地学前缘 ›› 2020, Vol. 27 ›› Issue (2): 137-150.DOI: 10.13745/j.esf.sf.2020.3.15
胡瑞忠1,2(), 陈伟1, 毕献武1, 付山岭1, 尹润生1, 肖加飞1
收稿日期:
2020-01-05
修回日期:
2020-02-10
出版日期:
2020-03-25
发布日期:
2020-03-25
作者简介:
胡瑞忠(1958—),男,研究员,主要从事矿床学和矿床地球化学研究。E-mail: huruizhong@vip.gyig.ac.cn
基金资助:
HU Ruizhong1,2(), CHEN Wei1, BI Xianwu1, FU Shanling1, YIN Runsheng1, XIAO Jiafei1
Received:
2020-01-05
Revised:
2020-02-10
Online:
2020-03-25
Published:
2020-03-25
摘要:
大面积低温成矿主要见于扬子克拉通和美国中西部,且扬子克拉通比美国中西部具有更多的矿床类型,在全球极具特色,是建立大面积低温成矿理论的理想区域。前人对扬子克拉通中生代大面积低温矿作用进行了较系统的研究,在矿床地质特征、矿床物质组成、成矿流体特征、成矿时代和成矿动力学背景等方面,已取得重要进展。进一步的研究表明,扬子低温成矿域不同矿种的矿床组合(Pb-Zn、Au-Hg-Sb-As、Au-Sb等)在地理位置上是分区产出的,而这种不同矿床组合的分区对应着不同类型的前寒武纪基底。初步证据显示,扬子克拉通前寒武纪基底(含寒武纪)富含低温成矿元素,深循环流体浸取基底岩石中的成矿元素发生了大面积低温成矿,而基底岩石成矿元素组成的空间不均一分布则控制了不同区域矿床组合的差异。应指出的是,由于成矿金属元素来源示踪的复杂性,大面积低温成矿的物质基础尚需更系统的研究进一步证实。
中图分类号:
胡瑞忠, 陈伟, 毕献武, 付山岭, 尹润生, 肖加飞. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约[J]. 地学前缘, 2020, 27(2): 137-150.
HU Ruizhong, CHEN Wei, BI Xianwu, FU Shanling, YIN Runsheng, XIAO Jiafei. Control of the Precambrian basement on the formation of the Mesozoic large-scale low-temperature mineralization in the Yangtze Craton[J]. Earth Science Frontiers, 2020, 27(2): 137-150.
图1 扬子克拉通前寒武纪基底和中生代低温矿床分布略图(据文献[46,47]修改)
Fig. 1 Simplified geological map showing the distributions of Precambrian basement rocks and Mesozoic low-temperature deposits in the Yangtze Craton. Modified form [46-47].
图2 澳大利亚Victorian金成矿省的物源受基底岩石控制(据文献[74])
Fig. 2 A cartoon showing the basement controls of metal sources in the Victorian gold metallogenic province, Australia. Adapted from [74].
图3 扬子克拉通不同区域前寒武纪地层层序表(据文献[46]修改)
Fig. 3 Stratigraphic correlations of Precambrian strata in different domains of the Yangtze Craton. Modified from [46].
图4 扬子克拉通早寒武世岩相古地理、黑色页岩(过渡相)及中生代低温矿床分布略图(底图据文献[92])
Fig. 4 Simplified litho-paleogeographic map of the Early Cambrian in the Yangtze Craton, and the distributions of black shales and Mesozoic low-temperature deposits. Modified from [92].
图5 锡矿山超大型锑矿产在泥盆系地层层间破碎带中(据文献[3])
Fig. 5 Geological map and cross-section of the Xikuangshan giant Sb deposit, showing that the ore bodies are located in interlayer fracture zones. Adapted from [3].
图7 扬子克拉通印支期(230~200 Ma)大规模低温成矿动力学模型(据文献[3]修改) MetF—雨水成因流体; BriF—卤水成因流体; MagF—岩浆成因流体。
Fig. 7 A proposed metallogenic model for the Indosinian (230-200 Ma) large-scale low-temperature mineralizationin the Yangtze Craton. Modified from [3].
[1] | 涂光炽. 我国西南地区两个别具一格的成矿带(域)[J]. 矿物岩石地球化学通报, 2002, 21(1): 1-2. |
[2] | 赵振华, 涂光炽. 中国超大型矿床(II)[M]. 北京: 科学出版社, 2003. |
[3] |
HU R Z, FU S L, HUANG Y, et al. The giant South China Mesozoic low-temperature metallogenic domain: reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137: 9-34.
