地学前缘 ›› 2022, Vol. 29 ›› Issue (2): 79-93.DOI: 10.13745/j.esf.sf.2022.2.7
刘勇1(), 李廷栋1,*(
), 肖庆辉2, 张克信3, 朱小辉4, 丁孝忠1
收稿日期:
2022-02-22
修回日期:
2022-03-04
出版日期:
2022-03-25
发布日期:
2022-03-31
通信作者:
李廷栋
作者简介:
刘 勇(1982—),女,助理研究员,主要从事花岗岩与大地构造、洋板块地质方面的研究。E-mail: liuyongfirst@163.com
基金资助:
LIU Yong1(), LI Tingdong1,*(
), XIAO Qinghui2, ZHANG Kexin3, ZHU Xiaohui4, DING Xiaozhong1
Received:
2022-02-22
Revised:
2022-03-04
Online:
2022-03-25
Published:
2022-03-31
Contact:
LI Tingdong
摘要:
中国存在多个时代、多种类型的造山带,发育了多种多样的俯冲增生杂岩带,经历了复杂多变的洋陆转换过程,如何揭示包括洋内演化和洋陆转换等的造山过程一直是一个难题。为此,中国区域地质志项目组提出了洋板块地质研究,试图通过对造山系俯冲增生杂岩带、蛇绿岩带等洋岩石圈地质建造、结构构造进行系统研究,再造洋岩石圈从洋中脊形成到海沟俯冲消亡、转换成陆的地质作用全过程。本文介绍了洋板块地质提出到现今主要的研究进展,包括四个方面。一是,初步建立了洋板块地质格架,洋板块地质的研究包括俯冲增生杂岩的物质组成、蛇绿岩类型及其形成的构造环境、洋板块沉积组合和洋板块地层、岛弧火成岩组合、洋陆转换的过程和机制、洋-陆转换过程与成矿作用等重要内容。二是,识别出北山牛圈子—马鬃山、嘉荫—依兰、陈蔡、东昆仑布青山—阿尼玛卿、鹰扬关、大洪山、甘孜—理塘、新余神山—新干神政桥等中国陆域62条主要的俯冲增生杂岩带/增生杂岩带。俯冲增生杂岩带是认识、理解造山系时空结构、组成和演化的关键。三是,在祁连地区识别出较为完整的洋内弧岩石组合。洋盆演化形成大陆过程中的洋内俯冲带是大陆的诞生地,洋内俯冲作用形成的洋内弧是洋盆演化形成大陆的初始弧。洋内弧火成岩组合序列的发现为研究洋陆转换过程提供了岩石学依据。祁连造山带是洋板块地质研究的经典地区之一。研究显示,当金山出露完整的洋内弧岩石组合,这些岩石记录了洋内弧从初始俯冲到发育成熟的全过程,为探讨祁连造山带原特提斯洋构造演化提供了新的依据。四是,制定了洋板块地质构造图编图方案,编图内容主要包括俯冲增生杂岩带、岩浆弧、高压-超高压带、俯冲期和碰撞期构造形变要素和构造演化等。编图单元分为三级:一级为俯冲增生杂岩带;二级为岩片;三级包括基质和岩块。编图过程中需要明确岩浆弧的性质和归属,明确图面上某一岩浆弧与哪个蛇绿混杂岩或大洋配套。图面上对于构造要素的表达重点是区分俯冲和碰撞阶段。通过构造变形的时态、相态、位态研究,识别俯冲期和碰撞期的构造变形形迹。这是洋板块地质初步的研究成果,以俯冲增生杂岩带的研究为基础,探讨特提斯洋等大洋的演化、中国东部古太平洋/太平洋转换与中新生代成矿关系等重大基础地质问题是洋板块地质研究下一步的工作方向。目前,洋板块地质的研究还处于试点阶段,洋板块地质与成矿的成因联系等重大地质问题尚需今后更深入地研究。
中图分类号:
刘勇, 李廷栋, 肖庆辉, 张克信, 朱小辉, 丁孝忠. 洋板块地质研究进展[J]. 地学前缘, 2022, 29(2): 79-93.
