地学前缘 ›› 2022, Vol. 29 ›› Issue (2): 56-78.DOI: 10.13745/j.esf.sf.2022.2.4
• 俯冲碰撞与岩浆活动、变质作用与成矿系统 • 上一篇 下一篇
张进1(), 曲军峰1, 赵衡1, 张北航1, 刘建峰1, 郑荣国1, 杨亚琦1, 牛鹏飞1, 惠洁2, 赵硕1, 张义平3
收稿日期:
2022-02-20
修回日期:
2022-02-27
出版日期:
2022-03-25
发布日期:
2022-03-31
作者简介:
张 进(1973—),男,博士,研究员,博士生导师,主要从事基础地质调查与造山带变形方面的研究。E-mail: zhangjinem@sina.com
基金资助:
ZHANG Jin1(), QU Junfeng1, ZHAO Heng1, ZHANG Beihang1, LIU Jianfeng1, ZHENG Rongguo1, YANG Yaqi1, NIU Pengfei1, HUI Jie2, ZHAO Shuo1, ZHANG Yiping3
Received:
2022-02-20
Revised:
2022-02-27
Online:
2022-03-25
Published:
2022-03-31
摘要:
俯冲增生杂岩带是造山带重要的组成单元,它记录了从俯冲到碰撞以及碰撞后陆内的演化历史,具有重要的研究价值。由于增生楔形成过程复杂,而后期的碰撞以及陆内变形又会强烈改造俯冲期的变形,因此如何区分增生杂岩中俯冲期间和碰撞阶段的变形就非常重要,但明确的区分两者又是非常困难的工作。我国几乎所有地区发育的俯冲-增生杂岩都经历了后期强烈的改造,因而正确合理地筛分俯冲阶段和碰撞阶段的变形,在我国的造山带研究中日益突出。本文在详细介绍俯冲期间相关变形及其机制的基础上,从不同构造要素的分布、发育特征、形成环境、成因机制等方面综合对比了俯冲阶段和碰撞阶段以及之后构造变形的异同,提出了区别不同阶段变形的主要原则。相比碰撞阶段变形,俯冲阶段的变形主要集中在俯冲隧道中,以简单剪切或一般剪切为主(逆冲断层多见),底板垫托以及双冲构造是变形的重要特征,变形呈弥散性,断层和面理以及褶皱等具有优势的构造极性,但缺少区域尺度的大型褶皱;纯剪变形少见,主要发育在俯冲隧道上方的增生楔中。流体作用以及水岩反应强烈,直接控制变形行为,发育有从显微尺度到区域尺度的变形分解现象。而碰撞阶段主要是在陆上环境进行,主要变形集中在接触带以及大型断裂/剪切带附近。断层和面理的构造极性不明显,增生楔整体变形,出现区域尺度的大型褶皱;流体作用虽有,但不如俯冲阶段明显和强烈,以逆冲和走滑断层多见。然而很多指标和依据并不是某种环境下唯一的,因此在实际工作中需要综合各方面信息和要素进行判断,合理区分不同阶段的变形。
中图分类号:
张进, 曲军峰, 赵衡, 张北航, 刘建峰, 郑荣国, 杨亚琦, 牛鹏飞, 惠洁, 赵硕, 张义平. 俯冲增生杂岩带变形特征、成因机制及与后期变形的区别[J]. 地学前缘, 2022, 29(2): 56-78.
ZHANG Jin, QU Junfeng, ZHAO Heng, ZHANG Beihang, LIU Jianfeng, ZHENG Rongguo, YANG Yaqi, NIU Pengfei, HUI Jie, ZHAO Shuo, ZHANG Yiping. Deformation in subduction-accretionary complex belts: Characteristics, mechanism and differentiation from late-stage event[J]. Earth Science Frontiers, 2022, 29(2): 56-78.
图6 俯冲增生杂岩带中不同尺度的双冲构造 a—日本侏罗纪—白垩纪Chichibu增生杂岩内的双冲构造,引自文献[79];b—图a中的局部放大;c—内蒙古东部晚古生代杏树洼蛇绿混杂岩基质内发育的双冲构造。
Fig.6 Duplexes of different scales in subduction-accretionary complex belts (a adapted from [79])
图7 俯冲增生杂岩带典型褶皱及其形成过程 a,b—内蒙古东部双井片岩片间褶皱;c—俯冲带递进变形模型,引自文献[51];d—俯冲带褶皱枢纽统计,引自文献[48];e—俯冲带矿物拉伸线理统计,引自文献[48]。
Fig.7 Typical folds and their development process in the subduction-accretionary complex belts
图9 弧分割法 a—方法示意,数值的单位为(°),引自文献[112];b—根据断层活动单斜对称模型完善的Separation-arc方法,上图为计算机模拟的文献[112]数据分布,左下为平行断层面的转换Z轴投影,右下为Z轴的统计分布,SV—滑动矢量;SZA—综合Z轴;DDD—倾向方向,引自文献[24]。
Fig.9 Separation-arc method
图11 日本侏罗纪Mino俯冲增生杂岩带右行斜向俯冲导致的应变分解 (据文献[129])
Fig.11 Strain partitioning in the Jurassic Mino subduction-accretionary complex belt of Japan caused by dextral oblique subduction. Adapted from [129].
