地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 239-266.DOI: 10.13745/j.esf.sf.2024.1.40
• 陆内成矿作用与成矿系统(华南中生代陆内成矿作用) • 上一篇 下一篇
杨立强1,2,3,4(), 杨伟1, 张良1, 高雪1, 申世龙1, 王偲瑞1,5, 徐瀚涛1, 贾晓晨1,4, 邓军1,2,3,4
收稿日期:
2023-11-07
修回日期:
2023-12-21
出版日期:
2024-01-25
发布日期:
2024-01-25
作者简介:
杨立强(1971—),男,教授,博士生导师,主要从事矿床学及矿产普查与勘探的教学和科研工作。E-mail: lqyang@cugb.edu.cn
基金资助:
YANG Liqiang1,2,3,4(), YANG Wei1, ZHANG Liang1, GAO Xue1, SHEN Shilong1, WANG Sirui1,5, XU Hantao1, JIA Xiaochen1,4, DENG Jun1,2,3,4
Received:
2023-11-07
Revised:
2023-12-21
Online:
2024-01-25
Published:
2024-01-25
摘要:
构造对成矿的控制是热液成矿系统的典型特征之一,系统剖析多重尺度控矿构造的几何学、运动学、动力学、流变学和热力学对认识矿床成因和预测找矿至关重要;而如何实现控矿构造格架、渗透性结构、成矿流体通道和矿化变形网络由静态到多尺度时-空四维动态的转变,查明流体通道和矿床增量生长过程与控制因素,揭示热液成矿系统的构造-流体耦合成矿机制和定位规律是亟待解决的关键科学难题。为此,我们在对已有相关成果系统梳理的基础上,提出了科学构建热液成矿系统构造控矿理论的基本要点与对应方法及应用范畴:(1)流体而非构造是构造控矿理论的中心,热液系统的流体流动与成矿作用受控于断裂带格架及其渗透性结构,其中渗透率是将流体流动与流体压力变化联系起来理解控矿构造的核心;(2)不同控矿构造组合的关键控制是构造差应力和流体压力的大小,而矿化类型的变化可能是由于构造应力场引起的容矿构造方位的不同和赋矿围岩之间的强度差异所致;(3)流体通道的生长始于超压流体储库上游围岩中孤立的微裂隙沿流体压力梯度最大的方向、随裂隙发育且相互连结而形成新的长裂隙,并最终连通形成断裂网络内的流体通道,矿床的增量生长发生在高流体通量的短爆发期,断层反复滑动驱动其内流体压力、流速和应力快速变化,当由此诱发的流体通道生长破坏了流体系统的动态平衡时,随之而来的流体快速降压就成为金属沉淀成矿的关键驱动因素;(4)以热液裂隙-脉系统野外地质观测和构造-蚀变-矿化网络三维填图为基础,通过宏观与微观各级控矿构造相结合、地质历史与构造应力分析相结合、局部与区域点-线-面相结合、浅部与深部相结合、时间与空间相结合、定性和定量相结合,对各种控矿因素开展多学科、多尺度、多层次、全方位综合研究,是应遵循的基本原则;(5)通过构造-蚀变-矿化网络填图,将蚀变-矿化体与控矿构造的类型、形态、规模、产状和间距等几何学特征联系起来,利用热液裂隙-脉系统和断裂网络拓扑学及矿体三维几何结构分析等定量方法查明控矿构造格架和渗透性结构并揭示矿化变形网络的连通性与成矿潜力;(6)合理构建地质模型,选取合适的热力学参数和动力学边界条件,利用HCh和COMSOL等方法,定量模拟成矿过程中的流体流动、热-质传递、应力变形和化学反应等的时-空变化,是揭示构造-流体耦合成矿机理和定位规律、预测矿化中心和确定找矿目标的有效途径。进而提出了构造控矿理论的研究流程:聚焦构造-流体耦合成矿机制和定位规律这一关键科学问题,选择热液裂隙-脉系统和构造-蚀变-矿化网络为重点研究对象;通过几何学描述、运动学判断、流变学分析、动力学解析和热力学综合,厘定控矿构造格架,定位矿化中心,示踪成矿流体通道和多种矿化样式的增量生长过程及其关键控制,揭示渗透性结构的时-空演变规律及构造再活化与成矿定位的成因关联,建立构造-流体耦合成矿模式,服务新一轮战略找矿突破。以胶东焦家金矿田为例,开展控矿构造理论研究和成矿预测应用实践,证实了其科学性和有效性。
中图分类号:
杨立强, 杨伟, 张良, 高雪, 申世龙, 王偲瑞, 徐瀚涛, 贾晓晨, 邓军. 热液成矿系统构造控矿理论[J]. 地学前缘, 2024, 31(1): 239-266.
YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications[J]. Earth Science Frontiers, 2024, 31(1): 239-266.
图1 胶东区域地质和金矿床分布简图(据文献[23]修改) GJF—郭城—即墨断裂;HSF—海阳—石岛断裂;JJF—焦家断裂;MRF—牟乳断裂;QHF—青岛—海阳断裂;QXF—栖霞断裂;RCF—荣成断裂;SSDF—三山岛断裂;TCF—桃村断裂;WHF—威海断裂;WYF—五莲—烟台断裂;ZPF—招平断裂。
Fig.1 Simplified geological map of the Jiaodong Peninsula showing the distribution of gold deposits. Modified after [23].
图2 胶东金矿集区晚中生代构造应力场演化(据文献[23]修改) a—成矿前(>130 Ma);b—成矿期(约130~110 Ma);c—成矿后(<110 Ma)。
Fig.2 Evolution of the structural stress field in the Jiaodong gold province in late Mesozoic. Modified after [23].
图3 在注入驱动的渗流过程中,受裂隙控制的流体通道生长的概念模型(据文献[70]修改) a—生长始于超压流体储库的上游,并向流体压力梯度最高的方向持续扩展。网络的所有部分(正方形网格上的黑线)都连接到流体储层,总体流向用蓝色箭头表示。b—流体网络(蓝线)的进一步生长,直到流体网络突破到不同流体的边界(在B点),将超压流体网络与流体压力较低的区域分开。c—不同流体边界的突破建立了一条主干通道(红色突出显示),流体沿着该主干通道从超压储库迅速向上排放,进入较低的流体压力区域(蓝色箭头)。连接到主干通道的网络的所有部分都被称为网络的“悬空”组件。突破不同流体边界并沿主干通道液压梯度的突然增大和流体压力的突然下降,可导致网络的“悬空”组件部分的超压流体向主干通道回流(广义回流方向用棕色箭头表示)。流体流动网络可以被认为是一条断裂或多条断裂组成的断裂网络内的流体通道。
Fig.3 A conceptual model of growth of a fluid pathway through inversion percolation under injection driven fracturing. Modified after [70].
图4 断层阀-泵吸-周期性破裂愈合模式(据文献[11,33,70,163]) a—断层阀模式形成的含金石英脉(西澳大利亚St.Ives金矿田的Defiance富石英断层充填脉与空间伴生伸展脉组成的矿脉系统。上部断裂充填脉结构复杂且含角砾岩带,下部断裂充填脉由块状粗粒石英组成)(据文献[70]);b—泵吸模式中的扩容空间(西澳大利亚St. Ives金矿田Revenge金矿逆断层中的扩容空间)(据文献[11]); c—泵吸模式(据文献[33])(张剪断裂带中的含金矿脉发育于呈“雁列”状相邻断面交接部位的扩容空间内;深部流体进入距地表2~3 km的这些区域,使得流体压力迅速下降,引起流体沸腾;沸腾释放的能量进一步引起流体致裂和角砾岩化,从而提高流体循环和成矿程度);d—断层阀模式(据文献[33]);e—周期性破裂愈合模型(据文献[163])(①高角度逆断层形成并活化已存构造,流体聚集于不渗透区以下,使得流体压力不断增加;②流体压力≥上覆静岩压力,流体会通过活化的断裂破碎带快速释放,破裂的发生使高压流体压力瞬时降低,此时成矿流体物理化学条件发生突变,进而导致流体中的成矿物质在裂隙系统发生沉淀,形成石英脉型金矿;③成矿物质的沉淀会促使裂隙发生愈合,进而降低断层带渗透率;④待断裂发生完全愈合后,流体压力可在封闭的断裂带内再次集中,从而重复以上演化过程)。
Fig.4 Modes of structure-fluid coupling. (a) Gold-bearing quartz veins formed by “fault-valve” mode coupling (adapted from [70]). (b) Fracture enlargement due to “suction-pump” mode coupling (adapted from [11]). (c) “Suction-pump” mode (adapted from [33]). (d) “Fault-valve” mode (adapted from [33]). (e) “Periodic crack-seal” mode (adapted from [163]).