LIU Yong, LI Tingdong, XIAO Qinghui, ZHANG Kexin, ZHU Xiaohui, DING Xiaozhong. Progress in geological study of oceanic plates[J]. Earth Science Frontiers, 2022, 29(2): 79-93.
图2 洋板块地质格架图 (据文献[3-4,8,15,33]) a,b,c—洋板块地层模型图(据文献[15]);d—蛇绿岩类型划分(据文献[8]);e—TTGG四个亚类形成的构造背景(据文献[3]);f—以双江—耿马地区昌宁—孟连俯冲增生杂岩带为例,绘制俯冲增生杂岩带地质构造剖面图(据文献[4]);g—恢复重建后的组合柱状剖面,显示了蛇绿岩的火成岩假地层学和内部结构、构造基底和沉积盖层((A) Mirdita和(B) Pindos,据文献[26]);h—构造演化示意图,以西秦岭造山带为例(据文献[33])。
Fig.2 A geological framework of the oceanic plate. Adapted after [3-4, 8, 15, 33].
图4 中国陆域俯冲增生杂岩带/增生杂岩带分布图 (据文献[15,16]修改)
Fig.4 Distribution map of subduction accretionary complex belts/accretionary complex zone in continental China. Modified from [15-16].
①阿勒格达依—库尔提—布尔根—玛因鄂博(额尔齐斯)俯冲增生杂岩带(S-C) | ②库吉拜—洪古勒楞俯冲增生杂岩带(![]() |
---|---|
③扎河坝—阿尔曼泰俯冲增生杂岩带(![]() | ④唐巴勒—玛依勒—巴尔鲁克增生杂岩带(O-S) |
⑤达尔布特增生杂岩带(D-C) | ⑥卡拉麦里俯冲增生杂岩带(D-C) |
⑦依连哈比尔尕—巴音沟俯冲增生杂岩带(D-C) | ⑧干沟—色尔特能—康古尔塔格—大草滩增生杂岩带(![]() |
⑨苦水增生杂岩带(C-P1) | ⑩南天山俯冲增生杂岩带(O-D) |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
表1 中国陆域俯冲增生杂岩带/增生杂岩带分布表
Table 1 Distribution of subduction-accreation complex belts/continental accretionary complex belts in China
①阿勒格达依—库尔提—布尔根—玛因鄂博(额尔齐斯)俯冲增生杂岩带(S-C) | ②库吉拜—洪古勒楞俯冲增生杂岩带(![]() |
---|---|
③扎河坝—阿尔曼泰俯冲增生杂岩带(![]() | ④唐巴勒—玛依勒—巴尔鲁克增生杂岩带(O-S) |
⑤达尔布特增生杂岩带(D-C) | ⑥卡拉麦里俯冲增生杂岩带(D-C) |
⑦依连哈比尔尕—巴音沟俯冲增生杂岩带(D-C) | ⑧干沟—色尔特能—康古尔塔格—大草滩增生杂岩带(![]() |
⑨苦水增生杂岩带(C-P1) | ⑩南天山俯冲增生杂岩带(O-D) |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() ![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
图8 甘肃北山造山带马鬃山俯冲增生杂岩带洋板块地质构造图 (据文献[15,64])
Fig. 8 Geological structural map of the oceanic plate in the Mazongshan subduction-accretion complex belt, Beishan orogenic belt, Gansu Province. Adapted from [15, 64].