图12 中亚造山带东段索伦山蛇绿混杂岩白垩纪低角度拆离正断层 a—虚线为低角度正断层,下盘为索伦山蛇绿混杂岩,上盘为陆相白垩纪盆地,断层与蛇绿混杂岩斜交;b—低角度正断层上的倾向擦痕;c—角度正断层上的断层角砾岩;d—蛇绿混杂岩带内的低角度正断层。
Fig.12 Cretaceous lower angle normal faults within the Solonker ophiolitic mélange in the eastern Central Asian Orogenic Belt
图14 内蒙古中部温都尔庙增生杂岩带内发育的两期褶皱 a—早期近东西向褶皱,形成于早古生代洋壳向南的俯冲阶段;b—晚期近南北向的褶皱叠加在早期近东西向褶皱之上,形成Basin和dome叠加褶皱,晚期近南北向褶皱为近东西向右行韧性剪切所致。
Fig.14 Two-stage folds in the Wendu’ermiao subduction-accretionary complex belt of central Inner Mongolia
图15 温都尔庙俯冲增生杂岩带地质图 a—地质图(图中粗虚线代表面理的主要走向变化);b—基质(云母石英片岩)中的“Z”字型褶皱(叠加褶皱);c—基质(云母石英片岩)中的“Z”字型褶皱。
Fig.15 Geological map of the Wendu’ermiao subduction-accretionary complex belt
对比项 | 主要构造特征 | |||
---|---|---|---|---|
俯冲增生期 | 碰撞及后期 | |||
变形环境与 总体特征 | 俯冲作用几乎全部在海沟深部水下进行,主要变形集中在俯冲隧道中,以简单剪切或一般剪切为主(逆冲断层多见),断层和面理以及褶皱等具有优势的构造极性;纯剪变形少见,主要发育在俯冲隧道上方的增生楔中。流体作用以及水岩反应强烈,直接控制变形行为。俯冲隧道宽度一般较大,会出现应变分带现象以及深部物质的折返。 | 主要是在陆上环境进行,主要变形集中在接触带以及大型断裂/剪切带附近。断层和面理的构造极性不明显;流体作用虽有,但不如俯冲阶段明显和强烈。以逆冲和走滑断层多见。 | ||
面理 | 1.鳞片状,压溶作用普遍[ 2.分布稳定、连续,走向稳定,倾角多变[ 3.主要分布在基质中,透入性,均匀且厚度大,宏观呈塑性[ 4.发育S-C组构和透入性里德尔剪切[ 5.几乎都经历递进变形,发育小尺度不对称褶皱[ 6.沿面理经常有脉体分布[ 7.卷入岩石为砂、泥岩以及部分基性火山岩为主。 | 1.多集中在断裂带或剪切带附近,厚度薄[ 2.分布不连续,里德尔剪切分布不均匀。 3.一般倾角较陡(与后期走滑作用有关)。 4.卷入岩石主要包括中酸性侵入岩和沉积岩。 | ||
线理 | 矿物 线理 | 1.发育较弱,不易识别(变质程度无或低—浊沸石相、葡萄石—绿纤石相),以云母多见[ 2.方向多变,不稳定,既有平行俯冲带,也有垂直俯冲带或介于两者之间[ | 1.广泛发育、容易识别(变质程度较高—绿片岩相),以石英等拉伸线理为主[ 2.稳定分布,平行或近于平行构造带,线理近水平为主。 | |
透镜体 | 1.岩块透镜体化,一般浅部长轴垂直于俯冲方向,深部则出现无优选方向或向平行俯冲方向旋转[ 2.一般发育于俯冲板块上部,处于伸展、弱变质环境[ | 1.一般发育于褶皱、地壳加厚环境,变质环境较高,高绿片岩相—角闪岩相[ | ||
脉体 | 1.脉体丰富(浅部为富水沉积物脱水、深部为矿物变质反应脱水)[ 2成分多样,以钠长石、石英、方解石、蓝闪石以及蓝透闪石等多见[ 3.垂直面理与平行面理脉体发育[ | 1.分布局限。 2.成分以石英、方解石为主。 3.产状多样。 | ||
断层 | 正断层或 extensional band | 1.分布普遍且规模较小,走向上连续性不好。 2.一般发育在增生楔的上部[ 3.由块体透镜化的里德尔剪切破裂发展而来,走向平行面理或构造带[ 4.高角度和低角度断层均发育[ 5.与海山/洋脊俯冲有关,分布局限[ 6.与地震活动有关,分布局限[ 7.与俯冲过程中的构造侵蚀有关[ | 1.规模较大,走向上连续性好。 2.切割前期构造(可平行前期构造也可以大角度相交)。 3.高角度和低角度断层均发育,但低角度多见。 4.控制陆相沉积(伸展盆地)。 5.切割增生楔的区域性盖层或侵入其中的岩体、岩脉。 | |
逆冲 断层 | 1.发育大量不同尺度双冲构造[ 2.规模大小不一。 3.密集发育[ 4.与基质面理的走向一致或平行,构造极性明显[ 5.主要变形带厚度和位移量大(megathrust)[ | 1.规模较大,走向上连续性好[ 2.切割前期构造[ 3.控制陆相沉积和变形(前陆盆地)。 4.切割增生楔的区域性盖层或侵入其中的岩体、岩脉。 5.可以出现与走滑断层相伴生的次级逆冲断层,剖面上呈正花状,无清晰的构造极性。 | ||
走滑断层 | 1.分散分布。 2.多见于斜向俯冲的增生楔中后部(发生应变分解)[ 3.与海山/洋脊俯冲有关,分布局限[ 4.见于Trench-Trench-Trench三联点俯冲地区[ | 1.规模较大,走向上连续性好[ 2.切割或卷入前期构造。 3.控制陆相沉积和变形(拉分盆地)。 4.断层两侧构造样式对称或近于对称,花状构造发育[ 5.常见于陆内变形阶段[ 6.切割增生楔的区域性盖层或侵入其中的岩体、岩脉。 | ||
褶皱 | 1.片间紧闭同斜褶皱发育,为剪切褶皱,规模小(露头尺度),数量多,褶皱的振幅与1/4波长比值高[ 2.递进变形发育,多为共轴[ 3.不同深度褶皱样式不一,多数褶皱为1B和1C型褶皱[ 4.褶皱的连续性不好,缺少区域性的褶皱[ 5.既有软沉积物变形,也有韧性变形[ | 1.规模较大,走向上连续性好(不同尺度均发育),褶皱的振幅与1/4波长比值低[ 2.弯滑褶皱(B型褶皱)发育[ 3.存在向前陆方向变弱的构造极性(褶皱极性和幅度)[ 4.褶皱一般比较宽缓,轴面近陡倾[ 5.脆、韧性变形,发育叠加褶皱。 |
表1 俯冲期与碰撞及其之后阶段主要构造要素的特征及区分
Table 1 Characteristics and differentiation of main structural elements in the subduction and collision periods and subsequent stages
对比项 | 主要构造特征 | |||
---|---|---|---|---|
俯冲增生期 | 碰撞及后期 | |||
变形环境与 总体特征 | 俯冲作用几乎全部在海沟深部水下进行,主要变形集中在俯冲隧道中,以简单剪切或一般剪切为主(逆冲断层多见),断层和面理以及褶皱等具有优势的构造极性;纯剪变形少见,主要发育在俯冲隧道上方的增生楔中。流体作用以及水岩反应强烈,直接控制变形行为。俯冲隧道宽度一般较大,会出现应变分带现象以及深部物质的折返。 | 主要是在陆上环境进行,主要变形集中在接触带以及大型断裂/剪切带附近。断层和面理的构造极性不明显;流体作用虽有,但不如俯冲阶段明显和强烈。以逆冲和走滑断层多见。 | ||
