6″ | 正长岩脉 | 70 | 47 | 799、1 985、2 380、2 652 | 岩浆锆石 |
2 566、2 054、1 976 | 变质锆石 | |||||
D912 | 30°13'59.1″ 115°32'38.3″ | 正长岩脉 | 110 | 82 | 2 003、803、2 479、2 873~2 591 | 岩浆锆石 |
2 733、2 024、2 013、1 902、804、470 | 变质锆石 | |||||
D910-2 | 30°13'13.1″ 115°33'15.6″ | 闪长岩脉 | 55 | 14 | 2 004、2 455、791~724 | 岩浆锆石 |
D961-7 | 30°19'11.4″ 115°55'21.8″ | 闪长岩脉 | 70 | 47 | 1 985、2 735、2 902、2 612 | 岩浆锆石 |
2 736、2 298、1 973 | 变质锆石 | |||||
D966-6 | 30°16'54.1″ 115°29'55.8″ | 变基性岩脉 | 90 | 61 | 1 822、3 376、2 958~2 198 | 岩浆锆石 |
3 285 | 变质锆石 | |||||
D7466n | 30°16'55.9″ 115°30'36.2″ | 变基性岩脉 | 90 | 85 | 2 929、1 994、2 776~2 443、821 | 岩浆锆石 |
2 915~2 861、2 510、2 155、2 072、2 040、 1 984~1 980 | 变质锆石 | |||||
D9523-1 | 30°11'17.7″ 115°17'43.4″ | 变基性岩脉 | 105 | 67 | 2 460、813、2 007、3 287~2 822 | 岩浆锆石 |
2 502 | 变质锆石 |
图3 大别山南缘中生代侵入岩脉代表性锆石阴极发光图像 数字为锆石表观年龄和εHf(t)值。
Fig.3 Cathodoluminescence (CL) images for representative zircons from Mesozoic intrusive dykes in the southern Dabie orogen
图4 大别山南缘中生代侵入岩脉锆石U-Pb年龄图(a-h)和年龄频谱直方图(A-H)
Fig.4 Zircon U-Pb ages (a-h) and zircon age histograms (A-H) of Mesozoic intrusive dykes in the southern Dabie orogen
图5 大别山南缘锆石U-Pb年龄和Hf同位素特征对比图 数据来源:大别山核部捕获/继承锆石[33],大别山南缘碎屑锆石[4-5,22],大别山南缘前寒武纪岩浆岩[18,23,27-28,34]。
Fig.5 Comparison of zircon U-Pb age and Hf isotope characteristics in the southern Dabie orogen. Xenocrystic/inherited zircon data from [33]; detrital zircon data from [4-5,22]; Precambrian igneous rock data from [18,23,27-28,34].
图6 大别山南缘锆石Hf同位素二阶段模式年龄分布和地壳生长曲线图 早前寒武纪地壳生长曲线分别依据碎屑锆石[5]和捕获/继承锆石Hf同位素亏损地幔二阶段模式年龄绘制。
Fig.6 Two-stage zircon Hf model age (TDM2) distribution and crustal growth curve showing two main crustal growth periods (3.6-3.3 Ga and 2.7-2.6 Ga) in the southern Dabie orogen
[1] |
GRIFFIN W L, BELOUSOVA E A, SHEE S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3): 231-282.
DOI URL |
[2] |
BELOUSOVA E A, KOSTITSYN Y A, GRIFFIN W L, et al. The growth of the continental crust: constraints from zircon Hf-isotope data[J]. Lithos, 2010, 119(3): 457-466.
DOI URL |
[3] |
ZHENG J P, GRIFFIN W L, O’REILLY S Y, et al. Widespread Archean basement beneath the Yangtze Craton[J]. Geology, 2006, 34(6): 417-420.
