地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 415-425.DOI: 10.13745/j.esf.sf.2022.2.79
陈世忠1,2(), 周延1, 邢光福1, 徐敏成1,*(
), 范飞鹏1, 隰弯弯1, 朱筱婷1, 郭维民1
收稿日期:
2021-01-05
修回日期:
2022-05-09
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
徐敏成
作者简介:
陈世忠(1967—),男,博士,研究员,教授级高级工程师,地质学、岩石学矿物学矿床学专业, 现从事地质矿产调查研究工作。E-mail: nanjingcsz@qq.com
基金资助:
CHEN Shizhong1,2(), ZHOU Yan1, XING Guangfu1, XU Mincheng1,*(
), FAN Feipeng1, XI Wanwan1, ZHU Xiaoting1, GUO Weimin1
Received:
2021-01-05
Revised:
2022-05-09
Online:
2023-03-25
Published:
2023-01-05
Contact:
XU Mincheng
摘要:
霓长岩化被认为是一种典型的岩浆期后碱性交代作用,与稀土矿化有关。霓长岩化有关的超大型稀土矿床的代表有白云鄂博稀土矿和川西牦牛坪稀土矿,它们是我国第一大和第二大轻稀土矿。福建政和铁山交代岩是华东最大的碱性交代岩,位于浙闽交界政和—大埔断裂带东北侧,区域预计稀土氧化物(REO)远景资源量可达6 211万吨。在铁山碱性交代岩中分布大面积的霓长岩,与P、REE、Ti、Ga等元素矿化关系密切。区域划分出3条霓长岩带,长度达1~2.3 km,宽度数百米,发现和评价了40余条磷灰石矿体,并富集稀土。霓长岩由长石、辉石、角闪石和黑云母等矿物组成。霓长岩中钾长石有4种形态:(1)面状分布,与黑云母、角闪石等的碱交代产物共生;(2)浅色钾长石脉;(3)深色钾长石脉;(4)和黑榴石共生。辉石呈现3种形式:(1)分布在深色角砾岩中; (2)零星分布在钾长石中;(3)与角闪石密切共生。霓辉石在镜下环带明显,中部浅绿色(淡绿色)到边部墨绿色(深绿色),说明核部透辉石成分多,边部霓石含量高。霓长岩形成于燕山期第二次(157~156 Ma)岩浆活动期,与南侧铜盆庵钾长花岗岩侵入活动有关,该期热液富集稀土元素。与燕山期第三次(118~114 Ma)岩浆活动有关的热液作用进一步产生碱性交代,并形成了一系列多金属矿化。
中图分类号:
陈世忠, 周延, 邢光福, 徐敏成, 范飞鹏, 隰弯弯, 朱筱婷, 郭维民. 浙闽边界碱性交代作用与稀土矿成矿关系研究进展[J]. 地学前缘, 2023, 30(2): 415-425.
CHEN Shizhong, ZHOU Yan, XING Guangfu, XU Mincheng, FAN Feipeng, XI Wanwan, ZHU Xiaoting, GUO Weimin. Relationship between the large scale fenitization and REE mineralization on the border between Zhejiang and Fujian provinces: A review of recent research progress[J]. Earth Science Frontiers, 2023, 30(2): 415-425.
图2 铁山交代岩区域地质草图(据文献[70]修改) 1—铁山交代岩;2—龙北溪岩组;3—梨山组;4—南园组;5—黄坑组;6—寨下组;7—矿点;8—花岗岩;9—石英闪长岩;10—石英二长斑岩;11—石英斑岩;12—花岗斑岩;13—断层;14—推测断层。
Fig.2 Sketch geologic map of Tieshan metasomatic rocks, Zhenghe, Fujian. Modified after [70].
图4 铁山交代岩典型霓长岩野外和镜下照片(据文献[70]修改) (a)—3期碱性交代现象;(b)—两期碱性交代现象,钾长石呈集合体定向;(c)—角闪石(Amp)、辉石(Cpx)和钾长石(Kfs);(d)—辉石(Cpx)和绿帘石(Ep)在钾长石(Kfs)中呈残余粒状。
Fig.4 Typical fenites of Tieshan metasomatic rocks. Modified after [70].