面理 | 1.鳞片状,压溶作用普遍[ 2.分布稳定、连续,走向稳定,倾角多变[ 3.主要分布在基质中,透入性,均匀且厚度大,宏观呈塑性[ 4.发育S-C组构和透入性里德尔剪切[ 5.几乎都经历递进变形,发育小尺度不对称褶皱[ 6.沿面理经常有脉体分布[ 7.卷入岩石为砂、泥岩以及部分基性火山岩为主。 | 1.多集中在断裂带或剪切带附近,厚度薄[ 2.分布不连续,里德尔剪切分布不均匀。 3.一般倾角较陡(与后期走滑作用有关)。 4.卷入岩石主要包括中酸性侵入岩和沉积岩。 | ||
线理 | 矿物 线理 | 1.发育较弱,不易识别(变质程度无或低—浊沸石相、葡萄石—绿纤石相),以云母多见[ 2.方向多变,不稳定,既有平行俯冲带,也有垂直俯冲带或介于两者之间[ | 1.广泛发育、容易识别(变质程度较高—绿片岩相),以石英等拉伸线理为主[ 2.稳定分布,平行或近于平行构造带,线理近水平为主。 | |
透镜体 | 1.岩块透镜体化,一般浅部长轴垂直于俯冲方向,深部则出现无优选方向或向平行俯冲方向旋转[ 2.一般发育于俯冲板块上部,处于伸展、弱变质环境[ | 1.一般发育于褶皱、地壳加厚环境,变质环境较高,高绿片岩相—角闪岩相[ | ||
脉体 | 1.脉体丰富(浅部为富水沉积物脱水、深部为矿物变质反应脱水)[ 2成分多样,以钠长石、石英、方解石、蓝闪石以及蓝透闪石等多见[ 3.垂直面理与平行面理脉体发育[ | 1.分布局限。 2.成分以石英、方解石为主。 3.产状多样。 | ||
断层 | 正断层或 extensional band | 1.分布普遍且规模较小,走向上连续性不好。 2.一般发育在增生楔的上部[ 3.由块体透镜化的里德尔剪切破裂发展而来,走向平行面理或构造带[ 4.高角度和低角度断层均发育[ 5.与海山/洋脊俯冲有关,分布局限[ 6.与地震活动有关,分布局限[ 7.与俯冲过程中的构造侵蚀有关[ | 1.规模较大,走向上连续性好。 2.切割前期构造(可平行前期构造也可以大角度相交)。 3.高角度和低角度断层均发育,但低角度多见。 4.控制陆相沉积(伸展盆地)。 5.切割增生楔的区域性盖层或侵入其中的岩体、岩脉。 | |
逆冲 断层 | 1.发育大量不同尺度双冲构造[ 2.规模大小不一。 3.密集发育[ 4.与基质面理的走向一致或平行,构造极性明显[ 5.主要变形带厚度和位移量大(megathrust)[ | 1.规模较大,走向上连续性好[ 2.切割前期构造[ 3.控制陆相沉积和变形(前陆盆地)。 4.切割增生楔的区域性盖层或侵入其中的岩体、岩脉。 5.可以出现与走滑断层相伴生的次级逆冲断层,剖面上呈正花状,无清晰的构造极性。 | ||
走滑断层 | 1.分散分布。 2.多见于斜向俯冲的增生楔中后部(发生应变分解)[ 3.与海山/洋脊俯冲有关,分布局限[ 4.见于Trench-Trench-Trench三联点俯冲地区[ | 1.规模较大,走向上连续性好[ 2.切割或卷入前期构造。 3.控制陆相沉积和变形(拉分盆地)。 4.断层两侧构造样式对称或近于对称,花状构造发育[ 5.常见于陆内变形阶段[ 6.切割增生楔的区域性盖层或侵入其中的岩体、岩脉。 | ||
褶皱 | 1.片间紧闭同斜褶皱发育,为剪切褶皱,规模小(露头尺度),数量多,褶皱的振幅与1/4波长比值高[ 2.递进变形发育,多为共轴[ 3.不同深度褶皱样式不一,多数褶皱为1B和1C型褶皱[ 4.褶皱的连续性不好,缺少区域性的褶皱[ 5.既有软沉积物变形,也有韧性变形[ | 1.规模较大,走向上连续性好(不同尺度均发育),褶皱的振幅与1/4波长比值低[ 2.弯滑褶皱(B型褶皱)发育[ 3.存在向前陆方向变弱的构造极性(褶皱极性和幅度)[ 4.褶皱一般比较宽缓,轴面近陡倾[ 5.脆、韧性变形,发育叠加褶皱。 |
[1] |
HSÜ K. The principles of mélanges and their bearing on the Franciscan-Knoxville paradox[J]. Geological Society of America Bulletin, 1968, 79:1063-1074.
DOI URL |
[2] | 张庆龙, 水谷伸治郎. 黑龙江那丹哈达地体构造初探[J]. 地质论评, 1989, 35:67-71. |
[3] | FUKUI A, KANO K. Deformation process and kinematics of mélange in the Early Cretaceous accretionary complex of the Mino-Tamba Belt, eastern southwest Japan[J]. Tectonics, 2007, 26: TC2006. https://doi.org/10.1029/2006TC001945 . |
[4] | GREENLY E. The geology of Anglesey[J]. Great Britain Geological Survey Memoir, 1919, 1:1-980. |
[5] | STUDER B. Index der petrographie und stratigraphie der schweiz und ihrer umgebungen[M]. Bern: Verlag der J. Dalp’schen Buch- und Kunstdhandlung (K. Schmid), 1872:1-272. |
[6] | FLORES G. Evidence of slump phenomena (olistostromes) in areas of hydrocarbon exploration in Sicily[C]// Proceedings of the 5th world petroleum congress. New York: John Wiley & Sons, 1959: 259-275. |
[7] | SENGÖR A M C. The repeated discovery of mélanges and its implications for the possibility and role of objective scientific evidence in the scientific enterprise[J]. Geological Society of America Special Paper, 2003, 373:385-446. |
[8] | GANSSER A. The ophiolitic mélange, a world-wide problem on Tethyan examples[J]. Eclogae Geologicae Helvetiae, 1974, 67:479-507 |
[9] |
SILVER E A, BEUTNER E C. Mélanges[J]. Geology, 1980, 8:32-34.
DOI URL |
[10] | RAYMOND L A. Classification of mélanges[J]. Geological Society of America Special Paper, 1984, 198:7-20. |
[11] |
COWAN D S. Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America[J]. Geological Society of America Bulletin, 1985, 96:451-462.