图6 节点(a)和分支(b)拓扑结构特征三端员图(据文献[228,232]修改) 断裂网络中的拓扑结构由节点和分支两个参数组成,节点可以分为独立节点(I)和连接节点(C);由于连接方式不同,连接节点(C)又可以分为Y节点(斜交或派生)和X节点(共轭交叉)。I节点不连接任何断裂分支,而Y和X节点分别连接3条和4条分支。因此,根据不同节点的连接方式,将断裂分支分为3类:两个独立节点连接的I-I分支,一个独立节点和一个连接节点连接的I-C分支,两个连接节点连接的C-C分支。
Fig.6 Topographic analysis of fault network. (a) Three-terminal graph of nodes (modified from [228]). (b) Three-terminal graph of splay (modified from [232]).
图7 不同构造体制下形成的韧脆性剪切带、裂隙和脉的结构型式(a),归一化为T(抗张强度)的莫尔圆展示不同破裂模式的条件(b),右行单剪的Radial破裂模式(c)和剪切带Radial破裂网络中各种可能的容矿(含矿石英脉)空间(d)(a据文献[239]修改;b据文献[239⇓-241]修改;c和d据文献[242-243]修改) b图中:当差应力小于4T时,有利的应力条件将导致发生伸展破裂;差应力大于5.66T时,发生压剪破裂;差应力在4T和5.66T之间,将发育张剪破裂。c和d图中:T为沿应变椭球XZ面形成的张裂隙,R为同向低角度Reidel剪切裂隙,S为叶理,R’为反向高角度Reidel剪切裂隙,D为主剪切裂隙(与剪切带边界平行),f为褶轴面,P为P型剪切裂隙;φ为内摩擦角。
Fig.7 Fluid pathway analysis. (a) Structural patterns of ductile and brittle shear zones, fractures and veins formed under different structural systems (modified from [239]). (b) Generic Mohr diagram normalized to T (tensile strength) to show the different failure mode conditions (modified from [239⇓-241]). (c) Radial failure mode of dextral single shear (modified from [242-243]). (d) Possible ore-bearing vein spaces in Radial fracture network of shear zones (modified from [242-243]).
图9 焦家金矿田应力变化分布(a)和虚线圈出的28个高渗透率区域(b)(据文献[266])
Fig.9 Distribution of Coulomb stress changes in the Jiaojia gold field (a) and 28 high permeability areas (outlined by dotted lines) (b). Adapted from [266].
图10 焦家金矿田各金矿床已探明金金属量和库仑破裂应力变化极值的相关性(据文献[266])
Fig.10 Relationship between known gold tonnage and extremum of Coulomb stress change in gold deposits in the Jiaojia gold field. Adapted from [266].
[1] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 13-27. |
[2] | WYBORN L A I, GALLAGHER R, JAQUES A L, et al. Developing metallogenic geographic information systems: examples from Mount Isa, Kakadu and Pine Creek[C]// Proceedings of the Australasian Institute of Mining and Metallurgy Annual Conference, Darwin. 1994, 1: 129-133. |
[3] | 翟裕生. 成矿系统论[M]. 北京: 地质出版社, 2010: 313. |
[4] | MCCUAIG T C, HRONSKY J M A. The mineral system concept: the key to exploration targeting[J]. Applied Earth Science IMM Transactions Section B, 2014, 18(2): 153-175. |
[5] |
WYMAN D A, CASSIDY K F, HOLLINGS P. Orogenic gold and the mineral systems approach: resolving fact, fiction and fantasy[J]. Ore Geology Review, 2016, 78: 322-335.
DOI URL |
[6] |
ZHAO C, HOBBS B E, MÜHLHAUS H B, et al. Computer simulations of coupled problems in geological and geochemical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(29/30): 3137-3152.
DOI URL |
[7] |
ORD A, HOBBS B E, LESTER D R. The mechanics of hydrothermal systems: I. Ore systems as chemical reactors[J]. Ore Geology Reviews, 2012, 49: 1-44.
DOI URL |
[8] | 翟裕生, 林新多. 矿田构造学[M]. 北京: 地质出版社, 1993: 214. |
[9] | 陈国达. 成矿构造研究法[M]. 北京: 地质出版社, 1978: 413. |
[10] |
SIBSON R H. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural geology, 1996, 18(8): 1031-1042.
DOI URL |
[11] |
NGUYEN P T, HARRIS L B, POWELL C M, et al. Fault-valve behaviour in optimally oriented shear zones: an example at the Revenge gold mine, Kambalda, Western Australia[J]. Journal of Structural Geology, 1998, 20(12): 1625-1640.
DOI URL |
[12] | 邓军, 翟裕生, 杨立强, 等. 剪切带构造-流体-成矿系统动力学模拟[J]. 地学前缘, 1999, 6(1): 115-127. |
[13] | 邓军, 杨立强, 翟裕生, 等. 构造-流体-成矿系统及其动力学的理论格架与方法体系[J]. 地球科学: 中国地质大学学报, 2000, 25(1): 71-78. |
[14] | 杨立强, 王光杰, 张中杰. 胶东金矿集中区岩石圈结构与深部成矿作用[J]. 地球科学: 中国地质大学学报, 2000, 25(4): 421-427. |
[15] |
ZHANG S, COX S F. Enhancement of fluid permeability during shear deformation of a synthetic mud[J]. Journal of Structural Geology, 2000, 22(10): 1385-1393.
DOI URL |
[16] |
DENG J, YANG L Q, SUN Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt[J]. Acta Geologica Sinica (English Edition), 2003, 77(4): 537-546.
DOI URL |
[17] |
BLENKINSOP T G. Orebody geometry in lode gold deposits from Zimbabwe: implications for fluid flow, deformation and mineralization[J]. Journal of Structural Geology, 2004, 26(6/7): 1293-1301.
DOI URL |
[18] | YANG L Q, DENG J, WANG J G, et al. Control of deep tectonics on the superlarge deposits in China[J]. Acta Geologies Sinica (English Edition), 2004, 78(2): 358-367. |
[19] | 邓军, 陈玉民, 刘钦, 等. 胶东三山岛断裂带金成矿系统与资源勘查[M]. 北京: 地质出版社, 2010: 371. |
[20] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[21] |
YANG L Q, DENG J, QIU K F, et al. Magma mixing and crust-mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: constraints from petrology, geochemistry, and zircon U-Pb-Hf isotopic systematics[J]. Journal of Asian Earth Sciences, 2015, 98: 320-341.
DOI URL |
[22] | 杨立强, 邓军, 宋明春, 等. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析[J]. 大地构造与成矿学, 2019, 43(3): 431-446. |
[23] |
DENG J, YANG L Q, LI R H, et al. Regional structural control on the distribution of world-class gold deposits: an overview from the Giant Jiaodong gold province, China[J]. Geological Journal, 2019, 54(1): 378-391.
DOI URL |
[24] |
YANG L Q, DENG J, GROVES D I, et al. Metallogenic ‘factories’ and resultant highly anomalous mineral endowment on the craton margins of China[J]. Geoscience Frontiers, 2022, 13(2): 101339.
DOI URL |
[25] | PETERS S G. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits[R]// Open-file report, 2001-151. Reston: US Geological Survey, 2001: 40. |
[26] | 韩润生. 初论构造成矿动力学及其隐伏矿定位预测研究内容和方法[J]. 地质与勘探, 2003, 39(1): 5-9. |
[27] |
CHAUVET A. Structural control of ore deposits: the role of pre-existing structures on the formation of mineralised vein systems[J]. Minerals, 2019, 9(1): 56.