期次 | 岩性 | 年龄/Ma | 地点 | 测年方法 | 备注 |
---|---|---|---|---|---|
印支期 | 石英闪长岩 | 252 | 铁山 | 锆石U-Pb | 文献[ |
石英正长岩* | 254±4 | 铁山 | 锆石U-Pb | 文献[ | |
燕山期 | 流纹质熔结凝灰岩 | 173 | 东峰 | 锆石U-Pb | 文献[ |
花岗斑岩 | 153 | 夏山 | 锆石U-Pb | 文献[ | |
霏细花岗闪长斑岩 | 119 | 狮子岗 | 锆石U-Pb | 文献[ | |
钾长花岗岩 | 118 | 铜盆庵 | 锆石U-Pb | 未发数据 | |
花岗闪长斑岩 | 98 | 狮子岗 | 锆石U-Pb | 未发数据 |
表1 福建政和铁山中生代岩浆岩岩性和年龄
Table 1 Mesozoic magmatic rocks and their ages of Tieshan, Zhenghe, Fujian Province
期次 | 岩性 | 年龄/Ma | 地点 | 测年方法 | 备注 |
---|---|---|---|---|---|
印支期 | 石英闪长岩 | 252 | 铁山 | 锆石U-Pb | 文献[ |
石英正长岩* | 254±4 | 铁山 | 锆石U-Pb | 文献[ | |
燕山期 | 流纹质熔结凝灰岩 | 173 | 东峰 | 锆石U-Pb | 文献[ |
花岗斑岩 | 153 | 夏山 | 锆石U-Pb | 文献[ | |
霏细花岗闪长斑岩 | 119 | 狮子岗 | 锆石U-Pb | 文献[ | |
钾长花岗岩 | 118 | 铜盆庵 | 锆石U-Pb | 未发数据 | |
花岗闪长斑岩 | 98 | 狮子岗 | 锆石U-Pb | 未发数据 |
[1] |
DHARMA RAO C V, SANTOSH M, DONG Y P. U-Pb zircon chronology of the Pangidi-Kondapalle layered intrusion, Eastern Ghats belt, India: constraints on Mesoproterozoic arc magmatism in a convergent margin setting[J]. Journal of Asian Earth Sciences, 2012, 49: 362-375.
DOI URL |
[2] |
DE VITO C, PEZZOTTA F, FERRINI V, et al. Nb-Ti-Ta oxides in the gem-mineralized and “hybrid” anjanabonoina granitic pegmatite, central Madagascar: a record of magmatic and postmagmatic events[J]. The Canadian Mineralogist, 2006, 44(1): 87-103.
DOI URL |
[3] |
LICHTERVELDE M V, SALVI S, BÉZIAT D, et al. Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the tanco lower pegmatite, Manitoba, Canada[J]. Economic Geology. 2007, 102(2): 257-276.
DOI URL |
[4] |
BEURLEN H, SILVA M R R, THOMAS R, et al. Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil[J]. Mineralium Deposita, 2008, 43(2): 207-228.
DOI URL |
[5] |
RAO C, WANG R C, HU H, et al. Complex internal textures in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China[J]. The Canadian Mineralogist. 2009, 47(5): 1195-1212.
DOI URL |
[6] |
RAO C V D, SANTOSH M, ZHANG S H. Neoproterozoic massif-type anorthosites and related magmatic suites from the Eastern Ghats Belt, India: implications for slab window magmatism at the terminal stage of collisional orogeny[J]. Precambrian Research, 2014, 240: 60-78.
DOI URL |
[7] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
[8] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. |
[9] |
HOU Z Q, TIAN S H, XIE Y L, et al. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China[J]. Ore Geology Reviews, 2009, 36(1/2/3): 65-89.
