地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 303-315.DOI: 10.13745/j.esf.sf.2021.12.37
所属专题: 印度-欧亚大陆碰撞及其远程效应
• "印度-欧亚大陆碰撞及其远程效应"专栏之三 • 上一篇 下一篇
收稿日期:
2021-11-15
修回日期:
2021-12-22
出版日期:
2022-01-25
发布日期:
2022-02-22
通信作者:
张衡
作者简介:
张丁丁(1988—),女,博士后,主要从事变质岩石学研究。E-mail: zhangdingding@itpcas.ac.cn
基金资助:
ZHANG Dingding(), ZHANG Heng*(
)
Received:
2021-11-15
Revised:
2021-12-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
ZHANG Heng
摘要:
大陆岩石圈深俯冲作用是地球科学领域的前沿热点,榴辉岩的折返机制是板块构造及动力学的关键科学问题。全球著名的大陆造山带中榴辉岩的p-T轨迹呈现差异性折返特征,为了揭示榴辉岩的折返机制,本文结合变质岩石学和地球物理学研究,选取3个典型大陆造山带——中生代—新生代的阿尔卑斯造山带、中生代的苏鲁—大别造山带和新生代的喜马拉雅造山带中的榴辉岩进行阐述。在阿尔卑斯造山带地区,地球物理研究结果发现,欧洲板块的俯冲造成了Adria地区下方的岩石圈存在明显厚度差异。同时,阿尔卑斯造山带Doria Maria和Pohorje地区以及Pohorje地区内部,榴辉岩折返历史也不尽相同,原因可能是亚德里亚大洋岩石圈断离后不同期次的逆冲推覆作用使其差异性斜向挤出。苏鲁—大别造山带中榴辉岩的快速折返,原因可能是华南板块与华北板块碰撞后岩石圈的拆沉或断离作用。在喜马拉雅造山带,西构造结和中喜马拉雅榴辉岩的折返存在差异性。在西构造结,那让和卡甘榴辉岩呈现不同的p-T轨迹和折返速率,变质岩石学和地球物理研究结果都表明它们的差异性折返很可能与印度-欧亚大陆碰撞过程中的构造挤压作用以及印度大陆岩石圈的断离作用有关。喜马拉雅造山带是年轻的正在进行造山活动的造山带,相较于古老的苏鲁-大别造山带,它更适合变质岩石学和地球物理学的综合研究。因此西构造结高压/超高压榴辉岩的折返机制——构造挤压和俯冲板块断离可应用于全球造山带。
中图分类号:
张丁丁, 张衡. 全球典型大陆造山带中榴辉岩的折返机制:来自变质岩和地球物理的限制[J]. 地学前缘, 2022, 29(1): 303-315.
ZHANG Dingding, ZHANG Heng. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints[J]. Earth Science Frontiers, 2022, 29(1): 303-315.
图2 阿尔卑斯造山带中不同榴辉岩p-T轨迹比较图(据文献[12,13,14,15]修改) P—葡萄石-绿纤石相;Z—浊沸石相;GS—绿片岩相;B—蓝片岩相;EA—绿帘角闪岩相; A—角闪岩相;EC—榴辉岩相;EC-HPG—榴辉岩-高压麻粒岩相;G—麻粒岩相;UHP—超高压相;UHT—超高温相。
Fig.2 Comparison of the p-T paths of eclogites from the Alps orogenic belt. Modified after [12-15]. P: prehnite-pumpellyite facies; Z: laumontite facies; GS: greenschist facies; A: amphibolite facies; EA: epidote-amphibolite facies; B: blueschist facies; EC:eclogite facies; EC-HPG: eclogite-high-pressure granulite; G: granulite-facies; UHP: ultrahigh-pressure metamorphism; UHT: ultrahigh-temperature metamorphism.