DOI URL |
[28] |
DENG J, WANG Q, LIU X, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica (English Edition), 2022, 96(6): 1801-1820.
DOI URL |
[29] |
DENG J, WANG Q F, ZHANG L, et al. Metallogenetic model of Jiaodong-type gold deposits, eastern China[J]. Science China Earth Sciences, 2023, 66(10): 1-24.
DOI |
[30] |
SUN Z, WANG P, DENG J, et al. Composite metallogenic systems in the Weihai area of Shandong and evolution of continental dynamic regimes[J]. Acta Geologica Sinica (English Edition), 2007, 81(2): 312-321.
DOI URL |
[31] | ABDELRAZEK M, BENEDICTO A, FAYEK M, et al. Permeability network, alteration and mineralization of the Spitfire basement-hosted uranium prospect, Western Athabasca, Canada[C]// Life with ore deposits on Earth. Proceedings of the 15th SGA biennial meeting, 2019, Vols 1/2/3/4. Glasgow:University of Glasgow, 2019: 1175-1178. |
[32] |
ZHANG L, WEINBERG R F, YANG L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: a focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441.
DOI URL |
[33] |
SIBSON R H, ROBERT F, POULSEN K H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 1988, 16(6): 551-555.
DOI URL |
[34] |
WILKINSON J J, JOHNSTON J D. Pressure fluctuations, phase separation, and gold precipitation during seismic fracture propagation[J]. Geology, 1996, 24(5): 395-398.
DOI URL |
[35] |
MICKLETHWAITE S, COX S F. Fault-segment rupture, aftershock-zone fluid flow, and mineralization[J]. Geology, 2004, 32(9): 813-816.
DOI URL |
[36] |
GHISETTI F C, SIBSON R H. Accommodation of compressional inversion in north-western South Island (New Zealand): old faults versus new?[J]. Journal of Structural Geology, 2006, 28(11): 1994-2010.
DOI URL |
[37] |
GHISETTI F C, SIBSON R H. Erratum to “Accommodation of compressional inversion in north-western South Island (New Zealand): old faults versus new?”[J]. Journal of Structural Geology, 2007, 29(5): 918-920.
DOI URL |
[38] |
COX S F. Injection-driven swarm seismicity and permeability enhancement: implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes: an invited paper[J]. Economic Geology, 2016, 111(3): 559-587.
DOI URL |
[39] | 王义天, 毛景文, 李晓峰, 等. 与剪切带相关的金成矿作用[J]. 地学前缘, 2004, 11(2): 393-400. |
[40] |
PETERSON E C, MAVROGENES J A. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea[J]. Geology, 2014, 42(5): 383-386.
DOI URL |
[41] |
WEATHERLEY D K, HENLEY R W. Flash vaporization during earthquakes evidenced by gold deposits[J]. Nature Geoscience, 2013, 6(4): 294-298.
DOI |
[42] |
SANCHEZ-ALFARO P, REICH M, DRIESNER T, et al. The optimal windows for seismically-enhanced gold precipitation in the epithermal environment[J]. Ore Geology Reviews, 2016, 79: 463-473.
DOI URL |
[43] |
WILLIAMS J N, TOY V G, SMITH S A F, et al. Fracturing, fluid-rock interaction and mineralisation during the seismic cycle along the Alpine Fault[J]. Journal of Structural Geology, 2017, 103: 151-166.
DOI URL |
[44] |
COX S F, RUMING K. The St Ives mesothermal gold system, western Australia: a case of golden after-shocks?[J]. Journal of Structural Geology, 2004, 26(6/7): 1109-1125.
DOI URL |
[45] | 王偲瑞. 胶西北金矿床构造-流体成矿动力学[D]. 北京: 中国地质大学(北京), 2020. |
[46] |
BONS P D, ELBURG M A, GOMEZ-RIVAS E. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 2012, 43: 33-62.
DOI URL |
[47] |
GROVES D I, SANTOSH M, MÜLLER D, et al. Mineral systems: their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration[J]. Geosystems and Geoenvironment, 2022, 1(1): 100001.
DOI URL |
[48] | VEARNCOMBE J, ZELIC M. Structural paradigms for gold: do they help us find and mine?[J]. Applied Earth Science, Taylor & Francis, 2015, 124(1): 2-19. |
[49] | STREIT J E, COX S F. Fluid pressures at hypocenters of moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B2): 2235-2243. |
[50] | COX S F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust[C]// HEDENQUIST J W, THOMPSON J F H. One hundred anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 39-76. |
[51] |
MICKLETHWAITE S, SHELDON H A, BAKER T. Active fault and shear processes and their implications for mineral deposit formation and discovery[J]. Journal of Structural Geology, 2010, 32(2): 151-165.
DOI URL |
[52] | 池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5): 1-18. |
[53] |
INGEBRITSEN S E, APPOLD M S. The physical hydrogeology of ore deposits[J]. Economic Geology, 2012, 107(4): 559-584.
DOI URL |
[54] |
WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338(6114): 1613-1616.
DOI PMID |
[55] |
WEIS P, DRIESNER T, COUMOU D, et al. Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison[J]. Geofluids, 2014, 14(3): 347-371.
DOI URL |
[56] | 江小军, 王忠强, 李超, 等. 滇东北会泽超大型铅锌矿Re-Os同位素特征及喜山期成矿作用动力学背景探讨[J]. 岩矿测试, 2018, 37(4): 448-461. |
[57] | 陈世清. 对称经济学[M]. 北京: 中国时代经济出版社, 2010: 224. |
[58] |
HOBBS B E, ORD A, REGENAUER-LIEB K. The thermodynamics of deformed metamorphic rocks: a review[J]. Journal of Structural Geology, 2011, 33(5): 758-818.
DOI URL |
[59] |
LESTER D R, ORD A, HOBBS B E. The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions[J]. Ore Geology Reviews, 2012, 49: 45-71.
DOI URL |
[60] |
FAZEL E T, PAŠAVA J, WILKE F D H, et al. Source of gold and ore-forming processes in the Zarshuran gold deposit, NW Iran: insights from in situ elemental and sulfur isotopic compositions of pyrite, fluid inclusions, and O-H isotopes[J]. Ore Geology Reviews, 2023, 156: 105382.
DOI URL |
[61] |
JOLLEY S J, FREEMAN S R, BARNICOAT A C, et al. Structural controls on Witwatersrand gold mineralisation[J]. Journal of Structural Geology, 2004, 26(6/7): 1067-1086.
DOI URL |
[62] |
GOLDFARB R J, GROVES D I, GARDOLL S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18(1/2): 1-75.
DOI URL |
[63] |
QIU Y M, GROVES D I, MCNAUGHTON N J, et al. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China Craton, China[J]. Mineralium Deposita, 2002, 37: 283-305.
DOI URL |
[64] |
GUO P, SANTOSH M, LI S R. Geodynamics of gold metallogeny in the Shandong Province, NE China: an integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 2013, 24(3/4): 1172-1202.
DOI URL |
[65] |
YU G P, XU T, AI Y S, et al. Significance of crustal extension and magmatism to gold deposits beneath Jiaodong Peninsula, eastern North China Craton: seismic evidence from receiver function imaging with a dense array[J]. Tectonophysics, 2020, 789: 228532.
DOI URL |
[66] |
YANG L Q. Editorial for special issue “Polymetallic metallogenic system”[J]. Minerals, 2019, 9(7): 435.
DOI URL |
[67] | DENG J, WANG Q F, SUN X, et al. Tibetan ore deposits: a conjunction of accretionary orogeny and continental collision[J]. Earth-Science Reviews, 2022: 104245. |
[68] |
YANG L Q, DENG J, GUO L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the Giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602.
DOI URL |
[69] |
DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the Giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208: 103274.