DOI URL |
[10] | HEDENQUIST J W. Mineralization associated with volcanic-related hydrothermal systems in circum-Pacific basin: abstract[J]. AAPG Bulletin, 1986, 70: 347-364.. |
[11] |
SMITH D J, NADEN J, JENKIN G R T, et al. Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems[J]. Ore Geology Reviews, 2017, 89: 772-779.
DOI URL |
[12] |
SILLITOE R H. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration[J]. Mineralium Deposita, 2002, 37(1): 4-13.
DOI URL |
[13] |
VAN DONGEN M, WEINBERG R F, TOMKINS A G. REE-Y,Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation[J]. Economic Geology, 2010, 105(4): 763-776.
DOI URL |
[14] | DAILEY S R, CHRISTIANSEN E H, DORAIS M J, et al. Geochemistry of the fluorine-and beryllium-rich Spor mountain rhyolite, western Utah[C]. Geologic Studies in Utah, GSA Annual Meeting in Denver, Colorado, USA, 2016: 148-10. |
[15] |
DAILEY S R, CHRISTIANSEN E H, DORAIS M J, et al. Origin of the fluorine-and beryllium-rich rhyolites of the Spor Mountain Formation, western Utah[J]. American Mineralogist, 2018, 103(8): 1228-1252.
DOI URL |
[16] | FOLEY N, AYUSO R. Shrimp U-Pb zircon and opal geochronology, isotope geochemistry, and genesis of the super large Be deposit at Spor Mountain, Utah, USA[J]. Magmatism of the Earth and Related Strategic Metal Deposits. 2018(1): 90-94. |
[17] |
AYUSO R A, FOLEY N K, VAZQUEZ J A, et al. SHRIMP U-Pb zircon geochronology of volcanic rocks hosting world class Be-U mineralization at Spor Mountain, Utah, USA[J]. Journal of Geochemical Exploration, 2020, 209: 106401.
DOI URL |
[18] |
SCHINDLER M, FAYEK M, COURCHESNE B, et al. Uranium-bearing opals: products of U-mobilization, diffusion, and transformation processes[J]. American Mineralogist, 2017, 102(6): 1154-1164.
DOI URL |
[19] |
BARTON M D, YOUNG S. Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 591-691.
DOI URL |
[20] |
SUN C G, LIANG Y. The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts[J]. Chemical Geology, 2013, 358: 23-36.
DOI URL |
[21] |
KOVALENKO V I, TSARYEVA G M, GOREGLYAD A V, et al. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia[J]. Economic Geology, 1995, 90(3): 530-547.
DOI URL |
[22] |
MIGDISOV A A, WILLIAMS-JONES A E, WAGNER T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 ℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(23): 7087-7109.
DOI URL |
[23] |
ERDMANN S, WODICKA N, JACKSON S E, et al. Zircon textures and composition: refractory recorders of magmatic volatile evolution?[J]. Contributions to Mineralogy and Petrology, 2013, 165(1): 45-71.
DOI URL |
[24] |
AYERS J C, ZHANG L, LUO Y, et al. Zircon solubility in alkaline aqueous fluids at upper crustal conditions[J]. Geochimica et Cosmochimica Acta, 2012, 96: 18-28.
DOI URL |
[25] |
VEKSLER I V, DORFMAN A M, KAMENETSKY M, et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2847-2860.
DOI URL |
[26] |
SALVI S, WILLIAMS-JONES A E. Alteration,HFSE mineralisation and hydrocarbon formation in Peralkaline igneous systems: insights from the strange lake pluton, Canada[J]. Lithos, 2006, 91(1/2/3/4): 19-34.
DOI URL |
[27] |
YANG W B, NIU H C, LI N B, et al. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: implications for rare metal mineralization[J]. Lithos, 2020, 358/359: 105411.
DOI URL |
[28] |
GYSI A P, WILLIAMS-JONES A E, COLLINS P. Lithogeochemical vectors for hydrothermal processes in the strange lake peralkaline granitic REE-Zr-Nb deposit[J]. Economic Geology, 2016, 111(5): 1241-1276.
DOI URL |
[29] |
VERPLANCK P L. The role of fluids in the formation of rare earth element deposits[J]. Procedia Earth and Planetary Science, 2017, 17: 758-761.