DOI URL |
[4] | 李朝阳. 中国低温热液矿床集中分布区的一些地质特点[J]. 地学前缘, 1999, 6(1): 164-171. |
[5] | SAWKINS F G. Metal deposits in relation to plate tectonic[M]. New York: Springer-Verlag, 1984:1-325. |
[6] |
TU G Z. Some problems pertaining to surperlarge ore deposits of China[J]. Episodes, 1995, 18(1/2): 83-86.
DOI URL |
[7] | MISRA K C. Understanding mineral deposits[M]. Dordrecht: Springer Netherlands, 2000:1-845. |
[8] |
LEACH D, BRADLEY D, LEWCHUK M, et al. Mississippi valley-type lead-zinc deposits through geological time: implications from recent age-dating research[J]. Mineralium Deposita, 2001, 36(8): 711-740.
DOI URL |
[9] | THIART C, De WIT M J. Fingerprinting the metal endowment of early continental crust to test for secular changes in global mineralization[M]// KESLER S E, OHMOTO H. Evolution of early earth’s atmosphere, hydrosphere, and biosphere: constraints from ore deposits. New York: Geological Society of America, 2006. |
[10] |
WENG Z H, JOWITT S M, MUDD G M, et al. A detailed assessment of global rare earth element resources: opportunities and challenges[J]. Economic Geology, 2015, 110(8): 1925-1952.
DOI URL |
[11] | 翟裕生. 区域成矿学[M]. 北京: 地质出版社, 1999. |
[12] | 涂光炽. 低温地球化学[M]. 北京: 科学出版社, 1998. |
[13] | 涂光炽. 中国超大型矿床(I)[M]. 北京: 科学出版社, 2000. |
[14] | 马东升, 潘家永, 卢新卫. 湘西北—湘中地区金-锑矿床中-低温流体成矿作用的地球化学成因指示[J]. 南京大学学报(自然科学版), 2002, 38(3): 435-445. |
[15] | 黄智龙, 陈进, 韩润生, 等. 云南会泽超大型铅锌矿床地球化学及成因: 兼论峨眉山玄武岩与铅锌成矿的关系[M]. 北京: 地质出版社, 2004. |
[16] | 毛景文, 胡瑞忠, 陈毓川, 等. 大规模成矿作用与大型矿集区(下册)[M]. 北京: 地质出版社, 2006. |
[17] | 胡瑞忠, 苏文超, 毕献武, 等. 滇黔桂三角区微细浸染型金矿床成矿热液一种可能的演化途径:年代学证据[J]. 矿物学报, 1995, 15(2): 144-149. |
[18] | 胡瑞忠, 彭建堂, 马东升, 等. 扬子地块西南缘大面积低温成矿时代[J]. 矿床地质, 2007, 26(6): 583-596. |
[19] | 胡瑞忠, 毛景文, 华仁民, 等. 华南陆块陆内成矿作用[M]. 北京: 科学出版社, 2015: 1-903. |
[20] |
HU R Z, SU W C, BI X W, et al. Geology and geochemistry of Carlin-type gold deposits in China[J]. Mineralium Deposita, 2002, 37(3/4): 378-392.
DOI URL |
[21] | HU R Z, FU S L, XIAO J F. Major scientific problems on low-temperature metallogenesis in South China[J]. Acta Petrologica Sinica, 2016, 32: 3239-3251. |
[22] | HOFSTRA A H, EMSBO P, CHRISTIANSEN W D, et al. Source of ore fluids in carlin-type gold deposits, China: implications for genetic models[M]// MAO J W, BIERLEIN F P. Mineral deposit research: meeting the global challenge. Berlin, Heidelberg: Springer, 2005: 533-536. |
[23] |
ZHOU C X, WEI C S, GUO J Y, et al. The source of metals in the Qilinchang Zn-Pb deposit, Northeastern Yunnan, China: Pb-Sr isotope constraints[J]. Economic Geology, 2001, 96(3): 583-598.
DOI URL |
[24] |
ZHOU J X, HUANG Z L, ZHOU M F, et al. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China[J]. Ore Geology Reviews, 2014, 58: 41-54.