DOI URL |
[70] | COX S F. The dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems[M]//ROWLAND J V, RHYS D A. Applied structural geology of ore-forming hydrothermal systems. Washington: Society of Economic Geologists, 2020, 21: 25-82. |
[71] | 赵海, 赵可广, 马耀丽, 等. 胶东新城金矿地质构造特征及深部找矿方向[J]. 地质力学学报, 2004, 10(2): 129-136. |
[72] | 陆丽娜, 范宏瑞, 胡芳芳, 等. 胶西北新城金矿成矿流体与矿床成因[J]. 矿床地质, 2011, 30(3): 522-532. |
[73] | 宋明春, 宋英昕, 崔书学, 等. 胶东焦家特大型金矿床深、浅部矿体特征对比[J]. 矿床地质, 2011, 30(5): 923-932. |
[74] | 陈耀煌, 孙华山, 罗辉隆. 胶西北上庄金矿断裂岩体控矿规律[J]. 地质科技情报, 2012, 31(4): 55-60. |
[75] | 卫清, 范宏瑞, 蓝廷广, 等. 胶东寺庄金矿床成因: 流体包裹体与石英溶解度证据[J]. 岩石学报, 2015, 31(4): 1049-1062. |
[76] | 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710. |
[77] | 宋明春, 宋英昕, 丁正江, 等. 胶东焦家和三山岛巨型金矿床的发现及有关问题讨论[J]. 大地构造与成矿学, 2019, 43(1): 92-110. |
[78] | 魏瑜吉, 邱昆峰, 郭林楠, 等. 胶东大尹格庄金矿床成矿流体特征与演化[J]. 岩石学报, 2020, 36(6): 1821-1832. |
[79] | 杨喜安, 赵国春, 宋玉波, 等. 胶东牟平-乳山成矿带拆离断层控矿特征及找矿方向[J]. 大地构造与成矿学, 2011, 35(3): 339-347. |
[80] |
CHEN B H, DENG J, JI X Z. Time limit of gold mineralization in Muping-Rushan belt, eastern Jiaodong Peninsula, China: evidence from muscovite Ar-Ar dating[J]. Minerals, 2022, 12(3): 278.
DOI URL |
[81] |
YAN Y T, ZHANG N, LI S R, et al. Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, eastern China[J]. Geoscience Frontiers, 2014, 5(2): 205-213.
DOI URL |
[82] | 李经纬, 邱昆峰, 马明, 等. 胶东旧店金矿床赋矿岩浆岩岩石成因及其地质意义[J]. 岩石学报, 2023, 39(2): 393-410. |
[83] | 邹为雷, 沈远超, 曾庆栋, 等. 蓬家夼金矿与发云夼金矿地质地球化学特征对比研究: 兼议层间滑动角砾岩型金矿成矿模式[J]. 黄金, 2001(3): 1-7. |
[84] | 李国华, 丁正江, 宋明春, 等. 胶东新类型金矿: 辽上黄铁矿碳酸盐脉型金矿[J]. 地球学报, 2017, 38(3): 423-429. |
[85] | 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236. |
[86] | 阿尔伯特ALBERT N N. 胶东平里店金矿床地质-地球化学特征[D]. 北京: 中国地质大学(北京), 2016. |
[87] | 贾飞, 胡跃亮, 王永锋, 等. 基于Vulcan软件的山东莱州留村金矿区三维建模及资源量估值[J]. 地质与勘探, 2022, 58(1): 12-23. |
[88] | 宋明春, 张军进, 张丕建, 等. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J]. 地质学报, 2015, 89(2): 365-383. |
[89] | 宋明春, 杨立强, 范宏瑞, 等. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J]. 地质通报, 2022, 41(6): 903-935. |
[90] | 宋英昕, 宋明春, 丁正江, 等. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4-18. |
[91] | ROBERT F, POULSEN K H. Vein formation and deformation in greenstone gold deposits[J]. Society of Economic Geologists Review, 2001, 14: 111-155. |
[92] | BLENKINSOP T G, OLIVER N H S, DIRKS P G H M, et al. Structural geology applied to the evaluation of hydrothermal gold deposits[M]//ROWLAND J V, RHYS D A. Applied structural geology of ore-forming hydrothermal systems. Washington: Society of Economic Geologists, 2020: 1-23. |
[93] | TAYLOR W L, POLLARD D D, AYDIN A. Fluid flow in discrete joint sets: field observations and numerical simulations[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B12): 28983-29006. |
[94] | MATTHÄI S K, BELAYNEH M. Fluid flow partitioning between fractures and a permeable rock matrix[J]. Geophysical Research Letters, 2004, 31(7): 221-237. |
[95] | SINGHAL B B S, GUPTA R P. Applied hydrogeology of fractured rocks[M]. 2nd ed. Berlin: Springer Science & Business Media, 2010: 414. |
[96] |
KOLB J, ROGERS A, MEYER F M, et al. Development of fluid conduits in the auriferous shear zones of the Hutti gold mine, India: evidence for spatially and temporally heterogeneous fluid flow[J]. Tectonophysics, 2004, 378(1/2): 65-84.
DOI URL |
[97] |
HICKEY K A, AHMED A D, BARKER S L L, et al. Fault-controlled lateral fluid flow underneath and into a Carlin-type gold deposit: isotopic and geochemical footprints[J]. Economic Geology, 2014, 109(5): 1431-1460.
DOI URL |
[98] |
ARANCIBIA G, FUJITA K, HOSHINO K, et al. Hydrothermal alteration in an exhumed crustal fault zone: testing geochemical mobility in the Caleta Coloso fault, Atacama fault system, northern Chile[J]. Tectonophysics, 2014, 623: 147-168.
DOI URL |
[99] |
CHI G X, XUE C J. An overview of hydrodynamic studies of mineralization[J]. Geoscience Frontiers, 2011, 2(3): 423-438.
DOI URL |
[100] |
MICKLETHWAITE S, FORD A, WITT W, et al. The where and how of faults, fluids and permeability-insights from fault stepovers, scaling properties and gold mineralisation[J]. Geofluids, 2015, 15(1/2): 240-251.
DOI URL |
[101] |
WIBBERLEY C A J, SHIPTON Z K. Fault zones: a complex issue[J]. Journal of Structural Geology, 2010, 32(11): 1554-1556.
DOI URL |
[102] | 陈小龙, 吕古贤, 唐朝永, 等. 显微构造研究在新城金矿成矿深度测算中的应用[J]. 大地构造与成矿学, 2011, 35(4): 612-617. |
[103] | CATHLES L M, ADAMS J J. Fluid flow and petroleum and mineral resources in the upper (< 20 km) continental crust[C]// HEDENQUIST J W, THOMPSON J F H. One hundered anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 77-110. |
[104] |
SODEN A M, SHIPTON Z K, LUNN R J, et al. Brittle structures focused on subtle crustal heterogeneities: implications for flow in fractured rocks[J]. Journal of the Geological Society, 2014, 171(4): 509-524.
DOI URL |
[105] |
CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028.
DOI URL |
[106] |
INGEBRITSON S E, GLEESON T. Crustal permeability: introduction to the special issue[J]. Geofluids, 2015, 15(1/2): 1-10.
DOI URL |
[107] |
SHIPTON Z K, COWIE P A. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone[J]. Journal of Structural Geology, 2003, 25(3): 333-344.
DOI URL |
[108] |
SAFFER D M. The permeability of active subduction plate boundary faults[J]. Geofluids, 2015, 15(1/2): 193-215.
DOI URL |
[109] |
FOROOZAN R, ELSWORTH D, FLEMINGS P, et al. The role of permeability evolution in fault zones on the structural and hydro-mechanical characteristics of shortening basins[J]. Marine and Petroleum Geology, 2012, 29(1): 143-151.
DOI URL |
[110] |
GABOURY D. Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments? Insight from volatiles in fluid inclusions[J]. Geology, 2013, 41(12): 1207-1210.
DOI URL |
[111] | SELVARAJA V, CARUSO S, FIORENTINI M L, et al. Atmospheric sulfur in the orogenic gold deposits of the Archean Yilgarn Craton, Australia[J]. Geology, 2017, 45(8): 691-694. |
[112] |
XUE Y X, CAMPBELL I, IRELAND T R, et al. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J]. Geology, 2013, 41(7): 791-794.
DOI URL |
[113] |
LARGE S J E, BAKKER E Y N, WEIS P, et al. Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend[J]. Geology, 2016, 44(12): 1015-1018.
DOI URL |
[114] |
LEE C T A. Copper conundrums[J]. Nature Geoscience, 2014, 7(1): 10-11.
