地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 426-439.DOI: 10.13745/j.esf.sf.2022.10.45
徐志豪1,2(), 闫国英3, 杨宗锋1,2,*(
), 王昭静3, 申俊峰2, 张萌萌2, 李培培1,2, 徐渴鑫2
收稿日期:
2022-10-17
修回日期:
2022-11-10
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
杨宗锋
作者简介:
徐志豪(1997—),男,硕士研究生,矿物学、岩石学、矿床学专业。E-mail: 2001200062@cugb.edu.cn
基金资助:
XU Zhihao1,2(), YAN Guoying3, YANG Zongfeng1,2,*(
), WANG Zhaojing3, SHEN Junfeng2, ZHANG Mengmeng2, LI Peipei1,2, XU Kexin2
Received:
2022-10-17
Revised:
2022-11-10
Online:
2023-03-25
Published:
2023-01-05
Contact:
YANG Zongfeng
摘要:
白云鄂博稀土-铌-铁矿床蕴藏着大量的铁资源,其中磁铁矿作为矿石矿物被广泛研究。磁铁矿的矿物标型特征可以指示矿床成因、成矿规律以及深部找矿,但磁铁矿标型矿物学尚未在白云鄂博矿床中普及与应用。本研究使用了22条勘探线全铁数据,利用扫描电镜能谱和电子探针的矿物微区成分测试方法,测试了覆盖600 m×600 m,纵深800 m范围内10条勘探线的45件样品,将白云鄂博矿床中的磁铁矿分为岩浆型和热液型,表明岩浆和热液在白云鄂博矿床中均形成或改造磁铁矿。结合磁铁矿温度计得知,岩浆型磁铁矿,尤其是高温磁铁矿富集的区域,矿床全铁成分更加富集,更容易形成富铁矿体,磁铁矿形成的温度为350~650 ℃。因此推测,12、13号线的深部东部方向有很大可能形成富铁矿体,可能在深部连接东矿,值得进一步研究与开采。
中图分类号:
徐志豪, 闫国英, 杨宗锋, 王昭静, 申俊峰, 张萌萌, 李培培, 徐渴鑫. 白云鄂博矿床磁铁矿成分标型与深部富铁矿体预测[J]. 地学前缘, 2023, 30(2): 426-439.
XU Zhihao, YAN Guoying, YANG Zongfeng, WANG Zhaojing, SHEN Junfeng, ZHANG Mengmeng, LI Peipei, XU Kexin. Typomorphic characteristics of magnetite and prediction of deep iron-rich orebody in the Bayan Obo ore deposit[J]. Earth Science Frontiers, 2023, 30(2): 426-439.
图2 白云鄂博主矿不同矿石水平分布图及样品采样位置分布(底图据文献[2]修改)
Fig.2 Horizontal distribution map of different ore and sampling locations in Bayan Obo main mine. Base map modified after [2].
图3 白云鄂博主矿采样点示意图 纵投影图:将数据投影到与其勘探线方向垂直的理想平面上而构成的投影图;横坐标数字代表勘探线号(200代表二号线)。底图为矿床全铁含量纵投影等值线图,具体数据见表1。
Fig.3 Diagram of sampling points in Bayan Obo main deposit
图9 岩浆型磁铁矿纵投影等温线(℃)图(A)与热液型磁铁矿纵投影等温线(℃)图(B)
Fig.9 Longitudinal projection isotherm (℃) of magmatic magnetite (A) and longitudinal projection isotherm (℃) of hydrothermal magnetite (B)
[1] |
SMITH M P, CAMPBELL L S, KYNICKY J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: multistage processes and outstanding questions[J]. Ore Geology Reviews, 2015, 64: 459-476.
DOI URL |
[2] | 郝美珍, 赵永岗, 张顺, 等. 白云鄂博超大型Nb-Fe-REE矿床主矿矿体形态变化及深部找矿方向的探讨[J]. 地质调查与研究, 2018, 41(3): 167-175. |
[3] | 王凯怡, 张继恩, 郝美珍, 等. 白云鄂博赋矿白云岩的稀土地球化学及对稀土矿化的制约[J]. 地质科学, 2020, 55(2): 439-458. |
[4] |
YANG X Y, LAI X D, PIRAJNO F, et al. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, North China Craton: a perspective review[J]. Precambrian Research, 2017, 288: 39-71.