DOI URL |
[12] |
FESTA A, DILEK Y, PINI G A, et al. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: redefining and classifying mélanges[J]. Tectonophysics, 2012, 568/569:7-24.
DOI URL |
[13] |
RAYMOND L A. Designating tectonostratigraphic terranes versus mapping rock units in subduction complexes: perspectives from the franciscan complex of California, USA[J]. International Geology Review, 2015, 57:801-823.
DOI URL |
[14] |
RAYMOND L A. What is Franciscan?: revisited[J]. International Geology Review, 2018, 60(16):1968-2030. DOI: 10.1080/00206814.2017.1396933.
DOI URL |
[15] |
WAKABAYASHI J. Anatomy of a subduction complex: architecture of the Franciscan Complex,California, at multiple length and time scales[J]. International Geology Review, 2015, 57:669-746.
DOI URL |
[16] |
ISOZAKI Y, MARUYAMA S, FURUOKA F. Accreted oceanic materials in Japan[J]. Tectonophysics, 1990, 181:179-205.
DOI URL |
[17] |
MATSUDA T, ISOZAKI Y. Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone[J]. Tectonics, 1991, 10:475-499.
DOI URL |
[18] | WAKITA K, METCALFE I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Sciences, 2005, 24:670-702. |
[19] | FESTA A, BARBERO E, REMITTI F. Mélanges and chaotic rock units: implications for exhumed subduction complexes and orogenic belts[J]. Geosystems and Geoenvironment, 2022, 1(2):100030. http://doi.org/10.1016/j.geogeo.2022.100030 . |
[20] |
ZHANG K X, WANG J X, HE W H, et al. Reconstructed ocean plate stratigraphy sequences from the Permian subduction-accretionary complex in the Qinghai-Tibet Plateau[J]. Geosystems and Geoenvironment, 2022, 1(2):100034.
DOI URL |
[21] | 周建波. 增生杂岩: 从大洋俯冲到大陆深俯冲的地质记录[J]. 中国科学: 地球科学, 2020, 50(12):1709-1726. |
[22] |
WAKITA K. Mappable features of mélanges derived from Ocean Plate Stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes inSouthwest Japan[J]. Tectonophysics, 2012, 568/569:74-85.
DOI URL |
[23] |
WAKITA K. OPS mélange: a new term for mélange of convergent margins of the world[J]. International Geology Review, 2015, 57(5/6/7/8):529-539. http://doi.org/10.1080/00206814.2014.949312 .
DOI URL |
[24] |
COWAN D S, BRANDON M T. A symmetry-based method for kinematic analysis of large-slip brittle fault zones[J]. American Journal of Science, 1994, 294:257-306.
DOI URL |
[25] |
ONISHI C T, KIMURA G. Change in fabric of melange in the Shimanto Belt, Japan: change in relative convergence?[J]. Tectonics, 1995, 14:1273-1289.
DOI URL |
[26] |
ONISHI C T, KIMURA G, HASHIMOTO Y, et al. Deformation history of tectonic melange and its relationship to the underplating process and relative plate motion: an example from the deeply buried Shimanto Belt, SW Japan[J]. Tectonics, 2001, 20:376-393.
DOI URL |
[27] |
KUSKY T M, BRADLEY D C. Kinematic analysis of melange fabrics: examples and applications from the McHugh Complex, Kenai Peninsula, Alaska[J]. Journal of Structural Geology, 1999, 21:1773-1796.
DOI URL |
[28] | RING U. Deformation and exhumation at convergent margins: the Franciscan subduction complex[J]. Geological Society of America Special Paper, 2008, 445:1-61. |
[29] |
CLOOS M. Flow melanges: Numerical modelling and geologic constraints on their origin in the Franciscan complex, California[J]. Geological Society of America Bulletin, 1982, 93:330-345.
DOI URL |
[30] |
MARUYAMA S, LIOU J G, TERABAYASHI M. Blueschists and eclogites of the world and their exhumation[J]. International Geology Review, 1996, 38:485-594.
DOI URL |
[31] |
PLATT J P. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks[J]. Geological Society of America Bulletin, 1986, 97:1037-105.
DOI URL |
[32] |
PLATT J P. The uplift of high-pressure-low-temperature metamorphic rocks[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1987, 321:87-103.https://doi.org/10.1098/rsta.1987.0006 .
DOI URL |
[33] |
CLOOS M, SHREVE R L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description[J]. Pure and Applied Geophysics, 1988, 128:455-500.
DOI URL |
[34] |
CLOOS M, SHREVE R L. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: part II. Implications and discussion[J]. Pure and Applied Geophysics, 1988, 128:501-545.
DOI URL |
[35] |
KROHE A. The Franciscan Complex (California, USA) - The model case for return-flow in a subduction channel put to the test[J]. Gondwana Research, 2017, 45:282-307.
DOI URL |
[36] |
WAKABAYASHI J. Sedimentary compared to tectonically-deformed serpentinites and tectonic serpentinite mélanges at outcrop to petrographic scales: unambiguous and disputed examples from California[J]. Gondwana Research, 2019, 74:51-67.
DOI URL |
[37] | RAYMOND L A. Perspectives on the roles of mélanges in subduction accretionary complexes: a review[J]. Gondwana Research, 2019, 74:72-93. |
[38] | 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-28. |
[39] |
ZHANG J E, XIAO W J, HAN C M, et al. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in western Junggar, NW China[J]. Gondwana Research, 2011, 19(4):958-974.
DOI URL |
[40] |
TIAN Z H, XIAO W J, WINDLEY B F, et al. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Research, 2014, 25:820-841.
DOI URL |
[41] |
WANG J X, ZHANG K X, WINDLEY B F, et al. A mid-Palaeozoic ocean-continent transition in the Mazongshan subduction-accretion complex, Beishan, NW China: new structural, chemical and age data constrain the petrogenesis and tectonic evolution[J]. Geological Magazine, 2020, 157:1877-1897.
DOI URL |
[42] |
WANG J P, LI X W, NING W B, et al. Geology of a Neoarchean suture: evidence from the Zunhua ophiolitic mélange of the eastern Hebei Province, North China Craton[J]. GSA Bulletin, 2019, 131(11/12):1943-1964.
DOI URL |
[43] |
KUSKY T M, WANG J P, WANG L, et al. Mélanges through time: life cycle of the world’s largest Archean mélange compared with Mesozoic and Paleozoic subduction-accretion-collision mélanges[J]. Earth-Science Reviews, 2000, 209:103303.