图4 大别山不同地区榴辉岩p-T轨迹比较图(据文献[29]修改) P—葡萄石-绿纤石相;Z—浊沸石相;GS—绿片岩相;B—蓝片岩相;EA—绿帘角闪岩相; A—角闪岩相;EC—榴辉岩相;EC-HPG—榴辉岩-高压麻粒岩相;G—麻粒岩相;UHP—超高压相;UHT—超高温相。
Fig.4 Comparison of the p-T paths of eclogites from the Dabie orogenic belt. Modified after [29]. P: prehnite-pumpellyite facies; Z: laumontite facies; GS: greenschist facies; A: amphibolite facies; EA: epidote-amphibolite facies;B: blueschist facies; EC: eclogite facies; EC-HPG: eclogite-high-pressure granulite; G: granulite-facies;UHP: ultrahigh-pressure metamorphism; UHT: ultrahigh-temperature metamorphism.
图6 喜马拉雅西构造结和中喜马拉雅中榴辉岩p-T轨迹比较图 (据文献[52,55,59-60,62]修改) P—葡萄石-绿纤石相;Z—浊沸石相;GS—绿片岩相;B—蓝片岩相;EA—绿帘角闪岩相; A—角闪岩相;EC—榴辉岩相;EC-HPG—榴辉岩-高压麻粒岩相;G—麻粒岩相;UHP—超高压相;UHT—超高温相。
Fig.6 Comparison of the p-T paths of eclogites from the Western Himalaya Syntaxis and central Himalaya. Modified after [52,55,59-60,62]. P: prehnite-pumpellyite facies; Z: laumontite facies; GS: greenschist facies; A: amphibolite facies; EA: epidote-amphibolite facies;B: blueschist facies; EC:eclogite facies; EC-HPG: eclogite-high-pressure granulite; G: granulite-facies;UHP: ultrahigh-pressure metamorphism; UHT: ultrahigh-temperature metamorphism.
图7 西构造结地壳地幔构造示意图(据文献[63,68]修改)
Fig.7 Schematic diagram showing the crust-mantle structure beneath the Western Himalayan Syntaxis. Modified after [63,68].
[1] |
CHOPIN C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences[J]. Contributions to Mineralogy and Petrology, 1984, 86(2):107-118.
DOI URL |
[2] |
SMITH D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics[J]. Nature, 1984, 310(5979):641-644.
DOI URL |
[3] |
YE K, CONG B, YE D. The possible subduction of continental material to depths greater than 200 km[J]. Nature, 2000, 407:734-736.
DOI URL |
[4] |
ERDMAN M E, LEE C T A. Oceanic-and continental-type metamorphic terranes: occurrence and exhumation mechanisms[J]. Earth-Science Reviews, 2014, 139:33-46.
DOI URL |
[5] |
CHEMENDA A I, MATTAUER M, BOKUN A N. Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman[J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4):173-182.
DOI URL |
[6] | LIU L, ZHANG J, HARRY I I, et al. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km[J]. European Journal of Mineralogy, 2007, 263(3/4):0-191. |
[7] |
WILKE F D H, O’BRIEN P J, GERDES A, et al. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages[J]. European Journal of Mineralogy, 2010, 22(5):703-719.
DOI URL |
[8] |
DONG S, CHEN J, HUANG D. Differential exhumation of tectonic units and ultrahigh-pressure metamorphic rocks in the Dabie Mountains, China[J]. Island Arc, 1998, 7(1/2):174-183.
DOI URL |
[9] |
WHITNEY D L, EVANS B W. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 2010, 95(1):185-187.
DOI URL |
[10] |
DALPIAZ G, BISTACCHI A, MASSIRONI M. Geological outline of the Alps[J]. Episodes, 2003, 26:175-180.
DOI URL |
[11] | MALUSÀ M G, GUILLOT S, ZHAO L, et al. The deep structure of the Alps based on the CIFALPS seismic experiment: a synjournal[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(3): e2020GC009466. |
[12] |
RUBATTO D, HERMANN J. Exhumation as fast as subduction?[J]. Geology, 2001, 29(1):3-6.
DOI URL |
[13] |
HAUZENBERGER C A, TAFERNER H, KONZETT J. Genesis of chromium-rich kyanite in eclogite-facies Cr-spinel-bearing gabbroic cumulates, Pohorje Massif, Eastern Alps[J]. American Mineralogist, 2016, 101:448-460.