DOI URL |
[30] |
RICHTER L, DIAMOND L W, ATANASOVA P, et al. Hydrothermal formation of heavy rare earth element (HREE)-xenotime deposits at 100 ℃ in a sedimentary basin[J]. Geology, 2018, 46(3): 263-266.
DOI URL |
[31] |
KONTONIKAS-CHAROS A, CIOBANU C L, COOK N J, et al. Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia[J]. Mineralogy and Petrology, 2018, 112(2): 145-172.
DOI URL |
[32] |
LE BAS M J, XUEMING Y, TAYLOR R N, et al. New evidence from a calcite-dolomite carbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China[J]. Mineralogy and Petrology, 2007, 90(3/4): 223-248.
DOI URL |
[33] |
KOZLOV E N, ARZAMASTSEV A A. Petrogenesis of metasomatic rocks in the fenitized zones of the Ozernaya Varaka alkaline ultrabasic complex, Kola Peninsula[J]. Petrology, 2015, 23(1): 45-67.
DOI URL |
[34] | VON MARAVI H C. Geochemische und petrographische Untersuchungen zur Genese des niobführenden Karbonatit/Cancrinit-Syenitkomplexes von Lueshe, Kivu/NE-Zaire[D]. Berlin: Technische Universitt Berlin,1983. |
[35] |
ELLIOTT H A L, WALL F, CHAKHMOURADIAN A R, et al. Fenites associated with carbonatite complexes: a review[J]. Ore Geology Reviews, 2018, 93: 38-59.
DOI URL |
[36] |
MOROGAN V. Ijolite versus carbonatite as sources of fenitization[J]. Terra Nova, 1994, 6(2): 166-176.
DOI URL |
[37] |
LE BAS M J. Fenites associated with carbonatites[J]. The Canadian Mineralogist, 2008, 46(4): 915-932.
DOI URL |
[38] |
KRESTEN P, MOROGAN V. Fenitization at the Fen complex, southern Norway[J]. Lithos, 1986, 19(1): 27-42.
DOI URL |
[39] |
MOROGAN V. Mass transfer and REE mobility during fenitization at Alnö, Sweden[J]. Contributions to Mineralogy and Petrology, 1989, 103(1): 25-34.
DOI URL |
[40] | MOROGAN V, MARTIN R F. Mineralogy and partial melting of fenitized crustal xenoliths in the Oldoinyo Lengai carbonatitic volcano, Tanzania[J]. American Mineralogist. 1985, 70(11/12): 1114-1126. |
[41] |
SUIKKANEN E, RÄMÖ O T. Metasomatic alkali-feldspar syenites (episyenites) of the Proterozoic Suomenniemi rapakivi granite complex, southeastern Finland[J]. Lithos, 2017, 294/295: 1-19.
DOI URL |
[42] |
GYSI A P, WILLIAMS-JONES A E. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: a reaction path model[J]. Geochimica et Cosmochimica Acta, 2013, 122: 324-352.
DOI URL |
[43] |
WILLIAMS-JONES A E, PALMER D A S. The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatite, India: implications for fenitisation[J]. Chemical Geology, 2002, 185(3/4): 283-301.
DOI URL |
[44] |
SUIKKANEN E, RÄMÖ O T, AHTOLA T, et al. Clinopyroxene episyenites in a Proterozoic rapakivi granite, SE Finland—recrystallization textures, mass transfer and implications for the petrology of A-type granite complexes[J]. Mineralogy and Petrology, 2019, 113(6): 727-743.
DOI URL |
[45] |
PÉREZ-SOBA C, VILLASECA C. Li-Na-metasomatism related to I-type granite magmatism: a case study of the highly fractionated La Pedriza pluton (Iberian Variscan belt)[J]. Lithos, 2019, 344/345: 159-174.
DOI URL |
[46] |
TROFANENKO J, WILLIAMS-JONES A E, SIMANDL G J, et al. The nature and origin of the REE mineralization in the wicheeda carbonatite, British Columbia, Canada[J]. Economic Geology, 2016, 111(1): 199-223.