DOI URL |
[44] |
HARMS T, JAYKO A S, BLAKE M C. Kinematic evidence for extensional unroofi ng of the Franciscan Complex along the Coast Range fault zone, northern Diablo Range, California[J]. Tectonics, 1992, 11:228-241.
DOI URL |
[45] |
ERNST W G. Franciscan mélanges: coherent blocks in a low-density, ductile matrix[J]. International Geology Review, 2016, 58(5):626-642.
DOI URL |
[46] |
RING U, BRANDON M T. Kinematic data for the Coast Range fault and implications for exhumation of the Franciscan subduction complex[J]. Geology, 1994, 22:735-738.
DOI URL |
[47] |
MIYASHIRO A. Evolution of metamorphic belts[J]. Journal of Petrology, 1961, 2(3):277-311.
DOI URL |
[48] |
MACKENZIE J S, NEEDHAM D T, AGAR S M. Progressive deformation in an accretionary complex: an example from the Shimanto Belt of eastern Kyushu, southwest Japan[J]. Geology, 1987, 15:353-356.
DOI URL |
[49] |
NEEDHAM D T, MACKENZIE J S. Structural evolution of the Shimanto Belt accretionary complex in the area of the Gokase River, Kyushu, SW Japan[J]. Journal of the Geological Society, London, 1988, 145:85-94.
DOI URL |
[50] |
NEEDHAM D T. Mechanisms of mélange formation: examples from SW Japan and southern Scotland[J]. Journal of Structural Geology, 1995, 17:971-985.
DOI URL |
[51] |
KIMURA G, MUKAI A. Underplated units in an accretionary complex: melange of the Shimanto belt of eastern Shikoku, southwest Japan[J]. Tectonics, 1991, 10(1):31-50.
DOI URL |
[52] |
ISOZAKI Y. Anatomy and genesis of a subduction-related orogen: a new view of geotectonic subdivision and evolution of the Japanese Islands[J]. Island Arc, 1996, 5:289-320.
DOI URL |
[53] |
HASHIMOTO Y, KIMURA G. Underplating process from mélange formation to duplexing: example from the Cretaceous Shimanto Belt, Kii Peninsula, Southwest Japan[J]. Tectonics, 1999, 18:92-107.
DOI URL |
[54] |
PARK J O, TSURU T, KODAIRA S, et al. Splay fault branching along the Nankai subduction zone[J]. Science, 2002, 297:1157-1160.
DOI URL |
[55] |
KITAMURA Y, KIMURA G. Dynamic role of tectonic mélange during interseismic process of plate boundary mega earthquakes[J]. Tectonophysics, 2012, 568/569:39-52.
DOI URL |
[56] | OGATA K, PINI G A, CARE D. Progressive development of block-in-matrix fabric in a shale-dominated shear zone: insights from the Bobbio Tectonic Window (Northern Apennines, Italy)[J]. Tectonics, 2012, 31: TC1003. DOI: 10.1029/2011TC002924. |
[57] |
CHARVET J. Late Paleozoic-Mesozoic tectonic evolution ofSW Japan: a review-reappraisal of the accretionary orogeny and revalidation of the collisional model[J]. Journal of Asian Earth Sciences, 2013, 72:88-101.
DOI URL |
[58] | RAIMBOURG H, TADAHIRO S, ASUKA Y, et al. Horizontal shortening versus vertical loading in accretionary prisms[J]. Geochemistry, Geophysics, Geosystems, 2009, 10: Q04007. https://doi.org/10.1029/2008GC002279 |
[59] |
RAIMBOURG H, AUGIER R, FAMIN V, et al. Long-term evolution of an accretionary prism: the case study of the Shimanto Belt, Kyushu, Japan[J]. Tectonics, 2014, 33:1-24.
DOI URL |
[60] |
RAIMBOURG H, FAMIN V, PALAZZIN G, et al. Tertiary evolution of the Shimanto Belt (Japan): a large-scale collision in early Miocene[J]. Tectonics, 2017, 36:1-21.
DOI URL |
[61] |
RAIMBOURG H, FAMIN V, PALAZZIN G, et al. Distributed deformation along the subduction plate interface: the role of tectonic mélanges[J]. Lithos, 2019, 334/335:69-87.
DOI URL |
[62] |
MUKOYOSHI H, SAKAGUCHI A, OTSUKI K, et al. Co-seismic frictional melting along an out-of-sequence thrust in the Shimanto accretionary complex: implications on the tsunamigenic potential of splay faults in modern subduction zones[J]. Earth and Planetary Science Letters, 2006, 245:330-343.
DOI URL |
[63] |
IKESAWA E, SAKAGUCHI A, KIMURA G. Pseudotachylyte froman ancient accretionary complex: evidence for melt generation during seismic slip along a master décollement?[J]. Geology, 2003, 31:637-640.
DOI URL |
[64] | KONDO H, KIMURA G, MASAGO H, et al. Deformation and fluid flow of a major out-of-sequence thrust located at seismogenic depth in an accretionary complex: Nobeoka Thrust in the Shimanto Belt, Kyushu, Japan[J]. Tectonics, 2005, 24:1-16. |
[65] |
ROWE C D, MOORE J C, MENEGHINI F, et al. Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault[J]. Geology, 2005, 33(12):937-940.
DOI URL |
[66] | KITAMURA Y, SATO K, IKESAWA E, et al. Melange and its seismogenic roof decollement: a plate boundary fault rock in the subduction zone: an example from the Shimanto Belt, Japan[J]. Tectonics, 2005, 24:1-15. |
[67] |
FAGERENG Å, SIBSON R H. Mélange rheology and seismic style[J]. Geology, 2010, 38:751-754.
DOI URL |
[68] |
FAGERENG Å. Geology of the seismogenic subduction thrust interface[J]. Geological Society, London, Special Publication, 2011, 359:55-76. https://doi.org/10.1144/SP359.4 .
DOI URL |
[69] |
FAGERENG Å, REMITTI F, SIBSON R H. Incrementally developed slickenfibers-geological record of repeating lowstress-drop seismic events?[J]. Tectonophysics, 2011, 510:381-386.