DOI URL |
[25] |
ZHOU J X, LUO K, LI B, et al. Geological and isotopic constraints on the origin of the Anle carbonate-hosted Zn-Pb deposit in Northwestern Yunnan Province, SW China[J]. Ore Geology Reviews, 2016, 74: 88-100.
DOI URL |
[26] |
PENG J T, HU R Z, BURNARD P G. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer[J]. Chemical Geology, 2003, 200(1/2): 129-136.
DOI URL |
[27] |
SU W C, XIA B, ZHANG H T, et al. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and pro-cesses of ore formation[J]. Ore Geology Reviews, 2008, 33(3/4): 667-679.
DOI URL |
[28] |
SU W C, HU R Z, XIA B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258(3/4): 269-274.
DOI URL |
[29] |
SU W C, HEINRICH C A, PETTKE T, et al. Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids[J]. Economic Geology, 2009, 104(1): 73-93.
DOI URL |
[30] |
SU W C, ZHANG H T, HU R Z, et al. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes[J]. Mineralium Deposita, 2012, 47(6): 653-662.
DOI URL |
[31] |
GU X X, ZHANG Y M, LI B H, et al. Hydrocarbon- and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang Basin, South China[J]. Mineralium Deposita, 2012, 47(6): 663-682.
DOI URL |
[32] |
HU R Z, ZHOU M F. Multiple Mesozoic mineralization events in South China: an introduction to the thematic issue[J]. Mineralium Deposita, 2012, 47(6): 579-588.
DOI URL |
[33] |
MAO J W, CHENG Y B, CHEN M H, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294.
DOI URL |
[34] |
CHEN M H, ZHANG Z Q, SANTOSH M, et al. The Carlin-type gold deposits of the “Golden Triangle” of SW China: Pb and S isotopic constraints for the ore genesis[J]. Journal of Asian Earth Sciences, 2015, 103: 115-128.
DOI URL |
[35] |
CHEN M H, MAO J W, LI C, et al. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi “Golden Triangle”, Southwestern China[J]. Ore Geology Reviews, 2015, 64: 316-327.
DOI URL |
[36] |
ZHANG C Q, WU Y, HOU L, et al. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb Triangle, Southwest China: implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang Deposit[J]. Journal of Asian Earth Sciences, 2015, 103: 103-114.
DOI URL |
[37] | FU S L, HU R Z, CHEN Y W, et al. Chronology of the Longshan Au-Sb deposit in central Hunan Province: constraints from pyrite Re-Os and zircon U-Th/He isotopic dating[J]. Acta Petrologica Sinica, 2016, 32: 3507-3517. |
[38] |
FU S L, HU R Z, YIN R S, et al. Mercury and in-situ sulfur isotopes as source constraints on ore materials for the world’s largest Sb deposit (Xikuangshan, Southern China)[J]. Mineralium Deposita, 2019,doi. 10.1007/s00126-019-00940-1.
DOI |
[39] |
HOU L, PENG H J, DING J, et al. Textures and in-situ chemical and isotopic analyses of pyrite, Huijiabao Trend, Youjiang Basin, China: implications for paragenesis and source of sulfur[J]. Economic Geology, 2016, 111(2): 331-353.
DOI URL |
[40] | PI Q H, HU R Z, PENG K Q, et al. Geochronology of the Zhesang gold deposit and mafic rock in Funing County of Yunnan Province, with special reference to the dynamic background of Carlin-type gold deposits in the Dian-Qian-Gui region[J]. Acta Petrologica Sinica, 2016, 32: 3331-3342. |
[41] |
PI Q H, HU R Z, XIONG B, et al. In-situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China[J]. Mineralium Deposita, 2017, 52(8): 1179-1190.
DOI URL |
[42] |
ZHU J J, HU R Z, RICHARDS J P, et al. No genetic link between Late Cretaceous felsic dikes and Carlin-type Au deposits in the Youjiang Basin, Southwest China[J]. Ore Geology Reviews, 2017, 84: 328-337.
DOI URL |
[43] |
WANG Q F, GROVES D. Carlin-style gold deposits, Youjiang Basin, China: tectono-thermal and structural analogues of the Carlin-type gold deposits, Nevada, USA[J]. Mineralium Deposita, 2018, 53(7): 909-918.
DOI URL |
[44] |
XIE Z J, XIA Y, CLINE J S, et al. Magmatic origin for sediment-hosted Au deposits, Guizhou Province, China: in situ chemistry and sulfur isotope composition of pyrites, Shuiyindong and Jinfeng Deposits[J]. Economic Geology, 2018, 113(7): 1627-1652.