DOI URL |
[5] | 高计元, 王一先, 裘愉卓, 等. 白云鄂博矿床含矿白云岩的成因探讨[J]. 沉积学报, 1999, 17(增刊1): 675-680. |
[6] |
章雨旭, 吕洪波, 张绮玲, 等. 微晶丘成因新认识[J]. 地球科学进展, 2005, 20(6): 693-700.
DOI |
[7] | 章雨旭, 彭阳, 乔秀夫, 等. 白云鄂博矿床赋矿白云岩成因新认识[J]. 地质论评, 1998, 44(1): 70-76. |
[8] | 魏菊英, 上官志冠. 内蒙古白云鄂博铁矿床中磁铁矿和赤铁矿的氧同位素组成[J]. 地质科学, 1983, 18(3): 217-224. |
[9] |
LE BAS M J, XUEMING Y, TAYLOR R N, et al. New evidence from a calcite-dolomite carbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China[J]. Mineralogy and Petrology, 2007, 90(3/4): 223-248.
DOI URL |
[10] |
ZHANG S H, ZHAO Y, LIU Y S. A precise zircon Th-Pb age of carbonatite sills from the world’s largest Bayan Obo deposit: implications for timing and genesis of REE-Nb mineralization[J]. Precambrian Research, 2017, 291: 202-219.
DOI URL |
[11] |
DENG M, XU C, SONG W L, et al. REE mineralization in the Bayan obo deposit, China: evidence from mineral paragenesis[J]. Ore Geology Reviews, 2017, 91: 100-109.
DOI URL |
[12] |
HU L, LI Y K, WU Z J, et al. Two metasomatic events recorded in apatite from the ore-hosting dolomite marble and implications for genesis of the giant Bayan Obo REE deposit, Inner Mongolia, Northern China[J]. Journal of Asian Earth Sciences, 2019, 172: 56-65.
DOI URL |
[13] |
KUEBLER C, SIMONETTI A, CHEN W, et al. Boron isotopic investigation of the Bayan Obo carbonatite complex:insights into the source of mantle carbon and hydrothermal alteration[J]. Chemical Geology, 2020, 557: 119859.
DOI URL |
[14] |
LAI X D, YANG X Y, SANTOSH M, et al. New data of the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia:implications for ore genesis[J]. Precambrian Research, 2015, 263: 108-122.
DOI URL |
[15] |
LIU S, DING L, FAN H R, et al. Hydrothermal genesis of Nb mineralization in the giant Bayan Obo REE-Nb-Fe deposit (China):implicated by petrography and geochemistry of Nb-bearing minerals[J]. Precambrian Research, 2020, 348: 105864.
DOI URL |
[16] |
LIU S, FAN H R, GROVES D I, et al. Multiphase carbonatite-related magmatic and metasomatic processes in the genesis of the ore-hosting dolomite in the giant Bayan Obo REE-Nb-Fe deposit[J]. Lithos, 2020, 354/355: 105359.
DOI URL |
[17] |
LIU S, FAN H R, YANG K F, et al. Fenitization in the giant Bayan obo REE-Nb-Fe deposit: implication for REE mineralization[J]. Ore Geology Reviews, 2018, 94: 290-309.
DOI URL |
[18] |
WANG K Y, FANG A M, ZHANG J E, et al. Genetic relationship between fenitized ores and hosting dolomite carbonatite of the Bayan obo REE deposit, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2019, 174: 189-204.
DOI URL |
[19] |
邓淼, 韦春婉, 许成, 等. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28.
DOI |
[20] | 王凯怡, 张继恩, 方爱民, 等. 白云鄂博矿床成因: 矿体内霓长岩化成矿作用与赋矿白云岩的联系[J]. 岩石学报, 2018, 34(3): 785-798. |
[21] | 柯昌辉, 孙盛, 赵永岗, 等. 内蒙古白云鄂博超大型稀土-铌-铁矿床控矿构造特征及深部找矿方向[J]. 地质通报, 2021, 40(1): 95-109. |
[22] | 李以科, 柯昌辉, 王登红, 等. 白云鄂博矿区深边部铁矿床勘查突破及启示[J]. 矿床地质, 2022, 41(1): 202-206. |
[23] |
CAMPBELL L S, COMPSTON W, SIRCOMBE K N, et al. Zircon from the East Orebody of the Bayan Obo Fe-Nb-REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events[J]. Contributions to Mineralogy and Petrology, 2014, 168(2):1041.