DOI |
[115] |
HOU Z Q, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6): 563-566.
DOI URL |
[116] | HOU Z Q, XU B, ZHANG H J, et al. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 2023, 4(1): 293. |
[117] |
WEBBER A P, ROBERTS S, TAYLOR R N, et al. Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction[J]. Geology, 2013, 41(1): 87-90.
DOI URL |
[118] |
HOU Z Q, WANG Q F, ZHANG H J, et al. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits[J]. National Science Review, 2023, 10(3): nwac257.
DOI URL |
[119] |
TASSARA S, GONZÁLEZ-JIMÉNEZ J M, REICH M, et al. Plume-subduction interaction forms large auriferous provinces[J]. Nature Communications, 2017, 8(1): 843.
DOI PMID |
[120] |
FIORENTINI M L, LAFLAMME C, DENYSZYN S, et al. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust[J]. Geochimica et Cosmochimica Acta, 2018, 223: 175-197.
DOI URL |
[121] |
GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
DOI |
[122] |
WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6(11): 917-925.
DOI |
[123] |
RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11): 911-916.
DOI |
[124] |
GUO H, AUDÉTAT A, DOLEJŠ D. Solubility of gold in oxidized, sulfur-bearing fluids at 500-850 ℃ and 200-230 MPa: a synthetic fluid inclusion study[J]. Geochimica et Cosmochimica Acta, 2018, 222: 655-670.
DOI URL |
[125] | MUNTEAN J L, CASSINERIO M D, AREHART G B, et al. Fluid pathways at the Turquoise Ridge Carlin-type gold deposit, Getchell district, Nevada[C]// Smart science for exploration and mining. Proceedings of the tenth biennial meeting of the Society of Geology Applied to Mineral Deposits, Townsville, Australia. 2009: 251-252. |
[126] | DENG J, YANG L Q, GE L S, et al. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area[J]. Progress in Natural Science, Taylor & Francis, 2006, 16(8): 777-784. |
[127] |
YANG L Q, DENG J, WANG Q F, et al. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong Peninsula, eastern China[J]. Acta Geologica Sinica (English Edition), 2006, 80(3): 400-411.
DOI URL |
[128] | YANG L Q, DENG J, ZHANG J, et al. Preliminary studies of fluid inclusions in Damoqujia gold deposit along Zhaoping fault zone, Shandong Province, China[J]. Acta Petrologica Sinica, 2007, 23(1): 153-160. |
[129] |
GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 2014, 5(2): 139-153.
DOI URL |
[130] | 刘石年. 山东玲珑式金矿床矿体空间定位形式及其形成机制的探讨[J]. 地球科学: 中国地质大学学报, 1984(4): 47-56. |
[131] | 吕古贤, 孔庆存. 胶东玲珑-焦家式金矿地质[M]. 北京: 科学出版社, 1993: 253 |
[132] | 胡受奚, 叶瑛, 刘红樱. 地体构造对金区域成矿的重要意义[J]. 黄金地质, 2001, 7(4): 1-8. |
[133] | 汪劲草, 王国富, 汤静如. 玲珑-焦家地区金矿成矿构造体制的新认识[J]. 桂林工学院学报, 2002(1): 1-4. |
[134] |
DENG J, WANG Q F, YANG L Q, et al. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China[J]. Acta Geologica Sinica (English Edition), 2008, 82(4): 769-780.
DOI URL |
[135] |
CHARLES N, AUGIER R, GUMIAUX C, et al. Timing, duration and role of magmatism in wide rift systems: insights from the Jiaodong Peninsula (China, East Asia)[J]. Gondwana Research, 2013, 24(1): 412-428.
DOI URL |
[136] |
WEINBERG R F, HODKIEWICZ P F, GROVES D I. What controls gold distribution in Archean terranes?[J]. Geology, 2004, 32(7): 545-548.
DOI URL |
[137] | WEINBERG R F. Melt segregation and extraction from deforming plutons[C]// AGU Fall Meeting Abstracts. 2006: V23D-0663. |
[138] |
BIERLEIN F P, MURPHY F C, WEINBERG R F, et al. Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, western Australia[J]. Mineralium Deposita, 2006, 41: 107-126.
DOI URL |
[139] | 王晨光, 杨立强, 和文言. 滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义[J]. 岩石学报, 2017, 33(7): 2213-2224. |
[140] |
GROVES D I, SANTOSH M, GOLDFARB R J, et al. Structural geometry of orogenic gold deposits: implications for exploration of world-class and giant deposits[J]. Geoscience Frontiers, 2018, 9(4): 1163-1177.
DOI URL |
[141] |
COX S F, SUN S S, ETHERIDGE M A, et al. Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully mine, central Victoria, Australia[J]. Economic Geology, 1995, 90(6): 1722-1746.
DOI URL |
[142] |
RIDLEY J, MIKUCKI E J, GROVES D I. Archean lode-gold deposits: fluid flow and chemical evolution in vertically extensive hydrothermal systems[J]. Ore Geology Reviews, 1996, 10(3/4/5/6): 279-293.
DOI URL |
[143] | RHYS D, VALLI F, BURGESS R, et al. Controls of fault and fold geometry on the distribution of gold mineralization on the Carlin trend[J]. New Concepts and Discoveries, 2015, 1: 333-389. |
[144] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[145] |
KORGES M, WEIS P, ANDERSEN C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552: 116584.
DOI URL |
[146] |
CRAW D. Gilded by earthquakes[J]. Nature Geoscience, 2013, 6(4): 248-250.
DOI |
[147] | 徐兴旺, 牛磊, 洪涛, 等. 流体构造动力学与成矿作用[J]. 地质力学学报, 2019, 25(1): 1-8. |
[148] |
FIELDING I O H, JOHNSON S P, ZI J W, et al. Gold metallogeny of the northern Capricorn Orogen: the relationship between crustal architecture, fault reactivation and hydrothermal fluid flow[J]. Ore Geology Reviews, 2020, 122: 103515.
DOI URL |
[149] | MCCUAIG T C, KERRICH R. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics[J]. Ore Geology Reviews, 1998, 12(6): 381-453. |
[150] | GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic terranes[M]//HEDENQUIST J W, THOMPSON J F H, One hundred anniversary volume 1905-2005. Washington: Society of Economic Geologists, 2005: 407-450. |
[151] | 孙晓明, 石贵勇, 翟伟, 等. 青藏高原喜马拉雅期碰撞造山型金矿矿化特征和动力学机制: 以哀牢山金矿带为例[J]. 矿床地质, 2010, (S1): 995-996. |
[152] |
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
DOI URL |
[153] |
GROVES D I, GOLDFARB R J, SANTOSH M. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings[J]. Geoscience Frontiers, 2016, 7(3): 303-314.
DOI URL |
[154] |
MONCADA D, RIMSTIDT J D, BODNAR R J. How to form a giant epithermal precious metal deposit: relationships between fluid flow rate, metal concentration of ore-forming fluids, duration of the ore-forming process, and ore grade and tonnage[J]. Ore Geology Reviews, 2019, 113: 103066.
DOI URL |
[155] | LANG J R, BAKER T, HART C J R, et al. An exploration model for intrusion-related gold systems[J]. SEG Newsletter, 2000(40): 1-15. |
[156] | MUNTEAN J L. The Carlin gold system: applications to exploration in Nevada and beyond[M]//MUNTEAN J L. Diversity in Carlin-style gold deposits. Washington: Society of Economic Geologists, 2018, 20: 39-88. |
[157] | SU W C, DONG W D, ZHANG X C, et al. Carlin-type gold deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China[J]. Reviews in Economic Geology, 2018, 20: 157-185. |
[158] |
GROVES D I, VIELREICHER R M, GOLDFARB R J, et al. Controls on the heterogeneous distribution of mineral deposits through time[J]. Geological Society, London, Special Publications, 2005, 248(1): 71-101.
DOI URL |
[159] | 许德如, 叶挺威, 王智琳. 成矿作用的空间分布不均匀性及其控制因素探讨[J]. 大地构造与成矿学, 2019, 43(3): 368-388. |
[160] |
PHILLIPS G N, VEARNCOMBE J R, ANAND R R, et al. The role of geoscience breakthroughs in gold exploration success: Yilgarn Craton, Australia[J]. Ore Geology Reviews, 2019, 112: 103009.