DOI URL |
[45] |
YAN J, HU R Z, LIU S, et al. NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China: new insights into the origin and evolution of Au-bearing fluids[J]. Ore Geology Reviews, 2018, 92: 29-41.
DOI URL |
[46] |
ZHAO G C, CAWOOD A. Precambrian geology of China[J]. Precambrian Research, 2012, 222/223: 13-54.
DOI URL |
[47] |
HU R Z, CHEN W T, XU D R, et al. Reviews and new metallogenic models of mineral deposits in South China: an introduction[J]. Journal of Asian Earth Sciences, 2017, 137: 1-8.
DOI URL |
[48] | 翟裕生. 矿床学的百年回顾与发展趋势[J]. 地球科学进展, 2001, 16(5): 719-725. |
[49] |
SHANKS W C III, BISCHOFF J L. Ore transport and deposition in the Red Sea geothermal system: a geochemical model[J]. Geochimica et Cosmochimica Acta, 1977, 41(10): 1507-1519.
DOI URL |
[50] | MEYER C. Ore-forming processes in geologic history[J]. Economic Geology, 1981, 75: 6-41. |
[51] | MITCHELL A H, GARSON M S. Mineral deposits and tectonic settings[M]. London: Academic Press, 1981. |
[52] | NALDRETT A J. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. New York: Springer, 2004:1-725. |
[53] | CHEN Y J, ZHAI M G, JIANG S Y. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent[J]. Acta Petrologica Sinica, 2009, 25: 2695-2726. |
[54] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[55] |
HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
DOI URL |
[56] |
RICHARDS J P, SENGÖR A M C. Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation?[J]. Geology, 2017, 45(7): 591-594.
DOI URL |
[57] | HU R Z, LIU J M, ZHAI M G. Mineral resources science in China: a roadmap to 2050[M]. Berlin, Heidelberg: Springer, 2010. |
[58] |
SKIRROW R G, DAVIDSON G J. A special issue devoted to Proterozoic iron oxide Cu-Au-(U) and gold mineral systems of the Gawler Craton: preface[J]. Economic Geology, 2007, 102(8): 1373-1375.
DOI URL |
[59] | CORRIVVEAU L. Iron oxide copper-gold deposits: a Canadian perspective[C]// GOODFELLOW W D. Mineral deposits of Canada: a synconfproc of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007 (5): 307-328. |
[60] |
GROVES D I, BIERLEIN F P, MEINERT L D, et al. Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits[J]. Economic Geology, 2010, 105(3): 641-654.
DOI URL |
[61] |
ZHOU M F, ARNDT N T, MALPAS J, et al. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 2008, 103(3/4): 352-368.
DOI URL |
[62] | ZHAI M G. Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits, 2010, 29: 24-36. |
[63] | 陈毓川, 裴荣富, 宋天锐, 等. 中国矿床成矿系列初论[M]. 北京: 地质出版社. 1998. |
[64] | 邓军, 杨立强, 王长明. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 2011, 27(9): 2501-2509. |
[65] | 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: D辑, 2015, 45(8): 1153-1168. |
[66] | 涂光炽. 华南元古宙基底演化和成矿作用[M]. 北京: 科学出版社, 1993. |
[67] | 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 2010, 29(1): 24-36. |
[68] | 侯增谦, 郑远川, 耿元生. 克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用[J]. 矿床地质, 2015, 34(4): 641-674. |
[69] | XIE Y L, HOU Z Q, GOLDFARB R J, et al. Rare earth element deposits in China[M]// VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. New York: Society of Economic Geologists, 2016. |
[70] |
MAO J W, PIRAJNO F, XIANG J F, et al. Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt: characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43(1): 264-293.
DOI URL |
[71] |
KISVARSANYI G. The role of the Precambrian igneous basement in the formation of the stratabound lead-zinc-copper deposits in Southeast Missouri[J]. Economic Geology, 1977, 72(3): 435-442.
DOI URL |
[72] | 马东升. 华南重要金属矿床的成矿规律: 时代爆发性、空间分带性、基底继承性和热隆起成矿[J]. 矿物岩石地球化学通报, 2008, 27(3): 209-217. |
[73] |
LEHURAY A P, CAULFIELD J B D, RYE D M, et al. Basement controls on sediment-hosted Zn-Pb deposits: a pb isotope study of carboniferous mineralization in Central Ireland[J]. Economic Geology, 1987, 82(7): 1695-1709.