DOI URL |
[70] | FAGERENG Å, DIENER J F A, ELLIS S, et al. Fluid-related deformation processes at the up- and downdip limits of the subduction thrust seismogenic zone: what do the rocks tell us?[J]. Geological Society of America Special Paper, 2018, 534:187-215. |
[71] | HASHIMOTO Y, UEDA D, MOTOMIYA Y, et al. Normal faults at same depth as thrust faults in an exhumed accretionary complex, Kayo Formation, Okinawa Islands, Japan[J]. Geological Society of America Special Paper, 2018, 534:175-185. |
[72] | 张建新. 俯冲隧道研究: 进展、问题及其挑战[J]. 中国科学: 地球科学, 2020, 50(12):1671-1691. |
[73] | HAMILTON W H. Tectonics of the Indonesian region[J]. US Geological Survey Professional Paper, 1979, 1078:345. |
[74] |
VON HUENE R, SCHOLL D W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust[J]. Reviews of Geophysics, 1991, 29:279-316.
DOI URL |
[75] |
BANGS N L B, GULICK S P S, SHIPLEY T.H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone[J]. Geology, 2006, 34:701-704.
DOI URL |
[76] |
MOORE J C, BYRNE T. Thickening of fault zones: a mechanism of mélange formation in accreting sediments[J]. Geology, 1987, 15:1040-1043.
DOI URL |
[77] |
KIMURA G, MARUYAMA S, ISOZAKI Y, et al. Well preserved underplating structure of the jadeitized Franciscan complex, Pacheco Pass, California[J]. Geology, 1996, 24:75-78.
DOI URL |
[78] |
HIRONO T, OGAWA Y. Duplex arrays and thickening of accretionary prisms: an example from Boso Peninsula, Japan[J]. Geology, 1998, 26:779-782.
DOI URL |
[79] | UENO H, HISADA K I, OGAWA Y. Numerical estimation of duplex thickening in a deep-level accretionary prism: a proposal for network duplex[J]. Geological Society of America Special Paper, 2011, 480:207-213. |
[80] |
CHAPPLE W M. Mechanics of thin-skinned fold-and-thrust belts[J]. Geological Society of America Bulletin, 1978, 89:1189-1198.
DOI URL |
[81] |
DAVIS D, SUPPE J, DAHLEN F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88(B2):1153-1172.
DOI URL |
[82] |
DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory[J]. Journal of Geophysical Research, 1984, 89(B12):10087-10101.
DOI URL |
[83] |
DAHLEN F A. Noncohesive critical Coulomb wedges: an exact solution[J]. Journal of Geophysical Research, 1984, 89(B12):10125-10133.
DOI URL |
[84] |
DAHLEN F A. Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences, 1990, 18:55-99.
DOI URL |
[85] | 张进, 马宗晋. 褶皱逆冲带临界角模型的研究进展[J]. 地质科技情报, 2004, 23(4):44-50. |
[86] |
MOORE J C, WHEELER R L. Structural fabric of a melange, Kodiak Islands, Alaska[J]. American Journal of Science, 1978, 278:739-765.
DOI URL |
[87] |
PLATT J P, LEGGETT J K, ALAM S. Slip vectors and fault mechanics in the Makran Accretionary, wedge, southwest Pakistan[J]. Journal of Geophysical Research, 1988, 93:7955-7973.
DOI URL |
[88] |
WAKABAYASHI J, ROWE C D. Whither the megathrust? Localization of large-scale subduction slip along the contact of a mélange[J]. International Geology Review, 2015, 57:854-870.
DOI URL |
[89] |
RAYMOND L A, BERO D A. Sandstone-matrix mélanges, architectural subdivision, and geologic history of accretionary complexes: a sedimentological and structural perspective from the Franciscan complex of Sonoma and Marin counties, California, USA[J]. Geosphere, 2015, 11:1-34.
DOI URL |
[90] |
ERNST W G. Systematics of large scale tectonics and age progressions in Alpine and circumpacific blueschist belts[J]. Tectonophysics, 1975, 26:229-246.
DOI URL |
[91] | MACKINNON T C. The geometry of accreted ‘packets’ in subduction zones. Examples from the Eastern Belt of the Franciscan in California and the Torlesse Terrane in New Zealand[J]. American Geophysical Union Abstract, 2015: T21E-2888. |
[92] |
ROWE C D, MOORE J C, REMITTI F. The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone[J]. Geology, 2013, 41:991-994.
DOI URL |
[93] | AGARD P, PLUNDER A, ANGIBOUST S, et al. The subduction plate interface: rock record and mechanical coupling (from long to short timescales)[J]. Lithos, |
[94] | GERYA T V, STÖCKHERT B, PERCHUK A L, Exhumation of highpressure metamorphic rocks in a subduction channel: a numerical simulation[J]. Tectonics, 2002, 21: TC1056. |
[95] |
BETTELLI G, VANNUCCHI P. Structural style of the offscraped Ligurian oceanic sequences of the Northern Apennines: new hypojournal concerning the development of mélange block-in-matrix fabric[J]. Journal of Structural Geology, 2003, 25:371-388.
DOI URL |
[96] | BYRNE T. Early deformation in mélange terranes of the Ghost Rocks Formation, Kodiak Islands, Alaska[J]. Geological Society of America Special Paper, 1984, 198:21-52. |
[97] |
COWAN D S. Deformation of partly dewatered and consolidated Franciscan sediments nearPiedras Blancas Point, CA[J]. Geological Society Special Publication, 1982, 10:439-457.
DOI URL |
[98] | MOORE J C, ROESKE S, COWAN D S, et al. Scaly fabrics from Deep Sea Drilling Project cores from forearcs[J]. Geological Society of America Memoirs, 1986, 166:55-73. |
[99] |
FISHER D M, BYRNE T. Structural evolution of underthrusted sediments, Kodiak Islands, Alaska[J]. Tectonics, 1987, 6:775-793.
DOI URL |
[100] |
MENEGHINI F, Moore J C. Deformation and hydrofracture in a subduction thrust at seismogenic depths: the Rodeo Cove thrust zone, Marin Headlands, California[J]. Geological Society of America Bulletin, 2007, 119:174-183.
DOI URL |
[101] | RIEDEL W. Zur mechanik geologischer brucherscheinungen. Zentralblatt fur Mineralogie[J]. Geologie und Palaontologie, 1929, 1929B:354-368. |
[102] | LOGAN J M, DENGO C A, HIGGS N G, et al. Fabrics of experimental fault zones: their development and relationship to mechanical behavior[M]//EVANS B, WONG T. Fault mechanics and transport properties of rocks. San Diego, CA: Academic Press, 1992: 33-67. |
[103] |
ZHANG J, QU J F, ZHANG B H, et al. Paleozoic to Mesozoic deformation of eastern Cathaysia, a case study of Chencai Complex, Zhejiang Province, eastern China and its tectonic implications[J]. GSA Bulletin, 2018, 130(1/2):114-138.