DOI URL |
[4] | 李俊辉, 于洋, 韦龙猛, 等. 大别山造山带宿松岩群锆石U-Pb年龄和Nd同位素特征: 宿松地体物源和属性[J]. 地球科学与环境学报, 2016, 38(1): 21-33. |
[5] | 刘超然, 徐大良, 赵小明, 等. 南大别蕲春构造混杂岩带中变质沉积岩源区和时代限定[J]. 华南地质, 2021, 37(1): 1-28. |
[6] |
WANG K, DONG S W, YAO W H, et al. Xenocrystic/inherited Precambrian zircons entrained within igneous rocks from eastern South China: tracking unexposed ancient crust and implications for late Paleoproterozoic orogenesis[J]. Gondwana Research, 2020, 84: 194-210.
DOI URL |
[7] | WANG K, DONG S W, YAO W H, et al. Nature and evolution of Pre-Neoproterozoic continental crust in South China: a review and tectonic implications[J]. Acta Gelogica Sinica(English Edition), 2020, 94(6): 1731-1756. |
[8] | 游振东, 索书田, 韩郁菁, 等. 年轻褶皱带内前寒武纪基底的地质特征[C]// 中国地质科学院地质研究所文集(25). 北京: 地质出版社, 1993: 36-45. |
[9] | 徐树桐, 刘贻灿, 江来利, 等. 大别山造山带的构造几何学和运动学[M]. 合肥: 中国科学技术大学出版社, 2002: 53-68. |
[10] | 《大别山超高压变质作用与碰撞造山动力学》编写组. 大别山超高压变质作用与碰撞造山动力学[M]. 北京: 科学出版社, 2005: 1-209. |
[11] |
ZHENG Y F, ZHOU J B, WU Y B, et al. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction[J]. International Geology Review, 2005, 47(8): 851-871.
DOI URL |
[12] |
OKAY A L, SENGöR A M C. Tectonics of an ultrahigh-pressure metamorphic terrane: the Dabie Shan/Tongbai Shan orogen, China[J]. Tectonics, 1993, 12(6): 1320-1334.
DOI URL |
[13] |
HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 215-230.
DOI URL |
[14] |
LIU Y C, LI S G, XU S T. Zircon SHRIMP U-Pb dating for gneiss in northern Dabie high T/p metamorphic zone, central China: implication for decoupling within subducted continental crust[J]. Lithos, 2007, 96: 170-185.
DOI URL |
[15] | 李远, 刘贻灿, 杨阳, 等. 大别山宿松变质带花岗片麻岩的锆石U-Pb年龄和Hf同位素成分[J]. 地球科学与环境学报, 2018, 40(1): 61-75. |
[16] | 江来利, 吴维平, 刘贻灿, 等. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义[J]. 岩石学报, 2003, 19(3): 497-505. |
[17] |
XUE H M, DONG S W, JIAN P. Zircon U-Pb SHRIMP ages of weakly to unmetamorphosed granitoids of the Yangtze basement outcrop in Dabieshan, central China[J]. Journal of Asian Earth Sciences, 2006, 27: 779-787.
DOI URL |
[18] | 孙洋, 马昌前, 张超. 大别山鲁家寨花岗岩地球化学、锆石年代学和Hf同位素特征: 扬子克拉通北东缘新元古代岩浆活动证据[J]. 地学前缘, 2011, 18(2): 85-99. |
[19] | 吴元保, 陈道公, 夏群科, 等. 北大别黄土岭麻粒岩锆石U-Pb离子探针定年[J]. 岩石学报, 2002, 18(3): 378-382. |
[20] |
WU Y B, ZHENG Y F, GAO S, et al. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen[J]. Lithos, 2008, 101: 308-322.