DOI URL |
[74] |
WILLMAN C E, KORSCH R J, MOORE D H, et al. Crustal-scale fluid pathways and source rocks in the Victorian Gold Province, Australia: insights from deep seismic reflection profiles[J]. Economic Geology, 2010, 105(5): 895-915.
DOI URL |
[75] |
VIKRE P, BROWNE Q J, FLECK R, et al. Ages and sou-rces of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the Goodsprings District, Clark County, Nevada[J]. Economic Geology, 2011, 106(3): 381-412.
DOI URL |
[76] |
FIELD J D, APPOLD M S, RENSON V, et al. Lead and sulfur isotope composition of trace occurrences of Mississippi Valley-type mineralization in the US midcontinent[J]. Journal of Geochemical Exploration, 2018, 184: 66-81.
DOI URL |
[77] | KERRICH R, GOLDFARB R J, GROVES D I, et al. The geodynamics of world-class gold deposits: characteristics, space-time distribution, and origins[M]// HAGEMANN S G, BROWN P E. Gold in 2000. New York: Society of Economic Geologists, 2000: 501-551. |
[78] | 张本仁, 骆庭川, 高山, 等. 秦巴岩石圈构造及成矿规律地球化学研究[M]. 武汉: 中国地质大学出版社, 1994: 110-122. |
[79] | 侯增谦, 杨志明. 中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1817. |
[80] |
GROVES D I, PHILLIPS G N. The genesis and tectonic control on Archaean gold deposits of the Western Australian Shield: a metamorphic replacement model[J]. Ore Geology Reviews, 1987, 2(4): 287-322.
DOI URL |
[81] |
DE WIT M, THIART C. Metallogenic fingerprints of Archaean cratons[J]. Geological Society, London, Special Publications, 2005, 248(1): 59-70.
DOI URL |
[82] | 秦克章, 翟明国, 李光明, 等. 中国陆壳演化、多块体拼合造山与特色成矿的关系[J]. 岩石学报, 2017, 33(2): 305-325. |
[83] |
YAO J L, SHU L S, CAWOOD P A, et al. Delineating and characterizing the boundary of the Cathaysia Block and the Jiangnan orogenic belt in South China[J]. Precambrian Research, 2016, 275: 265-277.
DOI URL |
[84] |
ZHAO J H, ZHOU M F, YAN D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302.
DOI URL |
[85] |
ZHOU X M, SUN T, SHEN W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33.
DOI URL |
[86] |
WANG Y J, FAN W M, SUN M, et al. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in the Hunan Province[J]. Lithos, 2007, 96(3/4): 475-502.
DOI URL |
[87] |
FAURE M, LEPVRIER C, NGUYEN V V, et al. The South China block-Indochina collision: where, when, and how?[J]. Journal of Asian Earth Sciences, 2014, 79: 260-274.
DOI URL |
[88] |
WANG Y J, FAN W M, ZHANG G W, et al. Phanerozoic tectonics of the South China Block: key observations and controversies[J]. Gondwana Research, 2013, 23(4): 1273-1305.
DOI URL |
[89] |
LI X H. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 2000, 18(3): 293-305.
DOI URL |
[90] |
LI Z X, LI X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
DOI URL |
[91] |
YAN D P, ZHOU M F, SONG H L, et al. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)[J]. Tectonophysics, 2003, 361(3/4): 239-254.
DOI URL |
[92] |
JIANG S Y, YANG J H, LING H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 217-228.
DOI URL |
[93] |
XU Y G, HE B, CHUNG S L, et al. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J]. Geology, 2004, 32(10): 917-920.
DOI URL |
[94] |
ZHOU M F, ZHAO J H, QI L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing Area, SW China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 1-19.
DOI URL |
[95] |
ZHOU M F, YAN D P, KENNEDY A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67.
DOI URL |
[96] |
LI X H, LI Z X, GE W, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at Ca. 825 Ma?[J]. Precambrian Research, 2003, 122(1/2/3/4): 45-83.
DOI URL |
[97] |
ZHENG Y F, ZHANG S B, ZHAO Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1/2): 127-150.
DOI URL |
[98] |
HOFSTRA A H, SNEE L W, RYE R O, et al. Age constraints on Jerritt Canyon and other Carlin-type gold deposits in the western United States: relationship to mid-tertiary extension and magmatism[J]. Economic Geology, 1999, 94(6): 769-802.