DOI URL |
[104] |
FESTA A, DILEK Y, CODEGONE G, et al. Structural anatomy of the Ligurian accretionary wedge (Monferrato, NW Italy), and evolution of superposed mélanges[J]. GSA Bulletin, 2013, 125:1580-1598.
DOI URL |
[105] |
BYRNE T, FISHER D. Evidence for a weak and overpressured décollement beneath sediment-dominated accretionary prisms[J]. Journal of Geophysical Research, 1990, 95:9081-9097.
DOI URL |
[106] |
DOMINGUEZ S, LALLEMAND S E, MALAVIEILLE J, et al. Upper plate deformation associated with seamount subduction[J]. Tectonophysics, 1998, 293:207-224.
DOI URL |
[107] |
DOMINGUEZ S, MALAVIEILLE J, LALLEMAND S E. Deformation of accretionary wedges in response to seamount subduction- Insights from sandbox experiments[J]. Tectonics, 2020, 19:182-196.
DOI URL |
[108] | SAGE F, COLLOT J Y, RANERO C R. Interplate patchiness and subduction-erosion mechanisms: evidence from depth-migrated seismic images at the central Ecuador convergent margin[J]. Geophysical Research Abstracts, 2006, 8:09325. |
[109] | BOYER S E, ELLIOTT D. Thrust systems[J]. American Association of Petroleum Geologists Bulletin, 1982, 66:1196-1230. |
[110] |
KIMURA G, YAMAGUCHI A, HOJO M, et al. Tectonic mélange as fault rock of subduction plate boundary[J]. Tectonophysics, 2012, 568/569:25-38.
DOI URL |
[111] |
KIMURA G, SAKAKIBARA M, OFUKA H, et al. A deep section of accretionary complex: Susunai Complex in Sakhalin Island, Northwest Pacific Margin[J]. Island Arc, 1992, 1:166-175.
DOI URL |
[112] | HANSEN E. Strain facies[M]. New York: Springer-Verlag, 1971. |
[113] |
HUBBERT M K, RUBEY W W. Role of fluid pressure in mechanics of overthrust faulting (I): mechanics of fluid filled so lids and its application to overthrust faulting[J]. Geological Society of America Bulletin, 1959, 70:115-166.
DOI URL |
[114] |
SAFFER D M, BEKINS B A. Episodic fluid flow in the Nankai accretionary complex: timescale, geochemistry, flow rates, and fluid budget[J]. Journal of Geophysical Research, 1998, 103:30351-30370.
DOI URL |
[115] |
ELLIS S M, FAGERENG Å, BARKER D, et al. Fluid budgets along the northern Hikurangi subduction margin, New Zealand: the effect of a subducting seamount on fluid pressure[J]. Geophysical Journal International, 2015, 202:277-297.
DOI URL |
[116] | MOORE J C, VROLIJK P. Fluids in accretionary prisms[J]. Reveiws of Geophysics, 1992, 30:113-135. |
[117] |
SAFFER D M, TOBIN H J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure[J]. Annual Review of Earth and Planetary Sciences, 2011, 39:157-186.
DOI URL |
[118] |
SAFFER D M, WALLACE L M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes[J]. Nature Geoscience, 2015, 8:594-600.
DOI URL |
[119] |
SAFFER D M. The permeability of active subduction plate boundary faults[J]. Geofluids, 2015, 15:193-215.
DOI URL |
[120] | ROWE C D, MENEGHINI F, MOORE J C. Fluid-rich damage zone of an ancient out-of-sequence thrust, Kodiak Islands, Alaska[J]. Tectonics, 2009, 28: TC1006. https://doi.org/10.1029/2007TC002126 |
[121] |
FAGERENG Å, HARRIS C. Interplay between fluid flow and fault-fracture mesh generation within underthrust sediments: geochemical evidence fromthe Chrystalls Beach complex, New Zealand[J]. Tectonophysics, 2014, 612/613:147-157.
DOI URL |
[122] |
MENEGHINI F, MARRONI M, MOORE J C, et al. The processes of underthrusting and underplating in the geologic record: structural diversity between the Franciscan complex (California), the Kodiak complex (Alaska) and the Internal Ligurian units (Italy)[J]. Geological Journal, 2009, 44:126-152.
DOI URL |
[123] |
MITTEMPERGHER S, CERCHIARI A, REMITTI F, et al. From soft sediment deformation to fluid assisted faulting in the shallow part of a subduction megathrust analogue: the Sestola Vidiciatico tectonic Unit (Northern Apennines, Italy)[J]. Geological Magazine, 2018, 155:438-450.
DOI URL |
[124] |
FISHER D M, BRANTLEY S L, EVERETT M, et al. Cyclic fluid flow through a regionally extensive fracture network within the Kodiak accretionary prism[J]. Journal of Geophysical Research, 1995, 100:12881-12894.
DOI URL |
[125] |
FISHER D M, BRANTLEY S L. Models of quartz overgrowth and vein formation: Deformation and episodic fluid flow in an ancient subduction zone[J]. Journal of Geophysical Research, 1992, 97:20043-20061.
DOI URL |
[126] | FISHER D M, BRANTLEY S L. The role of silica redistribution in the evolution of slip instabilities along subduction interfaces: constraints from the Kodiak accretionary complex, Alaska[J]. Journal of Structural Geology, 2014, 69B:395-414. |
[127] |
FISHER D, BYRNE T. The character and distribution of mineralized fractures in the Kodiak Formation, Alaska: implications for fluid flow in an underthrust sequence[J]. Journal of Geophysical Research, 1990, 95:9069-9080.
DOI URL |
[128] |
MALATESTA C, CRISPINI L, FEDERICO L, et al. The exhumation of high pressure ophiolites (Voltri Massif, Western Alps): insights from structural and petrologic data on metagabbro bodies[J]. Tectonophysics, 2012, 568/569:102-123.
DOI URL |
[129] |
NIWA M. The structure and kinematics of an imbricate stack of oceanic rocks in the Jurassic accretionary complex of Central Japan: an oblique subduction model[J]. Journal of Structural Geology, 2006, 28:1670-1684.
DOI URL |
[130] |
FITCH T J. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific[J]. Journal of Geophysical Research, 1972, 77:4432-4460.
DOI URL |
[131] |
XIAO W J, HE H Q. Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China)[J]. GSA Bulletin, 2005, 117(7/8):945-961.