DOI URL |
[21] | 陈道公, DELOULE E, 夏群科, 等. 大别山双河超高压榴辉岩中变质锆石: 离子探针和微区结构研究[J]. 岩石学报, 2002, 18(3): 369-377. |
[22] | 石永红, 王次松, 康涛, 等. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究[J]. 岩石学报, 2012, 28(10): 3389-3402. |
[23] | 徐大良, 彭练红, 邓新, 等. 大别山南缘翁门杂岩中太古代-古元古代岩浆构造热事件的识别及其地质意义[J]. 地球科学, 2023(待刊). |
[24] |
王涛, 侯增谦. 同位素填图与深部物质探测(I): 揭示岩石圈组成演变与地壳生长[J]. 地学前缘, 2018, 25(6): 1-19.
DOI |
[25] |
鲁麟, 梁婷, 任文琴, 等. 江西崇义淘西坑钨矿区煌斑岩LA-ICP-MS锆石U-Pb同位素定年及地质意义[J]. 地学前缘, 2017, 24(5): 93-108.
DOI |
[26] |
JIANG C H, WANG X L, WANG S, et al. Paleoproterozoic basement beneath the Eastern Cathaysia Block revealed by zircon xenocrysts from late Mesozoic volcanics[J]. Precambrian Research, 2020, 350: 105922.
DOI URL |
[27] |
WANG X, GUO J W, TAO W, et al. Paleoproterozoic tectonic evolution of the Yangtze Craton: evidence from magmatism and sedimentation in the Susong area, South China[J]. Precambrian Research, 2021, 347: 105834.
DOI URL |
[28] |
ZHAO T, ZHU G, WU Q, et al. Evidence for discrete Archean microcontinents in the Yangtze Craton[J]. Precambrian Research, 2021, 361: 106259.
DOI URL |
[29] | 湖北省地质矿产局. 湖北省区域地质志[M]. 北京: 地质出版社, 1990: 1-705. |
[30] | LI S G, HE Y S, WANG S J. Process and mechanism of mountain-root removal of the Dabie Orogen: constraints from geochronology and geochemistry of post-collisional igneous rocks[J]. Chinese Science Bulletin, 2013, 58: 2-3. |
[31] | 赵子福, 郑永飞, 戴立群. 大陆碰撞造山带花岗岩中继承锆石成因与岩浆源区性质[J]. 科学通报, 2013, 58(23): 2285-2289. |
[32] |
LIU Y S, HU Z C, GAO S, et al. In situanalysis of Major and Trace elements of anhydrous minerals by LA-ICP-MS without applying an internal Standard[J]. Chemical Geology, 2007, 257(1/2): 34-43.
DOI URL |
[33] |
ZHAO Z F, LIU Z B, CHEN Q. Melting of subducted continental crust: geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China[J]. Journal of Asian Earth Sciences, 2017, 145: 260-277.
DOI URL |
[34] | XU D L, PENG L H, DENG X, et al. Zircon U-Pb age evidence for the Mesoarchean (2.9-3.2 Ga) crustal remnant in the Southern Dabie Orogen, South China[J]. China Geology, 2023, 6(1): 174-176. |
[35] | 赵子福, 郑永飞, 魏春生, 等. 大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究[J]. 岩石学报, 2004, 20(5): 1151-1174. |
[36] |
WANG K, ZHAO T Y, ZHANG S H. Discovery of the oldest (ca. 2.87 Ga) granitic gneisses in the Qinling-Dabie Orogenic Belt: direct evidence for Mesoarchean crust[J]. China Geology, 2023, doi: 10.31035/cg2022084.
DOI |
[37] | JIAO W F, WU Y B, YANG S H, et al. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China Series D: Earth Sciences, 2009, 52: 1-2. |
[38] |
GAO S, YANG J, ZHOU L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 2011, 311(2): 153-182.
DOI URL |
[39] |
CHEN K, GAO S, WU Y B, et al. 2.6-2.7 Ga crustal growth in Yangtze craton, South China[J]. Precambrian Research, 2013, 224: 472-490.
DOI URL |
[40] |
GUO J L, GAO S, WU Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242: 82-95.
DOI URL |
[41] |
GUO J L, WU Y B, GAO S, et al. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze craton, South China: implications for late Archean tectonics[J]. Precambrian Research, 2015, 270: 246-266.