DOI URL |
[99] |
CLINE J S. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, North-Central Nevada[J]. Economic Geology, 2001, 96(1): 75-89.
DOI URL |
[100] | CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models[M]// HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One Hundredth Anniversary Volume. New York: Society of Economic Geologists, 2005: 451-484. |
[101] | AREHART G B, CHAKURIAN A M, TERTBAR D R, et al. Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, Western North America, and implications for deposit genesis[J]. Economic Geology, 2003, 98(2): 235-248. |
[102] |
ZHOU J X, XIANG Z Z, ZHOU M F, et al. The giant upper Yangtze Pb-Zn province in SW China: reviews, new advances and a new genetic model[J]. Journal of Asian Earth Sciences, 2018, 154: 280-315.
DOI URL |
[103] |
ZHU Y N, PENG J T. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, Western Hunan, South China[J]. Ore Geology Reviews, 2015, 65: 55-69.
DOI URL |
[104] |
DENG T, XU D R, CHI G X, et al. Geology, geochronology, geochemistry and ore genesis of the Wangu gold deposit in Northeastern Hunan Province, Jiangnan Orogen, South China[J]. Ore Geology Reviews, 2017, 88: 619-637.
DOI URL |
[105] |
LI H, WU Q H, EVANS N J, et al. Geochemistry and geochronology of the Banxi Sb deposit: implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China[J]. Gondwana Research, 2018, 55: 112-134.
DOI URL |
[106] |
ZAW K, PETERS S G, CROMIE P, et al. Nature, diversity of deposit types and metallogenic relations of South China[J]. Ore Geology Reviews, 2007, 31(1/2/3/4): 3-47.
DOI URL |
[107] |
ZHOU J X, HUANG Z L, YAN Z F. The origin of the Maozu carbonate-hosted Pb-Zn deposit, Southwest China: constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age[J]. Journal of Asian Earth Sciences, 2013, 73: 39-47.
DOI URL |
[108] |
WANG C M, DENG J, CARRANZA E J M, et al. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China[J]. Ore Geology Reviews, 2014, 56: 327-351.
DOI URL |
[109] | 韩阳光, 颜丹平, 穆丹, 等. 滇东北驾车穹隆结构及其Pb、Zn、Ag、As、Sb元素异常特征[J]. 地学前缘, 2018, 25(1): 65-79. |
[110] |
BAO Z W, LI Q, WANG C Y. Metal source of giant Huize Zn-Pb deposit in SW China: new constraints from in situ Pb isotopic compositions of galena[J]. Ore Geology Reviews, 2017, 91: 824-836.
DOI URL |
[111] | 张岳, 颜丹平, 赵非, 等. 贵州开阳磷矿地区下寒武统牛蹄塘组地层层序及其As、Sb、Au、Ag丰度异常与赋存状态研究[J]. 岩石学报, 2016, 32(11): 3252-3268. |
[112] |
YIN R S, XU L G, LEHMANN B, et al. Anomalous mercury enrichment in early Cambrian Black Shales of South China: mercury isotopes indicate a seawater source[J]. Chemical Geology, 2017, 467: 159-167.
DOI URL |
[113] | 彭建堂, 胡瑞忠. 湘中锡矿山超大型锑矿床的碳、氧同位素体系[J]. 地质论评, 2001, 47(1): 34-41. |
[114] | 马东升, 潘家永, 解庆林. 湘中锑(金)矿床成矿物质来源: Ⅱ.同位素地球化学证据[J]. 矿床地质, 2003, 22(1): 78-87. |
[115] |
WANG Z P, XIA Y, SONG X Y, et al. Study on the evolution of ore-formation fluids for Au-Sb ore deposits and the mechanism of Au-Sb paragenesis and differentiation in the southwestern part of Guizhou Province, China[J]. Chinese Journal of Geochemistry, 2013, 32(1): 56-68.
DOI URL |
[116] |
TAN Q P, XIA Y, XIE Z J, et al. S, C, O, H, and Pb isotopic studies for the Shuiyindong Carlin-type gold deposit, Southwest Guizhou, China: constraints for ore genesis[J]. Chinese Journal of Geochemistry, 2015, 34(4): 525-539.