DOI URL |
[161] |
FYFE W S, KERRICH R. Fluids and thrusting[J]. Chemical Geology, 1985, 49(1/2/3): 353-362.
DOI URL |
[162] |
SPENCER J E, WELTY J W. Possible controls of base- and precious-metal mineralization associated with Tertiary detachment faults in the Lower Colorado River trough, Arizona and California[J]. Geology, 1986, 14(3): 195-198.
DOI URL |
[163] | ROBERT F, BOULLIER A M, FIRDAOUS K. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12861-12879. |
[164] |
CAMERON E M. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: Part 1. Conceptual model[J]. Journal of Geochemical Exploration, 1989, 31(2): 135-147.
DOI URL |
[165] |
HODGSON C J. The structure of shear-related, vein-type gold deposits: a review[J]. Ore Geology Reviews, 1989, 4(3): 231-273.
DOI URL |
[166] | BONNEMAISON M, MARCOUX E. Auriferous mineralization in some shear-zones: a three-stage model of metallogenesis[J]. Mineralium Deposita, 1990, 25: 96-104. |
[167] |
COX S F, WALL V J, ETHERIDGE M A, et al. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits: examples from the Lachlan Fold Belt in central Victoria, Australia[J]. Ore Geology Reviews, 1991, 6(5): 391-423.
DOI URL |
[168] |
BOWERS T S. The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2417-2434.
DOI URL |
[169] | CLINE J S, BODNAR R J, RIMSTIDT J D. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: application to epithermal gold deposits[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B6): 9085-9103. |
[170] |
FALEIROS F M, DA CRUZ CAMPANHA G A, DA SILVEIRA BALLO R M, et al. Fault-valve action and vein development during strike-slip faulting: an example from the Ribeira shear zone, southeastern Brazil[J]. Tectonophysics, 2007, 438(1/2/3/4): 1-32.
DOI URL |
[171] |
STILLWELL F L. Replacement in the Bendigo quartz veins and its relation to gold deposits[J]. Economic Geology, 1918, 13(2): 100-111.
DOI URL |
[172] |
GROVES D I, PHILLIPS G N. The genesis and tectonic control on Archaean gold deposits of the western Australian shield: a metamorphic replacement model[J]. Ore Geology Reviews, 1987, 2(4): 287-322.
DOI URL |
[173] | COLVINE A C. An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior Province, Canada[J]. Economic Geology Monograph, 1989, 6: 37-53. |
[174] |
VEARNCOMBE J R. Shear zones, fault networks, and Archean gold[J]. Geology, 1998, 26(9): 855-858.
DOI URL |
[175] |
LI N, YANG L Q, GROVES D I, et al. Tectonic and district to deposit-scale structural controls on the Ge’erke orogenic gold deposit within the Dashui-Zhongqu district, West Qinling Belt, China[J]. Ore Geology Reviews, 2020, 120: 103436.
DOI URL |
[176] | 肖庆辉. 国外变质岩构造研究概况[J]. 辽宁区域地质, 1981(1): 1-29. |
[177] |
TRIPP G I, VEARNCOMBE J R. Fault/fracture density and mineralization: a contouring method for targeting in gold exploration[J]. Journal of Structural Geology, 2004, 26(6/7): 1087-1108.
DOI URL |
[178] | 郑义. 热液矿床超大比例尺构造-蚀变-矿化填图: 基本原理与注意事项[J]. 地球科学, 2022, 47(10): 3603-3615. |
[179] |
MARTEL E. The importance of structural mapping in ore deposits: a new perspective on the Howard's Pass Zn-Pb district, Northwest Territories, Canada[J]. Economic Geology, 2017, 112(6): 1285-1304.
DOI URL |
[180] | 张微, 杨金中, 方洪宾, 等. 东昆仑—阿尔金地区遥感地质解译与成矿预测[J]. 西北地质, 2010, 43(4): 288-294. |
[181] | PLATTEN I M, DOMINY S C. Geological mapping in the evaluation of structurally controlled gold veins:a case study from the Dolgellau gold belt, North Wales, United Kingdom[C]// Proceedings of world gold conference. Gauteng: The Southern African Institute of Mining and Metallurgy, 2009: 151-167. |
[182] | 滕寿仁, 董哲, 王营, 等. 1∶5万三维地质填图方法技术在本溪矿集区的应用[J]. 地质与资源, 2015, 24(4): 383-387. |
[183] | 傅昭仁, 李德威, 李先富, 等. 变质核杂岩及剥离断层的控矿构造解析[M]. 武汉: 中国地质大学出版社, 1992: 110. |
[184] | SAUMUR B M. Structure and dynamics of intrusion-hosted magmatic Ni-Cu sulphide deposits: insights from analogue experiments & Voisey's Bay (Canada)[D]. Melbourne: Monash University, 2014: 178. |
[185] | 张田, 张岳桥. 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 2007, 13(2): 323. |
[186] | 张田, 张岳桥. 胶北隆起晚中生代构造-岩浆演化历史[J]. 地质学报, 2008, (9): 1210-1228. |
[187] |
DENG J, WANG C M, BAGAS L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia fault and gold mineralization in the Jiaodong Peninsula, China: constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8): 987-1006.
DOI URL |
[188] |
DENG J, FANG Y, YANG L Q, et al. Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems[J]. Acta Geologica Sinica (English Edition), 2001, 75(2): 220-232.
DOI URL |
[189] |
YIGIT O, NELSON E P, HITZMAN M W, et al. Structural controls on Carlin-type gold mineralization in the Gold Bar district, Eureka County, Nevada[J]. Economic Geology, 2003, 98(6): 1173-1188.
DOI URL |
[190] | 吕庆田, 孟贵祥, 严加永, 等. 成矿系统的多尺度探测: 概念与进展: 以长江中下游成矿带为例[J]. 中国地质, 2019, 46(4): 673-689. |
[191] | TRIPP G I. Stratigraphy and structure in the Neoarchaean of the Kalgoorlie district, Australia: critical controls on greenstone-hosted gold deposits[D]. Queensland: James Cook University, 2013: 773. |
[192] | BAI L X, XU X W, LUO H, et al. Angular unconformity of the Late Quaternary strata in the Hetao Basin, North of the Ordos Block (West China): timing and its tectonic implications[J]. Frontiers in Earth Science, Frontiers Media SA, 2021, 9: 646789. |
[193] | 张岳桥, 施炜, 李建华, 等. 大巴山前陆弧形构造带形成机理分析[J]. 地质学报, 2010, 84(9): 1300-1315. |
[194] | 池三川. 隐伏矿床(体)的寻找[M]. 武汉: 中国地质大学出版社, 1988: 117. |
[195] | 单文琅, 宋鸿林, 傅昭仁, 等. 构造变形分析的理论、方法和实践[M]. 武汉: 中国地质大学出版社, 1991: 159. |
[196] | 曾庆丰. 构造矿床学: 曾庆丰论选构造矿床学: 曾庆丰论著选编[M]. 北京: 科学出版社, 2016: 619. |
[197] | 杨立强, 邓军, 方云, 等. 构造-流体耦合成矿效应计算模拟[J]. 地球学报, 1999, 20(增刊): 433-437. |
[198] | 梁一鸿, 孙德育, 张业明. 内蒙古中部地区金矿床控矿构造类型[J]. 黄金, 1993, 14(2): 5-9. |
[199] | 魏赛拉加. 胶东郭城地区金矿床构造控矿规律研究及找矿方向[D]. 北京: 中国地质大学(北京), 2014. |
[200] | 李瑞红. 焦家金矿带构造控矿模式[D]. 北京: 中国地质大学(北京), 2017: 195. |
[201] | CALHOUN J. Fabric and microstructural analysis of the Loch Borralan pluton, Northwest Highlands, Scotland[D]. Milwaukee: The University of Wisconsin-Milwaukee, 2014. |
[202] |
KASSEM O M K, HAMIMI Z, ABOELKHAIR H, et al. Microstructural study and strain analysis of deformed Neoproterozoic lithologies in the Um Junud area, Northern Nubian Shield[J]. Geotectonics, 2019, 53: 125-139.