[1] | 李廷栋, 肖庆辉, 潘桂棠, 等. 关于发展洋板块地质学的思考[J]. 地球科学, 2019, 44(5):1441-1451. |
[2] | 陆松年, 相振群. 鲁西新太古代洋板块地质及板块构造活动遗迹[J]. 地球科学, 2020, 45(7):2279-2292. |
[3] | 邓晋福, 刘翠, 狄永军, 等. 英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩石构造组合及其亚类划分[J]. 地学前缘, 2018, 25(6):042-050. |
[4] | 潘桂棠, 肖庆辉, 张克信, 等. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义[J]. 地球科学, 2019, 44(5):1544-1561. |
[5] | 闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37:167-191 |
[6] | 张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1):1-12. |
[7] | 王根厚. 造山带野外工作方法[M]. 北京: 地质出版社, 2019: 203. |
[8] |
DILEK Y, FURNES H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123(3/4):387-411.
DOI URL |
[9] | 张继恩, 陈艺超, 肖文交, 等. 蛇绿岩与蛇绿混杂带结构[J]. 地质科学, 2021, 56(2):560-595. |
[10] |
SAFONOVA I Y, MARUYAMA S, KOJIMA S, et al. Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology and geochemistry[J]. Gondwana Research, 2016, 33:92-114.
DOI URL |
[11] |
MARUYAMA S, KAWAI T, WINDLEY B F. Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona complex, anglesey-lleyn, wales, UK[J]. Geological Society, London, Special Publications, 2010, 338(1):55-75.
DOI URL |
[12] | WAKITA K, METCALFE I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Sciences, 2005, 24:670-702. |
[13] |
CAWOOD P A, KRONER A, COLLINS W J, et al. Earth accretionary orogens in space and time[J]. Geological Society, London, Special Publication, 2009, 318:1-36.
DOI URL |
[14] | 李荣社, 计文化, 辜平阳, 等. 造山带(蛇绿)构造混杂岩带填图方法[M]. 武汉: 中国地质大学出版社, 2016: 128. |
[15] | 张克信, 何卫红, JIN J S, 等. 洋板块地层在造山带构造-地层区划中的应用[J]. 地球科学, 2020, 45(7):2305-2325. |
[16] | 张克信, 李仰春, 王丽君, 等. 造山带混杂岩及相关术语[J]. 地质通报, 2020, 39(6):765-782. |
[17] |
ISOZAKI Y, MARUYAMA S, FURUOKA F. Accreted oceanic materials in Japan[J]. Tectonophysics, 1990, 181:179-205.
DOI URL |
[18] |
KUSKY T M, WINDLEY B F, SAFONOVA I, et al. Recog-nition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accre tion[J]. Gondwana Research, 2013, 24(2):501-547.
DOI URL |
[19] |
WAKITA K. Mappable features of mélanges derived from ocean plate stratigraphy in the Jurassic accretionary complexes of mino and chichibuterranes in Southwest Japan[J]. Tectonophysics, 2012, 568/569:74-85.
DOI URL |
[20] |
XIAO W J, SONG D F, WINDLEY BF, et al. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives[J]. Science China: Earth Sciences, 2020, 63(3):329-361.
DOI URL |
[21] |
ZAMORAS L R, MATSUOKA A. Accretion and postaccretion tectonics of the Calamian Islands, North Palawan block, Philippines[J]. The Island Arc, 2004, 13:506-519.
DOI URL |
[22] |
ZHANG J E, CHEN Y C, XIAO W J, et al. Sub-parallel ridge-trench interaction and an alternative model for the Silurian-Devonian archipelago in Western Junggar and North-Central Tianshan in NW China[J]. Earth-Science Reviews, 2021, 217:103648.
DOI URL |
[23] |
ZHANG Q C, LI Z H, WU Z H, et al. Subduction initiation of the western Proto-Tethys Ocean: new evidence from the Cambrian intra-oceanic forearc ophiolitic mélange in the western Kunlun Orogen, NW Tibetan Plateau[J]. GSA Bulletin, 2022. 134:145-159.
DOI URL |
[24] |
CHEN Z Y, XIAO W J, BRIAN F, et al. Composition, provenance, and tectonic setting of the Southern Kangurtag accretionary complex in the Eastern Tianshan, NW China: implications for the late paleozoic evolution of the North Tianshan Ocean(Article)[J]. Tectonics, 2019, 38(8):2779-2802.