DOI URL |
[42] |
LI L M, LIN S F, DONALD W D, et al. Geochronology and geochemistry of igneous rocks from the Kongling terrane: implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block[J]. Precambrian Research, 2014, 255: 30-47.
DOI URL |
[43] | 邱啸飞, 陈伟雄, 徐大良, 等. 扬子陆核崆岭杂岩太古宙地壳演化[J]. 华南地质, 2022, 38(1): 56-66. |
[44] | 涂城, 张少兵, 苏克, 等. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素:对扬子克拉通统一结晶基底的限制[J]. 地球科学, 2021, 46(5): 1630-1643. |
[45] |
QIU X F, TONG X R, JIANG T, et al. Reworking of Hadean continental crust in the Dabie orogen: evidence from the Muzidian granitic gneisses[J]. Gondwana Research, 2021, 89: 119-130.
DOI URL |
[46] |
ZHANG L, LIU H J, ZHANG S B, et al. Tectonic switch of the north Yangtze Craton at ca. 2.0 Ga: implications for its position in Columbia supercontinent[J]. Precambrian Research, 2022, 381: 106842.
DOI URL |
[47] |
YUAN X Y, NIU M L, CAI Q R, et al. The nature of Paleoproterozoic basement in the northern Yangtze and its geological implication[J]. Precambrian Research, 2022, 378: 106761.
DOI URL |
[48] | QIU Y M, GAO S, MCNAUGHTON N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Tectonics, 2000, 28: 11-14. |
[49] |
WEI Y X, ZHOU W X, HU Z X, et al. Geochronology and geochemistry of Archean TTG and tremolite schist xenoliths in Yemadong complex: evidence for ≥3.0 Ga Archean continental crust in Kongling high-grade metamorphic terrane, Yangtze Craton, China[J]. Minerals, 2019, 9: 1-22.
DOI URL |
[50] | JIANG X F, PENG S B, WANG Q. Precambrian tectonic evolution of southern Kongling terrane, Yangtze Craton: constraint from the detrital zircon U-Pb geochronology of the metasedimentary rocks[J]. Earth and Space Science, 2022, 9: 1-15. |
[51] | CHEN Q, SUN M, ZHAO G C, et al. Episodic crustal growth and reworking of the Yudongzi terrane, South China: constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites[J]. Lithos, 2019, 326: 1-18. |
[52] | 聂峰, 石永红, 张忠宝, 等. 安徽北部郯庐断裂两侧基底岩石年龄及对郯庐断裂初始开启时间的限定[J]. 科学通报, 2015, 60(24): 2315-2326. |
[53] | YIN C Q, LIN S F, DONALD W D, et al. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 2013, 182-183: 200-210. |
[54] |
WANG Z J, WANG J, DENG Q, et al. Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: evidence from the Lengshui Complex, South China[J]. Precambrian Research, 2015, 263: 157-173.
DOI URL |
[55] |
WANG K, DONG S W. New insights into Paleoproterozoic tectonics of the Yangtze Block in the context of early Nuna assembly: possible collisional granitic magmatism in the Zhongxiang Complex, South China[J]. Precambrian Research, 2019, 334: 105452.
DOI URL |
[56] | 尹须伟, 徐扬, 杨坤光, 等. 红安造山带南缘古元古代杂岩体的发现对扬子板块古元古代造山事件的约束[J]. 岩石学报, 2021, 37(7): 2123-2161. |
[57] |
ZHANG L J, MA C Q, WANG L X, et al. Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze Block and its geological significance[J]. China Science Bulletin, 2011, 56: 306-318.
DOI URL |
[58] |
PENG M, WU Y B, GAO S, et al. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications[J]. Gondwana Research, 2012, 22: 140-151.
DOI URL |
[59] |
CHEN Z H, XING G F. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China[J]. Precambrian Research, 2016, 279: 81-90.