DOI URL |
[47] |
FAN H R, HU F F, YANG K F, et al. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan obo REE deposit, Northern China[J]. Ore Geology Reviews, 2014, 63: 510-519.
DOI URL |
[48] |
LIU S, FAN H R, YANG K F, et al. Fenitization in the giant Bayan obo REE-Nb-Fe deposit: implication for REE mineralization[J]. Ore Geology Reviews, 2018, 94: 290-309.
DOI URL |
[49] |
AGUE J J. Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE)[J]. American Mineralogist, 2017, 102(9): 1796-1821.
DOI URL |
[50] |
HOU Z Q, LIU Y, TIAN S H, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5: 10231.
DOI PMID |
[51] |
LIU Y, CHEN Z Y, YANG Z S, et al. Mineralogical and geochemical studies of brecciated ores in the dalucao REE deposit, Sichuan Province, southwestern China[J]. Ore Geology Reviews, 2015, 70: 613-636.
DOI URL |
[52] |
XIE Y L, LI Y X, HOU Z Q, et al. A model for carbonatite hosted REE mineralisation—the Mianning-Dechang REE belt, western Sichuan Province, China[J]. Ore Geology Reviews, 2015, 70: 595-612.
DOI URL |
[53] |
LIU Y, HOU Z Q, TIAN S H, et al. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting[J]. Ore Geology Reviews, 2015, 64: 554-568.
DOI URL |
[54] |
LIU Y, CHAKHMOURADIAN A R, HOU Z Q, et al. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions, and trace-element geochemistry[J]. Mineralium Deposita, 2019, 54(5): 701-718.
DOI URL |
[55] | 王凯怡. 与碳酸岩共生的霓长岩[J]. 地质科学, 2015, 50(1): 203-212. |
[56] | 杨学明, 杨晓勇, 范宏瑞, 等. 霓长岩岩石学特征及其地质意义评述[J]. 地质论评, 2000, 46(5): 481-490. |
[57] |
DOWMAN E, WALL F, TRELOAR P, et al. Rare-earth mobility as a result of multiple phases of fluid activity in fenite around the Chilwa Island Carbonatite, Malawi[J]. Mineralogical Magazine. 2017, 81(6): 1367-1395.
DOI URL |
[58] |
NORMANDEAU P X, HARLOV D E, CORRIVEAU L, et al. Characterization of fluorapatite within iron oxide alkali-calcic alteration systems of the great bear magmatic zone: a potential metasomatic process record[J]. The Canadian Mineralogist, 2018, 56(2): 167-187.
DOI URL |
[59] |
DOSTAL J. Rare earth element deposits of alkaline igneous rocks[J]. Resources, 2017, 6(3): 34.
DOI URL |
[60] |
XU C, KYNICKÝ J, SMITH M P, et al. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 2017, 8: 14598.
DOI PMID |
[61] | 佘海东, 范宏瑞, 胡芳芳, 等. 稀土元素在热液中的迁移与沉淀[J]. 岩石学报, 2018, 34(12): 3567-3581. |
[62] | 王凯怡, 张继恩, 方爱民, 等. 白云鄂博矿床类型的思考和认识[J]. 矿物学报: 2017(增刊) 248-249. |
[63] | 林传仙, 郑作平. 风化壳淋积型稀土矿床成矿机理的实验研究[J]. 地球化学, 1994, 23(2): 189-198. |
[64] |
MÖLLER V, WILLIAMS-JONES A E. Magmatic and hydrothermal controls on the mineralogy of the basal zone, Nechalacho REE-Nb-Zr deposit, Canada[J]. Economic Geology, 2017, 112(8): 1823-1856.