DOI URL |
[25] |
HARALD F, INNA S. Ophiolites of the Central Asian Orogenic Belt: geochemical and petrological characterization and tectonic settings[J]. Geoscience Frontiers, 2019, 10(4):1255-1284.
DOI URL |
[26] | KUSKY T, WANG J, WANG L. Mélanges through time: life cycle of the world’s largest Archean mélange compared with mesozoic and paleozoic subduction-accretion-collision mélanges[J]. Earth-Science Reviews, 2020, 209:103-303. |
[27] | 杜兵盈, 刘飞, 刘勇, 等. 黑龙江省中东部地区二叠纪—早侏罗世洋陆演化过程及成矿动力学背景探讨[J]. 地质评论, 2022, 68(2):431-451. |
[28] |
FU C L, YAN Z, WANG Z Q. Lajishankou ophiolite complex: implications for paleozoic multiple accretionary and collisional events in the South Qilian Belt(Article)[J]. Tectonics, 2018, 37(5):1321-1346.
DOI URL |
[29] | 陈超, 朱江. 黄陵基底北部古元古代洋板块地质与石墨成矿[J]. 资源环境与工程, 2021, 35(6):769-776. |
[30] |
ZHAO X L, JIANG Y, XING G F, et al. The early Paleozoic oceanic island seamount in the Chencai area, Zhejiang Province: implication of the Yangtze-Cathaysia amalgamation[J]. Geological Journal, 2020, 55(2):1148-1162.
DOI URL |
[31] |
CHENG Y, XIAOQH, LIT D, et al. An Intra-Oceanic subdiuction system influenced by ridge subduction in the diyanrmiao subduction accretionary complex of the Xar MoronArea,Eastern Margin of the Central Asian Orogenic Belt[J]. Journal of Earth Science, 2021, 32(1):253-266.
DOI URL |
[32] | 杨晓平, 钟辉, 杨雅军, 等. 大兴安岭地区古生代构造格架重建: 来自俯冲增生杂岩研究进展[J]. 地学前缘, 2022, 29(2):94-114. |
[33] |
YANG L M, SONG S G, MARK B, et al. Oceanic accretionary belt in the West Qinling Orogen: links between the Qinling and Qilian orogens, China[J]. Gondwana Research, 2018, 64:137-162.
DOI URL |
[34] | DING X Z, ZHANG K X, GAO L Z, et al. Research progress and the main achievements of the regional geology of China preface[J]. Acta Geologica Sinica(English Edition), 2020, 94(4):865-876. |
[35] | 宁括步, 邓奇, 任光明, 等. 菜子园俯冲增生杂岩带(关河—木古地区)1: 50 000区域地质图[CM]. 成都: 中国地质调查局成都地质调查中心, 2021. |
[36] | 任光明, 庞维华, 潘桂棠, 等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报, 2017, 36(11):2061-2075. |
[37] | 任飞, 尹福光, 孙洁, 等. 甘孜-理塘俯冲增生杂岩带中二叠世构造演化: 来自龙蟠蛇绿岩年龄、 地球化学的证据[J]. 地质通报, 2021, 40(6):P942-954. |
[38] | 张克信, 殷鸿福, 朱云海, 等. 史密斯地层与非史密斯地层[J]. 地球科学: 中国地质大学学报, 2003, 28(4):361-369. |
[39] |
ISOZAKI Y. Anatomy and genesis of a subduction-related orogen: a new view of geotectonic subdivision an evolution of the Japanese Islands[J]. The Island Arc, 1996, 5:289-320.
DOI URL |
[40] |
ISOZAKI Y. Contrasting two types of orogens in Permo-Triassic Japan: accretionary versus collisional[J]. The Island Arc, 1997, 6(1):2-24.