DOI URL |
[132] | CUNNINGHAM W D, ZHANG J. China|Mongolia: Mesozoic-Cenozoic[M]// Encyclopedia of geology. 2nd ed. Amsterdam: Elsevier, 2020:509-525. https://doi.org/10.1016/B978-0-08-102908-4.00164-8 |
[133] | ZHANG B H, ZHANG J, ZHAO H, et al. Kinematics and geochronology of late Paleozoic - early Mesozoic ductile deformation in the Alxa Block, NW China: new constraints on the evolution of the Central Asian Orogenic Belt[J]. Lithoshpere, 2021, 3365581:1-22. |
[134] |
ZHANG J, CUNNINGHAM D, QU J F, et al. Poly-phase structural evolution of the northeastern Alxa Block, China: constraining the Paleozoic-Recent history of the southern central Asian Orogenic belt[J]. Gondwana Research, 2022, 105:25-50.
DOI URL |
[135] | 张进, 曲军峰, 刘建峰, 等. 中亚造山带东段西拉木伦构造带的性质与演化: 来自变形和低温热年代学的约束[J]. 沉积与特提斯地质, 2021, 41(2):190-217. |
[136] |
DECKERT H, RING U, MORTIMER N. Tectonic significance of Cretaceous bivergent extensional shear zones in the Torlesse accretionary wedge, central Otago Schist, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2002, 45:537-547.
DOI URL |
[137] |
DECELLES P G, GILES K A. Foreland basin systems[J]. Basin Research, 1996, 8:105-123.
DOI URL |
[138] | ŞENGÖR A M C, ZABCI C, NATAL’IN B A. Continental transform faults: congruence and incongruence with normal plate kinematics[M]// DUARTE J. Transform plate boundaries and fracture zones. Amsterdam: Elsevier, 2019: 169-247. |
[139] |
HARRIS N B, PEARCE J A, TINDLE A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society, London, Special Publication, 1986, 19:67-81.
DOI URL |
[140] | LIÈGEOIS J P. Preface-some words on the post-collisional magmatism[J]. Lithos, 1998, 45:15-17. |
[141] | 张泽明, 丁慧霞, 董昕, 等. 俯冲带变质作用与构造机制[J]. 岩石学报, 2021, 37(11):3377-3398. |
[142] |
CLOOS M. Comparative study of mélange matrix and metashales from the Franciscan subduction complex with the basalGreat Valley sequence, California[J]. Journal of Geology, 1983, 91:291-306. https://doi.org/10.1086/628772
DOI URL |
[143] |
RING U, BRANDON M T, RAMTHUN A. Solution-mass-transfer deformation adjacent to the Glarus thrust, with implications for the tectonic evolution of the Alpine wedge in eastern Switzerland[J]. Journal of Structural Geology, 2001, 23:1491-1505.
DOI URL |
[144] |
RAHL J M, BRANDON M T, DECKERT H, et al. Tectonic significance of ductile deformation in low-grade sandstones in the Mesozoic Otago subduction wedge, New Zealand[J]. American Journal of Science, 2011, 311(1):27-62.
DOI URL |
[145] |
MUÑOZ-MONTECINOS J, ANGIBOUST S, CAMBESES A, et al. Multiple veining in a paleo-accretionary wedge: the metamorphic rock record of prograde dehydration and transient high pore-fluid pressures along the subduction interface (Western Series, central Chile)[J]. Geosphere, 2020, 16:765-786.
DOI URL |
[146] |
MORI R, OGAWA Y. Transpressional tectonics of the Mineoka ophiolite belt in a trench-trench-trench-type triple junction, Boso Peninsula, Japan[J]. Island Arc, 2005, 14:571-581.
DOI URL |
[147] |
VANNUCCHI P, MALTMAN A, BETTELLI G, et al. On the nature of scaly fabric and scaly clay[J]. Journal of Structural Geology, 2003, 25:673-688.
DOI URL |
[148] |
VANNUCCHI P. Scaly fabric and slip within fault zones[J]. Geosphere, 2019, 15:1-15.https://doi.org/10.1130/GES01651.1
DOI URL |
[149] |
LAURENT-CHARVET S, CHARVET J, SHU L S, et al. Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China[J]. Terra Nova, 2002, 14:249-256.
DOI URL |
[150] |
ZHANG S H, GAO R, LI H Y, et al. Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt, northern China: an integrated interpretation[J]. Tectonophysics, 2014, 612/613:26-39.
DOI URL |
[151] |
ARTHAUD F, MATTE P. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals[J]. GSA Bulletin, 1977, 88:1305-1320.
DOI URL |
[1] | 邓军, 王长明, 李文昌, 杨立强, 王庆飞. 三江特提斯复合造山与成矿作用研究态势及启示[J]. 地学前缘, 20140101, 21(1): 52-64. |
[2] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[3] | 李卓骐, 许成, 韦春婉. 地球深部脱碳过程研究评述[J]. 地学前缘, 2024, 31(6): 304-319. |
[4] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[5] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[6] | 成秋明. 洋中脊动力学与俯冲带地震-岩浆-成矿事件远程效应[J]. 地学前缘, 2024, 31(1): 1-14. |
[7] | 王瑞, 张京渤, 罗晨皓, 周秋石, 夏文杰, 赵云. 深部过程和物质架构对大陆碰撞带Cu-REE成矿系统的控制:以冈底斯和三江碰撞带为例[J]. 地学前缘, 2024, 31(1): 211-225. |
[8] | 兰春元, 张立飞, 陶仁彪, 胡晗, 张丽娟, 王超. 基于DEW模型的地球深部流体组成与水岩相互作用计算方法综述[J]. 地学前缘, 2024, 31(1): 64-76. |
[9] | 段金宝, 潘磊, 石司宇, 姜振学, 李平平, 邹玉涛, 张文睿. 川东涪陵地区15号走滑断裂带几何学、运动学特征及演化过程研究[J]. 地学前缘, 2023, 30(6): 57-68. |
[10] | 刘雨晴, 邓尚, 张继标, 邱华标, 韩俊, 何松高. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨[J]. 地学前缘, 2023, 30(6): 95-109. |
[11] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[12] | 张进, 张北航, 赵衡, 云龙, 曲军峰, 王振义, 杨亚琦, 赵硕. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 2023, 30(5): 334-357. |
[13] | 杜林涛, 毕文军, 李亚林, 张佳伟, 张少文, 尹须伟, 王成秀. 羌塘盆地安多114道班地区上白垩统阿布山组沉积环境、物源分析及其构造意义[J]. 地学前缘, 2023, 30(4): 245-259. |
[14] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[15] | 王根厚, 李典, 梁晓. 南羌塘印支期增生造山带组成、结构及演化[J]. 地学前缘, 2023, 30(3): 242-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||