DOI URL |
[65] | CHEN Shizhong, XING Guangfu, LI Yanan, et al. Re-recognition of Tieshan “Syenite” and its geological significance in Zhenghe, Fujian Province[J]. Acta Geologica Sinica, 2017, 91 (Suppl.1): 72-73. |
[66] | CHEN S Z, XING G F, LI Y N, et al. Tieshan “Syenite” is an Alkali Metasomatic Rock in Zhenghe, Fujian Province[J]. Acta Geologica Sinica, 2018, 92(9): 1843-1858. |
[67] | 李亚楠, 邢光福, 周涛发, 等. 福建政和地区铜盆庵花岗岩年代学研究及其地质意义[J]. 矿物岩石, 2015, 35(1): 73-81. |
[68] | 周延, 陈世忠, 张红亮, 等. 红外光谱蚀变矿物填图技术在找矿勘查中的应用: 以福建政和狮子岗铜矿为例[J]. 华东地质, 2019, 40(4): 289-298. |
[69] | 隰弯弯. 福建省政和县狮子岗斑岩型铜多金属矿地质特征及成因认识[J]. 地质论评, 2013, 59(增刊): 383-384. |
[70] | 陈世忠, 李亚楠, 朱筱婷, 等. 福建政和铁山“印支期正长岩”是燕山期钾质交代岩的矿物学证据[J]. 地质学报, 2018, 92(9): 1843-1858. |
[71] |
HENDRY D A F, CHIVAS A R, REED S J B, et al. Geochemical evidence for magmatic fluids in porphyry copper mineralization[J]. Contributions to Mineralogy and Petrology, 1982, 78(4): 404-412.
DOI URL |
[72] | MOUSTAFA E O, 巩恩普, 孙旭东, 等. 浙江花岗岩中斜长石钾交代产生的条纹长石(英文)[J]. 地质与资源, 2003, 12(3): 129-138. |
[73] |
SUIKKANEN E, RÄMÖ O T. Metasomatic alkali-feldspar syenites within the Suomenniemi rapakivi granite complex, southeastern Finland[J] Lithos, 2017, 294/295:1-19.
DOI URL |
[74] | CANGELOSI D, BROOM-FENDLEY S, BANKS D, et al. Light rare earth element redistribution during hydrothermal alteration at the Okorusu carbonatite complex, Namibia[J]. Mineralogical Magazine. 2019: 1-54. |
[75] |
WANG Q, LI J W, JIAN P, et al. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension[J]. Earth and Planetary Science Letters, 2005, 230(3/4): 339-354.
DOI URL |
[76] | 李亚楠, 邢光福, 邢新龙, 等. 闽北地区中侏罗世火山岩的发现及其地质意义[J]. 地质通报, 2015, 34(12): 2227-2235. |
[77] |
CHEN S Z, LI Y N, FAN F P, et al. Mineralogy and alkali metasomatism of Tieshan complex body in Zhenghe County, Fujian Province, southeastern China[J]. Ore Geology Reviews, 2021, 139: 104432.
DOI URL |
[1] | 王涛, 李积清, 韩杰, 王泰山, 李玉龙, 袁博武. 东昆仑大水沟东地区稀土矿化石英正长岩地球化学、年代学及Hf同位素特征[J]. 地学前缘, 2023, 30(4): 283-298. |
[2] | 梁晓亮, 谭伟, 马灵涯, 朱建喜, 何宏平. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41. |
[3] | 邓淼, 韦春婉, 许成, 石爱国, 李卓骐, 范朝熙, 匡光喜. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28. |
[4] | 温利刚,曾普胜,詹秀春,范晨子,孙冬阳,王广,袁继海,费晓杰. 迤纳厂矿床:一个“白云鄂博式”铁铜稀土矿床[J]. 地学前缘, 2018, 25(6): 308-329. |
[5] | 李童斐,夏庆霖,汪新庆,刘岳,常力恒,冷帅. 中国稀土矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 95-106. |
[6] | 于扬,李德先,王登红,黄凡,刘秀丽,田兆雪,邓茂春. 溶解态稀土元素在离子吸附型稀土矿区周边地表水中的分布特征及影响因素[J]. 地学前缘, 2017, 24(5): 172-181. |
[7] | 晁会霞, 苏生瑞, 杨兴科. 湖北庙垭稀土矿床地质特征研究[J]. 地学前缘, 2016, 23(4): 102-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||