DOI URL |
[60] |
DONG Y P, SUN S S, SANTOSH M, et al. Central China Orogenic Belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194.
DOI URL |
[61] |
张继彪, 丁孝忠, 刘燕学. 扬子西缘洋岛型与岛弧型火山岩岩石成因与构造意义: 从板内裂谷到洋-陆俯冲[J]. 地学前缘, 2021, 28(4): 250-266.
DOI |
[62] |
ZHAO J H, ASIMOW P D. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc- and MORB-like dike swarms in South China[J]. Journal of Petrology, 2018, 9: 1-34.
DOI URL |
[63] |
刘磊鑫, 李江海, 马昌明. 扬子板块、澳大利亚板块、印度板块在新元古代晚期(750-540 Ma)古板块再造: 来自古地磁制约[J]. 地学前缘, 2023, 30(2): 154-162.
DOI |
[64] |
SHI Y R, LIU D Y, ZHANG Z Q, et al. SHRIMP zircon U-Pb dating of gabbro and granite from the Huashan ophiolite, Qinling orogenic belt, China: Neoproterozoic suture on the northern margin of the Yangtze Craton[J]. Acta Geologica Sinica, 2007, 81: 239-243.
DOI URL |
[65] |
WU P, ZHANG S B, ZHENG Y F, et al. Amalgamation of South China into Rodinia during the Grenvillian accretionary orogeny: geochemical evidence from Early Neoproterozoic igneous rocks in the northern margin of the South China Block[J]. Precambrian Research, 2019, 321: 221-243.
DOI URL |
[66] |
ZHANG S B, ZHENG Y F, ZHAO Z F, et al. The extremely enriched mantle beneath the Yangtze Craton in the Neoproterozoic: constraints from the Qichun pyroxenite[J]. Precambrian Research, 2016, 276: 194-210.
DOI URL |
[67] |
HU J, LIU X C, QU W, et al. Mid-Neoproterozoic amphibolite facies metamorphism at the northern margin of the Yangtze craton[J]. Precambrian Research, 2019, 326, 333-343.
DOI URL |
[68] |
WANG M X, WANG C Y, SUN Y L. Mantle source, magma differentiation and sulfide saturation of the -637Ma Zhouan mafic-ultramafic intrusion in the northern margin of the Yangtze Block, Central China[J]. Precambrian Research, 2013, 228: 206-222.
DOI URL |
[69] |
WANG R R, XU Z Q, SANTOSH M, et al. Late Neoproterozoic magmatism in South Qinling, Central China: geochemistry, zircon U-Pb-Lu-Hf isotopes and tectonic implications[J]. Tectonophysics, 2016, 683: 43-61.
DOI URL |
[70] | 第五春荣, 孙勇, 王倩. 华北克拉通地壳生长和演化: 来自现代河流碎屑锆石Hf同位素组成的启示[J]. 岩石学报, 2012, 28(11): 3520-3530. |
[71] | LI S G, HUANG F, ZHOU H Y, et al. U-Pb isotopic compositions of the ultrahigh pressure metamorphic (UHPM) rocks from Shuanghe and gneisses from Northern Dabie zone in the Dabie Mountains, central China: constraint on the exhumation mechanismof UHPM rocks[J]. Sicence China (Series D), 2003, 46: 200-209. |
[72] | LIU Y C, LI S G. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: evidence from the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 2008, 53: 3105-3119. |
[73] |
ZHAO Z F, ZHENG Y F, WEI C S, et al. Origin of postcollisional magmatic rocks in the Dabie orogen: implications for crust-mantle interaction and crustal architecture[J]. Lithos, 2011, 126: 99-114.
DOI URL |
[74] | 李三忠, 张国伟, 董树文, 等. 大别山髙压-超高压岩石折返与扬子北缘构造变形的关系[J]. 岩石学报, 2010, 26(12): 3549-3562. |
[75] |
YUAN X C, KLEMPERER S L, TENG W B, et al. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling[J]. Geology, 2003, 31: 435-438.