DOI URL |
[117] |
TAN S C, ZHOU J X, LI B, et al. In situ Pb and bulk Sr isotope analysis of the Yinchanggou Pb-Zn deposit in Sichuan Province (SW China): constraints on the origin and evolution of hydrothermal fluids[J]. Ore Geology Reviews, 2017, 91: 432-443.
DOI URL |
[118] | 孔志岗, 吴越, 张锋, 等. 川滇黔地区典型铅锌矿床成矿物质来源分析:来自S-Pb同位素证据[J]. 地学前缘, 2018, 25(1): 125-137. |
[119] |
CUNEY M. Felsic magmatism and uranium deposits[J]. Bulletin De La Societe Geologique De France, 2014, 185(2): 75-92.
DOI URL |
[120] |
WU F Y, YANG Y H, XIE L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2): 105-126.
DOI URL |
[121] |
COOK N J, CIOBANU C L, PRING A, et al. Trace and minor elements in sphalerite: a LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761-4791.
DOI URL |
[122] | LI X H, LIU Y, LI Q L, et al. Precise determination of phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization[J]. Geochemistry Geophysics Geosystems, 2009, 10(4): Q04010. |
[123] |
DEDITIUS A P, UTSUNOMIYA S, REICH M, et al. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 2011, 42(1): 32-46.
DOI URL |
[124] |
CIOBANU C L, COOK N J, UTSUNOMIYA S, et al. Gold-telluride nanoparticles revealed in arsenic-free pyrite[J]. American Mineralogist, 2012, 97(8/9): 1515-1518.
DOI URL |
[125] |
ZHANG J C, LIN Y T, YAN J, et al. Simultaneous determination of sulfur isotopes and trace elements in pyrite with a NanoSIMS 50L[J]. Analytical Methods, 2017, 9(47): 6653-6661.
DOI URL |
[126] |
SMITH C N, KESLER S E, BLUM J D, et al. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA[J]. Earth and Planetary Science Letters, 2008, 269(3/4): 399-407.
DOI URL |
[127] |
KELLEY K D, WILKINSON J J, CHAPMAN J B, et al. Zinc isotopes in sphalerite from base metal deposits in the Red Dog District, Northern Alaska[J]. Economic Geology, 2009, 104(6): 767-773.
DOI URL |
[128] | QI H W, ROUXEL O, HU R Z, et al. Germanium isotopic systematics in Ge-rich coal from the Lincang Ge deposit, Yunnan, Southwestern China[J]. Chemical Geology, 2011, 286: 252-265. |
[129] |
WEN H J, CARIGNAN J. Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China[J]. Geochimica et Cosmochimica Acta, 2011, 75(6): 1411-1427.
DOI URL |
[130] |
YIN R S, FENG X B, HURLEY J P, et al. Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites[J]. Scientific Reports, 2016, 6: 18686.
DOI URL |
[131] |
ZHU C W, WEN H J, ZHANG Y X, et al. Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China[J]. Mineralium Deposita, 2017, 52(5): 675-686.
DOI URL |
[132] |
TANG Y Y, BI X W, YIN R S, et al. Concentrations and isotopic variability of mercury in sulfide minerals from the Jinding Zn-Pb deposit, Southwest China[J]. Ore Geology Reviews, 2017, 90: 958-969.
DOI URL |
[133] |
XU C X, YIN R S, PENG J T, et al. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu Area, Southwestern China[J]. Mineralium Deposita, 2018, 53(3): 339-352.
DOI URL |
[1] | 张嘉玮, 陈建书, 吴滔, 叶太平, 陈明华, 代雅然, 邓小杰, 牟军. 湘黔桂新元古代拉伸纪晚期地层年代格架对比及关键地质事件初探[J]. 地学前缘, 2020, 27(4): 1-16. |
[2] | 李智武,冉波,肖斌,宋金民,郑玲,李金玺,王瀚,肖斌,叶玥豪,蔡其新,刘树根. 四川盆地北缘震旦纪—早寒武世隆坳格局及其油气勘探意义[J]. 地学前缘, 2019, 26(1): 59-85. |
[3] | 李怀坤,田辉,周红英,张健,刘欢,耿建珍,叶丽娟,相振群,瞿乐生. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比:锆石SHRIMP U-Pb年龄及Hf同位素证据[J]. 地学前缘, 2016, 23(6): 186-201. |
[4] | 苏文博. 华北及扬子克拉通中元古代年代地层格架厘定及相关问题探讨[J]. 地学前缘, 2016, 23(6): 156-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||