DOI URL |
[14] |
LI B, HANS-JOACHIM M, KOLLER F, et al. Metapelite from the high-ultrahigh pressure terrane of the eastern Alps (Pohorje Mountains, Slovenia): new pressure, temperature, and time constraints on a polymetamorphic rock[J]. Journal of Metamorphic Geology, 2021, 39(1):695-726.
DOI URL |
[15] | VRABEC M, JANÁK M, FROITZHEIM N, et al. Phase relations during peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern Alps, Slovenia)[J]. Lithos, 2012, 144:40-55. |
[16] |
GIACOMUZZI G, CHIARABBA C, GORI P D. Linking the Alps and Apennines subduction systems: new constraints revealed by high-resolution teleseismic tomography[J]. Earth and Planetary Science Letters, 2011, 301(3/4):531-543.
DOI URL |
[17] |
ZHAO L, MALUSÀ M G, YUAN H, et al. Author Correction: evidence for a serpentinized plate interface favouring continental subduction[J]. Nature Communications, 2020, 11(1):1-8.
DOI URL |
[18] | BUTLER R, MAZZOLI S, CORRADO S, et al. Applying thick-skinned tectonic models to the Apennine thrust belt of Italy: limitations and implications[J]. AAPG Memoir, 2005, 82:647-667. |
[19] |
ZHAO L. First seismic evidence for continental subduction beneath the Western Alps[J]. Geology, 2015, 43(9):815-818.
DOI URL |
[20] |
ZHANG R Y, LIOU J G, ERNST W G. The Dabie-Sulu continental collision zone: a comprehensive review[J]. Gondwana Research, 2009, 16(1):1-26.
DOI URL |
[21] |
ZHENG Y F, FU B, BING G, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 2003, 62(1/2):105-161.
DOI URL |
[22] |
WANG X, JING Y, LIOU J G, et al. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China[J]. Lithos, 1990, 25(1/2/3):119-131.
DOI URL |
[23] |
XU S T, SU W, LIU Y C, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting[J]. Science, 1992, 256(5053):80-82.
DOI URL |
[24] |
CONG B, WANG Q. Ultra-high-pressure metamorphic rocks in China[J]. Episodes, 1995, 18(1):91-94.
DOI URL |
[25] |
LIOU J G, ZHANG R Y, JAHN B M. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China[J]. Lithos, 1997, 41(1):59-78.
DOI URL |
[26] | HACKER B R, RATSCHBACHER L, WEBB L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6):13339-13364. |
[27] |
FAURE M, LIN W, SCHÄRER U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)[J]. Lithos, 2003, 70(3/4):213-241.
DOI URL |
[28] | 石永红. 大别山太湖地区榴辉岩变质p-T条件及构造意义[D]. 北京: 中国科学院地质与地球物理研究所, 2004. |
[29] | 王清晨. 大别山造山带高压-超高压变质岩的折返过程[J]. 岩石学报, 2013, 29(5):1607-1620. |
[30] |
ZHENG Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4):1223-1254.
DOI URL |
[31] | 索书田, 钟增球, 游振东. 大别—苏鲁超高压-高压变质带伸展构造格架及其动力学意义[J]. 地质学报, 2001, 75(1):14-24. |
[32] | 郑永飞. 超高压变质与大陆碰撞研究进展: 以大别—苏鲁造山带为例[J]. 科学通报, 2008, 53(18):2129-2152. |
[33] | 吴萍萍, 王椿镛, 丁志峰, 等. 大别—苏鲁及邻区上地幔的各向异性[J]. 地球物理学报, 2012, 55(8): 12:2539-2550. |
[34] | 徐佩芬, 刘福田, 王清晨, 等. 大别—苏鲁碰撞造山带的地震层析成像研究: 岩石圈三维速度结构[J]. 地球物理学报, 2000, 43(3):377-385. |
[35] | YANG W, WANG J. Geophysical evidences for magmatic underplating in the Sulu Area, East China[J]. Acta Geologica Sinica, 2002, 76(2):173-179. |
[36] | 杨文采, 方慧. 苏鲁超高压变质带北部地球物理调查(Ⅱ): 非地震方法[J]. 地球物理学报, 1999, 42(4):508-519. |
[37] | 杨文采. 大别苏鲁地区层状地幔反射体及其解释[J]. 地球物理学报, 2003, 46(2):191-196. |
[38] |
CAI F, DING L, YUE Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India-Asia collision[J]. Earth and Planetary Science Letters, 2011, 305(1/2):195-206.