DOI |
[203] |
KRUCKENBERG S C, MICHELS Z D, PARSONS M M. From intracrystalline distortion to plate motion: unifying structural, kinematic, and textural analysis in heterogeneous shear zones through crystallographic orientation-dispersion methods[J]. Geosphere, 2019, 15(2): 357-381.
DOI URL |
[204] |
DE ROO J A. The Elura Ag-Pb-Zn mine in Australia: ore genesis in a slate belt by syndeformational metasomatism along hydrothermal fluid conduits[J]. Economic Geology, 1989, 84(2): 256-278.
DOI URL |
[205] |
LIU J, ZHAO G, XU G, et al. Structural control and genesis of gold deposits in the Liaodong Peninsula, northeastern North China Craton[J]. Ore Geology Reviews, 2020, 125: 103672.
DOI URL |
[206] |
HASRIA H, SIDIK M, AWADH S M, et al. Orogenic gold deposit in metamorphic rocks: minerals and structural control at Rarowatu area, Southeastern Arm of Sulawesi, Indonesia[J]. The Iraqi Geological Journal, 2023, 56(1B): 16-31.
DOI URL |
[207] | 孙岩. 裂隙岩相学研究: 以美国加州深钻岩心的扫描电镜观察为例[J]. 地质论评, 1990, 36(3): 249-254. |
[208] | 邓军, 杨立强, 方云, 等. 成矿系统嵌套分形结构和自有序效应[J]. 地学前缘, 2000, 7(1): 133-146. |
[209] |
HODKIEWICZ P F, WEINBERG R F, GARDOLL S J, et al. Complexity gradients in the Yilgarn Craton: fundamental controls on crustal-scale fluid flow and the formation of world-class orogenic-gold deposits[J]. Australian Journal of Earth Sciences, 2005, 52(6): 831-841.
DOI URL |
[210] |
HRONSKY J M A. Deposit-scale structural controls on orogenic gold deposits: an integrated, physical process-based hypothesis and practical targeting implications[J]. Mineralium Deposita, 2020, 55(2): 197-216.
DOI |
[211] |
SIBSON R H, SCOTT J. Stress/fault controls on the containment and release of overpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 293-306.
DOI URL |
[212] |
THÉBAUD N, SUGIONO D, LAFLAMME C, et al. Protracted and polyphased gold mineralisation in the Agnew district (Yilgarn Craton, western Australia)[J]. Precambrian Research, 2018, 310: 291-304.
DOI URL |
[213] |
STEINER A P, HICKEY K A. Fluid partitioning between veins/fractures and the host rocks in Carlin-type Au deposits: a significant control on fluid-rock interaction and Au endowment[J]. Mineralium Deposita, 2023, 58(4): 797-823.
DOI |
[214] |
HENZA A A, WITHJACK M O, SCHLISCHE R W. How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension?[J]. Journal of Structural Geology, 2011, 33(9): 1312-1324.
DOI URL |
[215] |
WITHJACK M O, HENZA A A, SCHLISCHE R W. Three-dimensional fault geometries and interactions within experimental models of multiphase extension[J]. AAPG Bulletin, 2017, 101(11): 1767-1789.
DOI URL |
[216] | 陈兴鹏, 李伟, 吴智平, 等. “伸展-走滑”复合作用下构造变形的物理模拟[J]. 大地构造与成矿学, 2019, 43(6): 1106-1116. |
[217] |
DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: lithospheric extension in the North China Craton, eastern Asia[J]. GSA Bulletin, 2017, 129(11/12): 1379-1407.
DOI URL |
[218] |
HENSTRA G A, KRISTENSEN T B, ROTEVATN A, et al. How do pre-existing normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway[J]. Basin Research, 2019, 31(6): 1083-1097.
DOI URL |
[219] |
GAWTHORPE R L, LEEDER M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12(3/4): 195-218.
DOI URL |
[220] |
NIXON C W, SANDERSON D J, DEE S J, et al. Fault interactions and reactivation within a normal-fault network at Milne Point, Alaska[J]. AAPG Bulletin, 2014, 98(10): 2081-2107.
DOI URL |
[221] | ATKINSON B K. Subcritical crack growth in geological materials[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B6): 4077-4114. |
[222] |
POLLARD D D, AYDIN A. Progress in understanding jointing over the past century[J]. Geological Society of America Bulletin, 1988, 100(8): 1181-1204.
DOI URL |
[223] |
MORLEY C K. The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand[J]. Geological Society, London, Special Publications, 2017, 439(1): 413-445.
DOI URL |
[224] |
赵利, 徐旭辉, 方成名, 等. 中西部冲断带多尺度地球物理解释及其物理模拟实验[J]. 地球物理学报, 2017, 60(7): 2885-2896.
DOI |
[225] |
REEVE M T, BELL R E, DUFFY O B, et al. The growth of non-colinear normal fault systems: what can we learn from 3D seismic reflection data?[J]. Journal of Structural Geology, 2015, 70: 141-155.
DOI URL |
[226] |
DENG C, GAWTHORPE R L, FOSSEN H, et al. How does the orientation of a preexisting basement weakness influence fault development during renewed rifting? Insights from three-dimensional discrete element modeling[J]. Tectonics, 2018, 37(7): 2221-2242.
DOI URL |
[227] | RILEY M S. Fracture trace length and number distributions from fracture mapping[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B8): B08414. |
[228] |
SANDERSON D J, NIXON C W. The use of topology in fracture network characterization[J]. Journal of Structural Geology, 2015, 72: 55-66.
DOI URL |
[229] | ANDRESEN C A, HANSEN A, LE GOC R, et al. Topology of fracture networks[J]. Frontiers in Physics, 2013, 1: 7. |
[230] |
DUFFY O B, NIXON C W, BELL R E, et al. The topology of evolving rift fault networks: single-phase vs. multi-phase rifts[J]. Journal of Structural Geology, 2017, 96: 192-202.
DOI URL |
[231] |
DIMMEN V, ROTEVATN A, PEACOCK D C P, et al. Quantifying structural controls on fluid flow: insights from carbonate-hosted fault damage zones on the Maltese Islands[J]. Journal of Structural Geology, 2017, 101: 43-57.
DOI URL |
[232] | MANZOCCHI T. The connectivity of two-dimensional networks of spatially correlated fractures[J]. Water Resources Research, 2002, 38(9): 1-1-1-20. |
[233] |
MICARELLI L, BENEDICTO A, WIBBERLEY C A J. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks[J]. Journal of Structural Geology, 2006, 28(7): 1214-1227.
DOI URL |
[234] | 王迪, 吴智平, 宋国奇, 等. 断裂网络体系拓扑结构与油气运移的关系: 以临南洼陷为例[J]. 中国矿业大学学报, 2021, 50(1): 154-162. |
[235] |
BLENKINSOP T G, KADZVITI S. Fluid flow in shear zones: insights from the geometry and evolution of ore bodies at Renco gold mine, Zimbabwe[J]. Geofluids, 2006, 6(4): 334-345.
DOI URL |
[236] | 任建业. 变形岩石中的运动学标志[J]. 地质科技情报, 1988(1): 23-30. |
[237] | 孙士军. 黔东北走滑断层之特征及形成机制分析[J]. 贵州地质, 1995, 12(3): 244-251. |
[238] | 傅昭仁, 蔡学林. 变质岩区构造地质学[M]. 北京: 地质出版社, 1996: 243. |
[239] |
JAPAS M S, GÓMEZ A L R, RUBINSTEIN N A. Unravelling the hydro-mechanical evolution of a porphyry-type deposit by using vein structures[J]. Ore Geology Reviews, 2021, 133: 104074.
DOI URL |
[240] |
SIBSON R H. Brittle failure mode plots for compressional and extensional tectonic regimes[J]. Journal of Structural Geology, 1998, 20(5): 655-660.
DOI URL |
[241] |
STEPHENS J R, MAIR J L, OLIVER N H S, et al. Structural and mechanical controls on intrusion-related deposits of the Tombstone gold belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types[J]. Journal of Structural Geology, 2004, 26(6): 1025-1041.