DOI URL |
[24] | KE C H, LI Y K, WU Z J. The first discovery of the earlypalaeozoic carbonatite in the Bayan obo deposit, Inner Mongolia, China: evidence from zircon U-Pb geochronology[J]. Acta Geologica Sinica (English Edition), 2018, 92(6): 2440-2442. |
[25] |
LAI X D, YANG X Y, LIU Y L, et al. Genesis of the Bayan obo Fe-REE-Nb deposit: evidences from Pb-Pb age and microanalysis of the H8 formation in Inner Mongolia, North China Craton[J]. Journal of Asian Earth Sciences, 2016, 120: 87-99.
DOI URL |
[26] |
NI P, ZHOU J, CHI Z, et al. Carbonatite dyke and related REE mineralization in the Bayan Obo REE ore field, North China: evidence from geochemistry, CO isotopes and RbSr dating[J]. Journal of Geochemical Exploration, 2020, 215: 106560.
DOI URL |
[27] |
ZHANG H D, ZHAI M G, WANG D Q, et al. Dating of monazite-apatite-allanite-epidote corona from the Bayan Obo Group in the northern margin of the North China Craton: implications for the time of regional Au and REE mineralization[J]. Science Bulletin, 2022, 67(3): 236-239.
DOI URL |
[28] |
ZHU X K, SUN J, PAN C X. Sm-Nd isotopic constraints on rare-earth mineralization in the Bayan Obo ore deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 2015, 64: 543-553.
DOI URL |
[29] | 刘玉龙, 陈江峰, 李惠民, 等. 白云鄂博矿床白云石型矿石中独居石单颗粒U-Th-Pb-Sm-Nd定年[J]. 岩石学报, 2005, 21(3): 881-888. |
[30] | 张宗清, 唐索寒, 王进辉, 等. 白云鄂博矿床白云岩的Sm-Nd、Rb-Sr同位素体系[J]. 岩石学报, 2001, 17(4): 637-642. |
[31] | 朱祥坤, 孙剑. 内蒙古白云鄂博矿床的稀土矿化时代与期次[J]. 地球学报, 2012, 33(6): 845-856. |
[32] |
DARE S A S, BARNES S J, BEAUDOIN G, et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49(7): 785-796.
DOI URL |
[33] | GRIGSBY J D. Detrital magnetite as a provenance indicator[J]. Journal of Sedimentary Research, 1990, 60(6): 940-951. |
[34] |
DUPUIS C, BEAUDOIN G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4): 319-335.
DOI URL |
[35] |
NADOLL P, MAUK J L, HAYES T S, et al. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the mesoproterozoic belt supergroup, United States[J]. Economic Geology, 2012, 107(6): 1275-1292.
DOI URL |
[36] |
BOUTROY E, DARE S A S, BEAUDOIN G, et al. Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration[J]. Journal of Geochemical Exploration, 2014, 145: 64-81.
DOI URL |
[37] |
CHEN W T, ZHOU M F, LI X C, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India[J]. Ore Geology Reviews, 2015, 65: 929-939.
DOI URL |
[38] |
GENNA D, GABOURY D. Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: an example from thebracemac-McLeod deposits, Abitibi, Canada, and implications for exploration[J]. Economic Geology, 2015, 110(8): 2087-2108.
DOI URL |
[39] |
HU H, LENTZ D, LI J W, et al. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1): 1-8.
DOI URL |
[40] |
YI L W, GU X P, LU A H, et al. Major and trace elements of magnetite from the qimantag metallogenic belt: insights into evolution of ore-forming fluids[J]. Acta Geologica Sinica - English Edition, 2015, 89(4): 1226-1243.
DOI URL |
[41] |
ZHAO W W, ZHOU M F. In-situ LA-ICP-MS trace elemental analyses of magnetite: the Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China[J]. Ore Geology Reviews, 2015, 65: 872-883.
DOI URL |
[42] | 李伟, 谢桂青, 朱乔乔, 等. 鄂东南程潮铁矿多世代叠加成矿作用: 磁铁矿证据[J]. 岩石学报, 2016, 32(2): 471-492. |
[43] |
NADOLL P, ANGERER T, MAUK J L, et al. The chemistry of hydrothermal magnetite: a review[J]. Ore Geology Reviews, 2014, 61: 1-32.