DOI URL |
[39] |
DING L, ZHONG D. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet[J]. Science in China: Series D, 1999, 42(5):491-505.
DOI URL |
[40] |
DING L, KAPP P, ZHONG D, et al. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10):1833-1865.
DOI URL |
[41] | DING L, KAPP P, WAN X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, South central Tibet[J]. Tectonics, 2005, 24(3): TC3001. |
[42] |
DING L, QASIM M, JADOON I A K, et al. The India-Asia collision in north Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth and Planetary Science Letters, 2016, 455:49-61.
DOI URL |
[43] |
DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3):215-218.
DOI URL |
[44] |
DECELLES P G, KAPP P, GEHRELS G E, et al. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision[J]. Tectonics, 2014, 33(5):824-849.
DOI URL |
[45] |
GUILLOT S, MAHÉO G, SIGOYER J, et al. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks[J]. Tectonophysics, 2008, 451(1/2/3/4):225-241.
DOI URL |
[46] |
WU F Y, JI W Q, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 2014, 314(2):548-579.
DOI URL |
[47] |
ZHANG Q, DING L, WILLEMS H. Initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology[J]. Journal of Geology, 2012, 120(2):175-189.
DOI URL |
[48] |
DING H X, ZHANG Z M, DONG X, et al. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: constraints from the North Himalayan metamorphic rocks, southeastern Tibet[J]. Earth and Planetary Science Letters, 2016, 435:64-73.
DOI URL |
[49] | MUKHERJEE B K, SACHAN H K. Discovery of coesite from Indian Himalaya: a record of ultra-high pressure metamorphism in Indian continental crust[J]. Current Science, 2001, 81(10):1358-1361. |
[50] | O’BRIEN P J, ZOTOV N, LAW R, et al. Coesite in eclogite from the Upper Kaghan Valley, Pakistan: a first record and implications[J]. Terra Nostra, 1999, 99(2):109-111. |
[51] |
O’BRIEN P J, ZOTOV N, LAW R, et al. Coesite in Himalayan eclogite and implications for models of India-Asia collision[J]. Geology, 2001, 29(5):435-438.
DOI URL |
[52] |
PARRISH R R, GOUGH S J, SEARLE M P, et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya[J]. Geology, 2006, 34(11):989-992.
DOI URL |
[53] | ZHANG Z M, DONG X, DING H X, et al. Metamorphism and partial melting of the Himalayan orogen[J]. Acta Petrologica Sinica, 2017, 33(8):2313-234. |
[54] | ZHANG Z, DING H, PALIN R M, et al. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: implications for the tectonic evolution of the Himalayan orogen[J]. Gondwana Research, 2021 (in press). |
[55] |
WILKE F D H, O’BRIEN P J, ALTENBERGER U, et al. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes[J]. Lithos, 2010, 114(1/2):70-85.
DOI URL |
[56] |
KANEKO Y, KATAYAMA I, YAMAMOTO H, et al. Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia[J]. Journal of Metamorphic Geology, 2003, 21(6):589-599.
DOI URL |
[57] |
O’BRIEN P J. Eclogites and other high-pressure rocks in the Himalaya: a review[J]. Geological Society, London, Special Publications, 2019, 483(1):183-213.
DOI URL |
[58] | ZHANG D D, DING L, CHEN Y, et al. Two contrasting exhumation scenarios of deeply subducted continental crust in North Pakistan[J]. Geochemistry, Geophysics, Geosystems, 2022 (in press). |
[59] |
WANG Y, ZHANG L, ZHANG J, et al. The youngest eclogite in central Himalaya: p-T path, U-Pb zircon age and its tectonic implication[J]. Gondwana Research, 2017, 41:188-206.