DOI URL |
[41] | 张克信, 何卫红, 徐亚东, 等. 论从俯冲增生杂岩带重建洋板块地层主要类型与序列: 以青藏特提斯二叠系为例[J]. 沉积与特提斯地质, 2021, 41(2):137-151. |
[42] | BODINIER J L, GODARD M. Orogenic, ophiolitic, and abyssal peridotites[J]. Treatise on Geochemistry, 2014, 2:103-167. |
[43] | 张克信, 何卫红, 徐亚东, 等. 中国洋板块地层分布及构造演化[J]. 地学前缘, 2016, 23(6):24-30. |
[44] | 毛晓长, 王根厚, 梁晓, 等. 增生杂岩带1: 5万地质填图的实践与探索: 以西藏羌塘中部角木日地区为例[J]. 地学前缘, 2015, 22(3):382-393. |
[45] |
DILEK Y, YANG J S. Ophiolites, diamonds, and ultrahigh-pressure minerals: new discoveries and concepts on upper mantle petrogenesis[J]. Lithosphere, 2018, 10:3-13.
DOI URL |
[46] |
DILEK Y, FURNES H. Ophiolites and their origins[J]. Elements, 2014, 10:93-100.
DOI URL |
[47] |
MIYASHIRO A. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth and Planetary Science Letters, 1973, 19:218-224.
DOI URL |
[48] |
MOORES E M. Origin and emplacement of ophiolites[J]. Reviews of Geophysics, 1982, 20(4):735-760.
DOI URL |
[49] | NICOLAS A, BOUDIER F. Where ophiolites come from and what they tell us[J]. Geological Society of America Special Paper, 2003, 373:137-152. |
[50] |
PEARCE J A. Basalt geochemistry used to investigate past tectonic environments on Cyprus[J]. Tectonophysics, 1975, 25:41-67.
DOI URL |
[51] |
PEARCE J A. Ophiolites: immobile elements fingerprinting of ophiolites[J]. Elements, 2014, 10(2):101-108.
DOI URL |
[52] | 张克信, 何卫红, 徐亚东, 等. 中国沉积岩建造与沉积大地构造[M]. 北京: 地质出版社, 2017: 604. |
[53] |
FURNES H, DILEK Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: a global synjournal[J]. Earth-Science Reviews, 2017, 166:1-37.
DOI URL |
[54] | 肖庆辉, 李廷栋, 潘桂棠, 等. 识别洋陆转换的岩石学思路: 洋内弧与初始俯冲的识别[J]. 中国地质, 2016, 43(3):721-737. |
[55] |
ISHIZUKA O, TANI K, REAGAN M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306:229-240.
DOI URL |
[56] | ISHIZUKA O, TAYLOR R N, YUASA M, et al. Making and breaking anisland arc: a new perspective from the Oligocene Kyushu-Palauarc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5):Q05005. |
[57] |
ISHIZUKA O, TANI K, REAGAN M. KIzu-Bonin-Mariana forearc crust as a modern ophiolite analogue[J]. Elements, 2014, 10:115-120.
DOI URL |
[58] | 肖庆辉, 刘勇, 程杨, 等. 如何判定俯冲增生杂岩中的高度肢解的洋底高原-海山系统[J]. 沉积与特提斯地质, 2021, 41(2):152-162. |
[59] | 刘翠, 邓晋福, 李胜荣, 等. 胶东燕山期大型超大型金矿集区形成的壳幔结构探讨: 来自致矿火成岩(组合)的约束[J]. 地学前缘, 2018, 25(6):296-307. |
[60] | 冯艳芳, 邓晋福, 肖庆辉, 等. 长乐—南澳构造带花岗岩类年代学、岩石组合与构造演化[M]. 北京: 地质出版社, 2013: 1-168. |
[61] | REAGAN M K, ISHIZUKA O, STERNER R J, et al. Fore-arc basaltsand subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3):1-17. |
[62] |
REAGAN M K, MCCLELLAND W C, GIRARD G, et al. The geology of the southern Mariana fore-arc crust: implications for the scale of eocene volcanism in the western pacific[J]. Earth and Planetary Science Letters, 2013, 380:41-51.