DOI URL |
[44] |
HUANG X W, ZHOU M F, QIU Y Z, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite: the Bayan Obo Fe-REE-Nb deposit, North China[J]. Ore Geology Reviews, 2015, 65: 884-899.
DOI URL |
[45] |
SHE H D, FAN H R, YANG K F, et al. In situ trace elements of magnetite in the Bayan Obo REE-Nb-Fe deposit: implications for the genesis of mesoproterozoic iron mineralization[J]. Ore Geology Reviews, 2021, 139: 104574.
DOI URL |
[46] |
CHEN W, YING Y C, BAI T, et al. In situ major and trace element analysis of magnetite from carbonatite-related complexes: implications for petrogenesis and ore genesis[J]. Ore Geology Reviews, 2019, 107: 30-40.
DOI URL |
[47] |
HUANG X W, BEAUDOIN G. Nanoinclusions in zoned magnetite from the Sossego IOCG deposit, Carajás, Brazil: implication for mineral zoning and magnetite origin discrimination[J]. Ore Geology Reviews, 2021, 139: 104453.
DOI URL |
[48] |
NIELSEN R L, FORSYTHE L M, GALLAHAN W E, et al. Major and trace-element magnetite-melt equilibria[J]. Chemical Geology, 1994, 117(1/2/3/4): 167-191.
DOI URL |
[49] |
TOPLIS M J, CARROLL M R. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations,and mineral—melt equilibria in Ferro-basaltic systems[J]. Journal of Petrology, 1995, 36(5): 1137-1170.
DOI URL |
[50] | 王凯怡, 范宏瑞, 杨奎锋, 等. 白云鄂博碳酸岩的方解石-白云石地质温度计[J]. 岩石学报, 2010, 26(4): 1141-1149. |
[51] |
CANIL D, LACOURSE T. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite[J]. Chemical Geology, 2020, 541: 119576.
DOI URL |
[52] |
YUAN Z X, BAI G, WU C Y, et al. Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China[J]. Applied Geochemistry, 1992, 7(5): 429-442.
DOI URL |
[53] | 王凯怡, 杨奎峰, 范宏瑞, 等. 白云鄂博矿床研究若干问题的探讨[J]. 地质学报, 2012, 86(5): 687-699. |
[54] |
YANG K F, FAN H R, SANTOSH M, et al. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements[J]. Ore Geology Reviews, 2011, 40(1): 122-131.
DOI URL |
[55] | 张克信, 潘桂棠, 何卫红, 等. 中国构造-地层大区划分新方案[J]. 地球科学: 中国地质大学学报, 2015, 40(2): 206-233. |
[56] |
ZHAO G C, SUN M, WILDE S A, et al. Assembly, accretion and breakup of the paleo-mesoproterozoic Columbia supercontinent: records in the North China Craton[J]. Gondwana Research, 2003, 6(3): 417-434.
DOI URL |
[57] |
ZHAO G C, SUN M, WILDE S A, et al. A paleo-mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2): 91-123.
DOI URL |
[58] | 周建波, 郑永飞, 杨晓勇, 等. 白云鄂博地区构造格局与古板块构造演化[J]. 高校地质学报, 2002, 8(1): 46-61. |
[59] | 郭聪祥, 刘云. 白云鄂博铁矿深部探矿分析[J]. 包钢科技, 2015, 41(4): 5-7. |
[60] |
REN Y S, YANG X Y, WANG S S, et al. Mineralogical and geochemical study of apatite and dolomite from the Bayan Obo giant Fe-REE-Nb deposit in Inner Mongolia: new evidences for genesis[J]. Ore Geology Reviews, 2019, 109: 381-406.