DOI URL |
[60] |
LI Q, ZHANG L, FU B, et al. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in central Himalaya and their tectonic implications[J]. Journal of Metamorphic Geology, 2019, 37(2):203-226.
DOI URL |
[61] |
WANG J M, LANARI P, WU F Y, et al. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: implications for collisional tectonics on early Earth[J]. Earth and Planetary Science Letters, 2021, 558:116760.
DOI URL |
[62] |
GROPPO C, LOMBARDO B, ROLFO F, et al. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (eastern Himalayas)[J]. Journal of Metamorphic Geology, 2007, 25(1):51-75.
DOI URL |
[63] |
KUFNER S K, KAKAR N, BEZADA M, et al. The Hindu Kush slab break-off as revealed by deep structure and crustal deformation[J]. Nature Communications, 2021, 12(1):1-11.
DOI URL |
[64] |
ISCHUK A, BENDICK R, RYBIN A, et al. Kinematics of the Pamir and Hindu Kush regions from GPS geodesy[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5):2408-2416.
DOI URL |
[65] |
SHAH S T H, ZHAO J, XIAO Q, et al. Electrical resistivity structures and tectonic implications of Main Karakorum Thrust (MKT) in the Western Himalayas: NNE Pakistan[J]. Physics of the Earth and Planetary Interiors, 2018, 279:57-66.
DOI URL |
[66] |
SIPPL C, SCHURR B, TYMPEL J, et al. Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography[J]. Earth and Planetary Science Letters, 2013, 384:165-177.
DOI URL |
[67] | 李玮, 陈赟, 谭萍, 等. 大陆深俯冲的深浅动力学响应: 来自帕米尔高原地壳精细结构的约束[J]. 中国科学: 地球科学, 2020, 50(5):663-676. |
[68] |
LI W, CHEN Y, YUAN X, et al. Continental lithospheric subduction and intermediate-depth seismicity: constraints from S-wave velocity structures in the Pamir and Hindu Kush[J]. Earth and Planetary Science Letters, 2018, 482:478-489.
DOI URL |
[69] |
ZHAO L, XU X, MALUSÀ M G. Seismic probing of continental subduction zones[J]. Journal of Asian Earth Sciences, 2017, 145:37-45.
DOI URL |
[70] |
ZHAO L, MALUSÀ M G, YUAN H, et al. Author correction: evidence for a serpentinized plate interface favouring continental subduction[J]. Nature Communications, 2020, 11(1):1-8.
DOI URL |
[71] |
ZHAO L, PAUL A, GUILLOT S, et al. First seismic evidence for continental subduction beneath the Western Alps[J]. Geology, 2015, 43(9):815-818.
DOI URL |
[72] | 刘福田, 徐佩芬, 刘劲松, 等. 大陆深俯冲带的地壳速度结构: 东大别造山带深地震宽角反射/折射研究[J]. 地球物理学报, 2003, 46(3):366-372. |
[73] | 范桃园, 石耀霖, 汪集旸, 等. 影响超高压变质岩p-T-t轨迹特征的主要因素[J]. 地球物理进展, 2007, 22(5):1352-1360. |
[74] |
ERNST W G, MARUYAMA S, WALLIS S. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust[J]. Proceedings of the National Academy of Sciences, 1997, 94(18):9532-9537.
DOI URL |
[75] |
MARUYAMA S, LIOU J G, ZHANG R. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China[J]. Island Arc, 1994, 3(2):112-121.
DOI URL |
[76] |
MERLE O, GUILLIER B. The building of the Central Swiss Alps: an experimental approach[J]. Tectonophysics, 1989, 165(1/2/3/4):41-56.
DOI URL |
[77] |
WHEELER J. Structural evolution of a subducted continental sliver: the northern Dora Maira massif, Italian Alps[J]. Journal of the Geological Society, 1991, 148(6):1101-1113.
DOI URL |
[78] |
CLOOS M, SHREVE R L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description[J]. Pure and Applied Geophysics, 1988, 128(3):455-500.