DOI URL |
[63] | 吴福元, 王建刚, 刘传周, 等. 大洋岛弧的前世今生[J]. 岩石学报, 2019, 35(1):1-15. |
[64] | 潘桂棠, 任飞, 尹福光, 等. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 2020, 45(7):2293-2304. |
[65] | WANG J X, ZHANG K X, JIN J S, et al. Early Paleozoic ocean plate stratigraphy of the Beishan orogenic zone, NW China: implications for regional tectonic evolution[J]. Acta Geologica Sinica(English Edition), 2020, 94(4):1042-1059. |
[66] |
WANG L J, ZHANG K X, LIN S F, et al. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late Early Paleozoic juxtaposition of the Yangtze Block and the West Cathaysia terrane, South China[J]. GSA Bulletin, 2022, 134(1/2):113-129.
DOI URL |
[67] | FU C L, YAN Z, AITCHISON J C, et al. Short-lived intra-oceanic arc-trench system in the North Qaidam belt (NW China) reveals complex evolution of the Proto-Tethyan Ocean[J]. GSA Bulletin, 2021. https://doi.org/10.1130/B36127.1 |
[68] | 朱小辉. 南祁连和柴北缘早古生代构造转换中的岩浆响应[D]. 西安: 西北大学, 2021. |
[69] | 闫臻. 混杂岩地质调查与填图方法[M]. 北京: 地质出版社, 2020. |
[70] | 闫臻, 牛漫兰, 付长垒, 等. 拉脊山昂思多蛇绿岩-增生杂岩1: 25 000 专题地质图数据集[J]. 中国地质, 2021, 48(增刊2):53-65. |
[71] | 张进, 曲军峰, 赵衡, 等. 俯冲增生杂岩带变形特征、成因机制及与后期变形的区别[J]. 地学前缘, 2022, 29(2):56-78. |
[1] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[2] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[3] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[4] | 任纪舜, 刘建辉, 朱俊宾. 中国东部中生代上叠造山系[J]. 地学前缘, 2024, 31(1): 142-153. |
[5] | 张艳斌, 翟明国, 周艳艳, 周李岗. 大陆下地壳[J]. 地学前缘, 2024, 31(1): 28-45. |
[6] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[7] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[8] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[9] | 曾忠诚, 洪增林, 边小卫, 陈宁, 张若愚, 李琦. 阿尔金造山带南缘晚奥陶世赞岐质闪长岩的发现及其地质意义[J]. 地学前缘, 2022, 29(4): 345-357. |
[10] | 张洪瑞, 侯增谦. 碰撞带热结构与碰撞成矿系统[J]. 地学前缘, 2022, 29(2): 1-13. |
[11] | 任飞, 尹福光, 彭智敏, 潘桂棠, 魏栋. 班公湖—怒江俯冲增生杂岩带东段晚古生代辉绿岩锆石U-Pb年龄、Hf同位素特征及其构造意义[J]. 地学前缘, 2022, 29(2): 164-179. |
[12] | 李文辉, 王海燕, 高锐, 卢占武, 李洪强, 侯贺晟, 熊小松, 叶卓. 秦岭造山带及邻区上地壳精细速度结构研究[J]. 地学前缘, 2022, 29(2): 198-209. |
[13] | 寇彩化, 刘燕学, 李江, 李廷栋, 丁孝忠, 刘勇, 靳胜凯. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究[J]. 地学前缘, 2022, 29(2): 218-233. |
[14] | 杨晓平, 钟辉, 杨雅军, 江斌, 钱程, 马永非, 张超. 大兴安岭地区古生代构造格架重建:来自俯冲增生杂岩研究进展[J]. 地学前缘, 2022, 29(2): 94-114. |
[15] | 张丁丁, 张衡. 全球典型大陆造山带中榴辉岩的折返机制:来自变质岩和地球物理的限制[J]. 地学前缘, 2022, 29(1): 303-315. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||