DOI URL |
[242] |
TCHALENKO J S. The evolution of kink-bands and the development of compression textures in sheared clays[J]. Tectonophysics, 1968, 6(2): 159-174.
DOI URL |
[243] | ROBERTS R G. Ore deposit models#11. Archean lode gold deposits[J]. Geoscience Canada, 1987, 14(1): 37-52. |
[244] | 杨农, 陈正乐, 雷伟志, 等. 冀北燕山地区印支期构造特征研究[M]. 北京: 地质出版社, 1996: 70. |
[245] | 孙叶, 谭成轩. 构造应力场研究与实践[J]. 地质力学学报, 2001(3): 254-258. |
[246] | GYSI A, MEI Y, DRIESNER T. Advances in numerical simulations of hydrothermal ore forming processes[J]. Geofluids, 2020, 2020: 1-4. |
[247] |
WU X, ZHENG Y, WU B, et al. Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: a surrogate modeling approach[J]. Agricultural Water Management, 2016, 163: 380-392.
DOI URL |
[248] | BETHKE C M, LEE M K, QUINODOZ H, et al. Basin modeling with Basin2: a guide to using Basin2, B2plot, B2video, and B2view[R]. Springfield: University of Illinois, 1993: 1-225. |
[249] | PRUESS K. Analysis of flow processes during TCE infiltration in heterogeneous soils at the Savannah River Site, Aiken, South Carolina[R]. Berkeley: Lawrence Berkeley National Lab, 1992. |
[250] | CUI T. Formation mechanisms of unconformity-related uranium deposits: insights from numerical modeling[M]. Windsor: University of Windsor (Canada), 2012. |
[251] |
LEADER L D, WILSON C J L, ROBINSON J A. Structural constraints and numerical simulation of strain localization in the Bendigo goldfield, Victoria, Australia[J]. Economic Geology, 2013, 108(2): 279-307.
DOI URL |
[252] |
LI Q, ITO K, WU Z S, et al. COMSOL multiphysics: a novel approach to ground water modeling[J]. Groundwater, 2009, 47(4): 480-487.
DOI URL |
[253] |
SCHAUBS P M, RAWLING T J, DUGDALE L J, et al. Factors controlling the location of gold mineralisation around basalt domes in the Stawell corridor: insights from coupled 3D deformation-fluid-flow numerical models[J]. Australian Journal of Earth Sciences, 2006, 53(5): 841-862.
DOI URL |
[254] |
ZHANG Y H, ROBERTS P A, MURPHY B. Understanding regional structural controls on mineralization at the century deposit: a numerical modelling approach[J]. Journal of Geochemical Exploration, 2010, 106(1/2/3): 244-250.
DOI URL |
[255] |
POTMA W, ROBERTS P A, SCHAUBS P M, et al. Predictive targeting in Australian orogenic-gold systems at the deposit to district scale using numerical modelling[J]. Australian Journal of Earth Sciences, 2008, 55(1): 101-122.
DOI URL |
[256] |
ZHANG Y H, ROBINSON J, SCHAUBS P M. Numerical modelling of structural controls on fluid flow and mineralization[J]. Geoscience Frontiers, 2011, 2(3): 449-461.
DOI URL |
[257] |
SHELDON H A, MICKLETHWAITE S. Damage and permeability around faults: implications for mineralization[J]. Geology, 2007, 35(10): 903-906.
DOI URL |
[258] |
ZHANG Y H, SORJONEN-WARD P, ORD A, et al. Fluid flow during deformation associated with structural closure of the Isa superbasin at 1575 Ma in the central and northern Lawn Hill platform, northern Australia[J]. Economic Geology, 2006, 101(6): 1293-1312.
DOI URL |
[259] |
EVANS K A, PHILLIPS G N, POWELL R. Rock-buffering of auriferous fluids in altered rocks associated with the Golden Mile-style mineralization, Kalgoorlie gold field, western Australia[J]. Economic Geology, 2006, 101(4): 805-817.
DOI URL |
[260] |
EVANS K A. A test of the viability of fluid-wall rock interaction mechanisms for changes in opaque phase assemblage in metasedimentary rocks in the Kambalda-St. Ives goldfield, western Australia[J]. Mineralium Deposita, 2010, 45(2): 207-213.
DOI URL |
[261] |
WHITE A J R, WATERS D J, ROBB L J. The application of P-T-X(CO2) modelling in constraining metamorphism and hydrothermal alteration at the Damang gold deposit, Ghana[J]. Journal of Metamorphic Geology, 2013, 31(9): 937-961.
DOI URL |
[262] |
PHILLIPS G N, EVANS K A. Role of CO2 in the formation of gold deposits[J]. Nature, 2004, 429(6994): 860-863.
DOI |
[263] |
HU S Y, EVANS K, CRAW D, et al. Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits[J]. Geology, 2017, 45(2): 167-170.
DOI URL |
[264] | SHVAROV Y V, BASTRAKOV E N. HCh: a software package for geochemical equilibrium modelling. User's guide[J]. Australian Geological Survey Organisation, Record, 1999, 25: 61. |
[265] |
MERNAGH T P, BIERLEIN F P. Transport and precipitation of gold in Phanerozoic metamorphic terranes from chemical modeling of fluid-rock interaction[J]. Economic Geology, 2008, 103(8): 1613-1640.
DOI URL |
[266] | 王偲瑞, 杨立强, 孔鹏飞. 焦家断裂渗透性结构与金矿床群聚机理: 构造应力转移模拟[J]. 岩石学报, 2016, 32(8): 2494-2508. |
[267] | 王偲瑞, 杨立强, 成浩, 等. 基底构造对矿床定位的控制机制: 焦家金矿带构造应力转移模拟[J]. 岩石学报, 2020, 36(5): 1529-1546. |
[268] | 宋国政, 李山, 闫春明, 等. 焦家金矿田Ⅰ号主矿体地质特征及找矿方向[J]. 地质与勘探, 2018, 54(2): 219-229. |
[1] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[2] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[3] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[4] | 张爱奎, 袁万明, 刘光莲, 张勇, 汪周鑫, 孙非非, 刘智刚. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, 2024, 31(3): 260-283. |
[5] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[6] | 李海东, 田世洪, 刘斌, 胡鹏, 吴建勇, 陈正乐. 粤北地区琶江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J]. 地学前缘, 2024, 31(2): 270-283. |
[7] | 刘超, 付晓飞, 李扬成, 王海学, 孙冰, 郝炎, 胡慧婷, 杨子成, 李依霖, 谷社峰, 周爱红, 马成龙. 烃源岩作为铀源岩的可能性:研究现状与展望[J]. 地学前缘, 2024, 31(2): 284-298. |
[8] | 成秋明. 洋中脊动力学与俯冲带地震-岩浆-成矿事件远程效应[J]. 地学前缘, 2024, 31(1): 1-14. |
[9] | 胡瑞忠, 高伟, 付山岭, 苏文超, 彭建堂, 毕献武. 华南中生代陆内成矿作用[J]. 地学前缘, 2024, 31(1): 226-238. |
[10] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[11] | 李建康, 李鹏, 黄志飚, 周芳春, 张立平, 黄小强. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25. |
[12] | 付建刚, 李光明, 郭伟康, 张海, 张林奎, 董随亮, 周利敏, 李应栩, 焦彦杰, 石洪召. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆-热液过程的指示[J]. 地学前缘, 2023, 30(5): 134-150. |
[13] | 付小方, 黄韬, 郝雪峰, 王登红, 梁斌, 杨荣, 潘蒙, 范俊波. 川西花岗细晶岩-伟晶岩型锂矿含矿性评价与示矿标志[J]. 地学前缘, 2023, 30(5): 227-243. |
[14] | 何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 伟晶岩型锂矿床地球物理探测及可可托海实例[J]. 地学前缘, 2023, 30(5): 244-254. |
[15] | 焦彦杰, 黄旭日, 李光明, 付建刚, 梁生贤, 郭镜. 喜马拉雅成矿带嘎波伟晶岩型锂矿的找矿方法与深部背景研究[J]. 地学前缘, 2023, 30(5): 255-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||