DOI URL |
[79] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865):738-742.
DOI URL |
[80] | GERYA T V, STOCKHERTÖ B, PERCHUK A L. Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation[J]. Tectonics, 2002, 21(6):1056. |
[81] | 郑永飞, 张立飞, 刘良, 等. 大陆深俯冲与超高压变质研究进展[J]. 矿物岩石地球化学通报, 2013, 32(2):135-158. |
[82] |
MALUSÀ M G, FACCENNA C, GARZANTI E, et al. Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps)[J]. Earth and Planetary Science Letters, 2011, 310(1/2):21-32.
DOI URL |
[83] |
ANDERSEN T B, JAMTVEIT B, DEWEY J F, et al. Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides[J]. Terra Nova, 1991, 3(3):303-310.
DOI URL |
[84] |
BRUN J P, FACCENNA C. Exhumation of high-pressure rocks driven by slab rollback[J]. Earth and Planetary Science Letters, 2008, 272(1/2):1-7.
DOI URL |
[85] |
DURETZ T, PETRI B, MOHN G, et al. The importance of structural softening for the evolution and architecture of passive margins[J]. Scientific Reports, 2016, 6(1):1-7.
DOI URL |
[86] |
WANG Y, ZHANG L F, LI Z H, et al. The exhumation of subducted oceanic-derived eclogites: insights from phase equilibrium and thermomechanical modeling[J]. Tectonics, 2019, 38(5):1764-1797.
DOI URL |
[87] |
HACKER B R, GERYA T V, GILOTTI J A. Formation and exhumation of ultrahigh-pressure terranes[J]. Elements, 2013, 9(4):289-293.
DOI URL |
[88] | 李忠海. 大陆俯冲-碰撞-折返的动力学数值模拟研究综述[J]. 中国科学: 地球科学, 2014, 44(5):817-841 |
[89] | 张建新. 俯冲隧道研究: 进展, 问题及其挑战[J]. 中国科学: 地球科学, 2020, 50(12):1671-1691. |
[1] | 杨文采. 固体地球物理学与板块大地构造学的交汇[J]. 地学前缘, 20140101, 21(1): 89-99. |
[2] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[3] | 张健, 何雨蓓, 范艳霞. 福建沿海地区地热异常热源成因的地球物理分析[J]. 地学前缘, 2024, 31(3): 392-401. |
[4] | 夏腾, 张家铭, 李书鹏, 郭丽莉, 王祺, 毛德强. 有机污染场地原位修复过程的地球物理动态监测与分析[J]. 地学前缘, 2024, 31(3): 432-442. |
[5] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[6] | 任纪舜, 刘建辉, 朱俊宾. 中国东部中生代上叠造山系[J]. 地学前缘, 2024, 31(1): 142-153. |
[7] | 张艳斌, 翟明国, 周艳艳, 周李岗. 大陆下地壳[J]. 地学前缘, 2024, 31(1): 28-45. |
[8] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[9] | 杨立强, 和文言, 高雪, 王偲瑞, 李楠, 邱昆峰, 张良, 马强, 苏玉平, 李大鹏, 张智宇, 于红. 克拉通岩石圈三维物质架构示踪方法[J]. 地学前缘, 2023, 30(6): 391-405. |
[10] | 何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 伟晶岩型锂矿床地球物理探测及可可托海实例[J]. 地学前缘, 2023, 30(5): 244-254. |
[11] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[12] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[13] | 曾忠诚, 洪增林, 边小卫, 陈宁, 张若愚, 李琦. 阿尔金造山带南缘晚奥陶世赞岐质闪长岩的发现及其地质意义[J]. 地学前缘, 2022, 29(4): 345-357. |
[14] | 张洪瑞, 侯增谦. 碰撞带热结构与碰撞成矿系统[J]. 地学前缘, 2022, 29(2): 1-13. |
[15] | 李文辉, 王海燕, 高锐, 卢占武, 李洪强, 侯贺晟, 熊小松, 叶卓. 秦岭造山带及邻区上地壳精细速度结构研究[J]. 地学前缘, 2022, 29(2): 198-209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||