DOI URL |
[61] | 白鸽, 袁忠信, 吴澄宇, 等. 白云鄂博矿床地质特征和成因论证[M]. 北京: 地质出版社, 1996. |
[62] | 中国科学院地球化学研究所. 白云鄂博矿床地球化学[M]. 北京: 科学出版社, 1988. |
[63] | 张培善, 陶克捷. 白云鄂博矿物学[M]. 北京: 科学出版社, 1986. |
[64] | 闫国英, 孙丽军, 常剑, 等. 白云鄂博铁矿东矿境界外露天开采可行性分析[J]. 现代矿业, 2018, 34(7): 77-78, 84. |
[65] | 于俊芳, 沈茂森, 杨波, 等. 白云鄂博东矿白云石型矿石特征分析[J]. 包钢科技, 2022, 48(3): 10-13, 81. |
[66] | 于俊芳, 闫国英, 彭章旷. 白云鄂博东矿条带型矿石特征分析[J]. 现代矿业, 2022, 38(7): 106-109. |
[67] | CHAO E C T, BACK J M, MINKIN J A, et al. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin[R]. US Geological Survey, 1997. |
[68] | 高海洲. 白云鄂博矿区稀土稀有矿产资源综合评述(一)[J]. 包钢科技, 2009, 35(5): 1-6. |
[69] |
NEWBURY D E, RITCHIE N W M. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?[J]. Scanning, 2013, 35(3): 141-168.
DOI PMID |
[70] |
NEWBURY D E, RITCHIE N W M. Measurement of trace constituents by electron-excited X-ray microanalysis with energy-dispersive spectrometry[J]. Microscopy and Microanalysis, 2016, 22(3): 520-535.
DOI PMID |
[71] |
TANG D M, QIN K Z, MAO Y J, et al. Magnetite geochemistry and iron isotope signature of disseminated and massive mineralization in the Kalatongke magmatic Cu Ni sulfide deposit, northwest China[J]. Chemical Geology, 2022, 605: 120965.
DOI URL |
[72] |
XIE H, HUANG X W, MENG Y M, et al. Discrimination of mineralization types of skarn deposits by magnetite chemistry[J]. Minerals, 2022, 12(5): 608.
DOI URL |
[73] |
ZHAO L J, SHAO Y J, ZHANG Y, et al. Differentiated enrichment of magnetite in the Jurassic W-Sn and Cu skarn deposits in the Nanling Range (South China) and their ore-forming processes:an example from the Huangshaping deposit[J]. Ore Geology Reviews, 2022, 148: 105046.
DOI URL |
[74] | 王昭静. 白云鄂博主矿区稀土-铌-铁矿化趋势分析及启示意义[C]// 中国稀土学会2021学术年会论文摘要集, 成都, 2021. |
[1] | 翟明国, 胡波, 彭澎, 赵太平. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 20140101, 21(1): 100-119. |
[2] | 万天丰. 论构造地质学和大地构造学的几个重要问题[J]. 地学前缘, 20140101, 21(1): 132-149. |
[3] | 索艳慧, 姜兆霞, 李三忠, 吴立新. 海底氢气成藏模式与全球分布[J]. 地学前缘, 2024, 31(4): 175-182. |
[4] | 姜兆霞, 李三忠, 索艳慧, 吴立新. 海底氢能探测与开采技术展望[J]. 地学前缘, 2024, 31(4): 183-190. |
[5] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[6] | 曹胜桃, 胡瑞忠, 周永章, 刘建中, 谭亲平, 高伟, 郑禄林, 郑禄璟, 宋威方. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72. |
[7] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[8] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[9] | 王岩, 秦燕, 黎华, 王登红, 孙赫, 王成辉, 黄凡. 东北地区金矿成矿规律及找矿方向[J]. 地学前缘, 2024, 31(3): 235-244. |
[10] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[11] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[12] | 吴锟言, 刘飚, 吴堑虹, 李欢. 岩浆热液白钨矿氧同位素组成研究:对流体源区与演化过程的示踪[J]. 地学前缘, 2024, 31(2): 299-312. |
[13] | 杨立强, 杨伟, 张良, 高雪, 申世龙, 王偲瑞, 徐瀚涛, 贾晓晨, 邓军. 热液成矿系统构造控矿理论[J]. 地学前缘, 2024, 31(1): 239-266. |
[14] | 万渝生, 董春艳, 颉颃强, 李鹏川, 刘守偈, 李源, 王宇晴, 王堃力, 刘敦一. 华北克拉通新太古代晚期岩浆作用:对构造体制和克拉通化的启示[J]. 地学前缘, 2024, 31(1): 77-94. |
[15] | 张旗, 翟明国, 魏春景, 周李岗, 黄广宇, 陈万峰, 焦守涛, 汤军, 刘睿, 原杰, 王振, 王跃, 袁方林. 新时代花岗岩的新理论:花岗岩四阶段理论探讨[J]. 地学前缘, 2023, 30(6): 406-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||