DOI URL |
[76] | DONG S W, GAO R, CONG B L, et al. Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling[J]. Terra Nova, 2004, 6: 319-324. |
[77] | 侯爵, 徐涛, 吕庆田, 等. 华南东北部中生代铜金钨大规模成矿的深部背景: 来自英山-常山宽角地震资料的约束[J]. 中国科学: 地球科学, 2022, 52(11): 2305-2322. |
[78] |
FAURE M, LIN W, SCHARER U, et al. Insight into continental subduction and exhumation of UHP rocks from structural and radiometric data of the Dabieshan (E. China)[J]. Lithos, 2003, 70: 213-241.
DOI URL |
[1] | 朱茂林, 刘震, 刘惠民, 张鹏飞, 赵振. 东营凹陷北带基岩风化壳储层发育特征及控制因素[J]. 地学前缘, 2024, 31(3): 324-336. |
[2] | 王瑞敏, 沈冰. 条带状铁建造消失之谜:铁-硅互层机制研究进展与展望[J]. 地学前缘, 2024, 31(1): 111-126. |
[3] | 马力, 谢逸豪, 吴耿, 蒋宏忱. 地热生境中硫循环微生物研究进展——对早期地球生命过程的启示[J]. 地学前缘, 2023, 30(2): 479-494. |
[4] | 张嘉玮, 陈建书, 吴滔, 叶太平, 陈明华, 代雅然, 邓小杰, 牟军. 湘黔桂新元古代拉伸纪晚期地层年代格架对比及关键地质事件初探[J]. 地学前缘, 2020, 27(4): 1-16. |
[5] | 胡瑞忠, 陈伟, 毕献武, 付山岭, 尹润生, 肖加飞. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约[J]. 地学前缘, 2020, 27(2): 137-150. |
[6] | 李三忠,索艳慧,刘博,刘永江,李玺瑶,赵淑娟,朱俊江,王光增,张国伟. 微板块构造理论:全球洋内与陆缘微地块研究的启示(附对该文的审稿意见)[J]. 地学前缘, 2018, 25(5): 323-356. |
[7] | 侯恩刚,陈耀飞,高金汉,王根厚. 西藏尼玛县牛山日干配错组沉积岩中碎屑锆石的U-Pb定年及意义[J]. 地学前缘, 2018, 25(1): 197-209. |
[8] | 陆松年,郝国杰,相振群. 前寒武纪重大地质事件[J]. 地学前缘, 2016, 23(6): 140-155. |
[9] | 王伟,刘树文,白翔,郭荣荣. 前寒武纪地球动力学(Ⅷ):华北克拉通太古宙末期地壳生长方式[J]. 地学前缘, 2015, 22(6): 109-124. |
[10] | 刘树文,王伟,白翔. 前寒武纪地球动力学(Ⅶ):早期大陆地壳的形成与演化[J]. 地学前缘, 2015, 22(6): 97-108. |
[11] | 李三忠,李玺瑶,戴黎明. 前寒武纪地球动力学(Ⅵ):华北克拉通形成[J]. 地学前缘, 2015, 22(6): 77-96. |
[12] | 李三忠,郭玲莉,戴黎明. 前寒武纪地球动力学(Ⅴ):板块构造起源[J]. 地学前缘, 2015, 22(6): 65-76. |
[13] | 李三忠,戴黎明,张臻. 前寒武纪地球动力学(Ⅳ):前板块体制[J]. 地学前缘, 2015, 22(6): 46-64. |
[14] | 李三忠,戴黎明,张臻. 前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征[J]. 地学前缘, 2015, 22(6): 27-45. |
[15] | 李三忠,张臻,孙文军,戴黎明,张国伟. 前寒武纪地球动力学(Ⅰ):从宇宙环境到原始地球[J]. 地学前缘, 2015, 22(6): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||