地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 440-446.DOI: 10.13745/j.esf.sf.2022.2.68
收稿日期:
2022-01-11
修回日期:
2022-04-12
出版日期:
2023-03-25
发布日期:
2023-01-05
作者简介:
朱平平(1984—),男,讲师,硕士生导师,主要从事数学地球科学的教学与研究工作。E-mail: zhupingcug@qq.com,zhupingcug@kust.edu.cn
基金资助:
ZHU Pingping1(), LIU Yue2, CHENG Qiuming3
Received:
2022-01-11
Revised:
2022-04-12
Online:
2023-03-25
Published:
2023-01-05
摘要:
胶东地体因发育大量的中生代金矿床而举世闻名。但其金矿床成因仍存在争论,争论的焦点之一为:金矿床是受浅部的构造控制,还是受深部的地球动力学背景,也就是西太平洋板块俯冲后回撤控制。为了进一步定量揭示矿床成因和与金矿床相关的地质异常事件,本文在前人基础上,选取了浅地表构造发育不显著的胶东毕郭地区的1∶50 000的勘查地球化学数据,进行了Au元素数据的异常提取和分解;依次应用局部奇异性→局部奇异性-分位数→Fry方法,进行了定量表征和优选方位的确定。研究结果表明,Au元素的异常富集集中在3个方向:北东(或南北)、东西或北西向,正好对应了该地区中生代西太平洋板块俯冲和回撤、新生代早期华南板块的北向运动、新生代中期郯庐断裂带的大规模平移走滑的地质过程和叠加效应,这意味着胶东Au元素的富集和金矿床的形成受深部地质过程控制明显。本文研究对定量确定胶东Au富集受板块运动影响提供了地质证据,也对矿床尺度的矿化方向和找矿勘查具有一定的科学意义。
中图分类号:
朱平平, 刘岳, 成秋明. 定量确定胶东毕郭地区勘查地球化学异常的分布方向及地质意义[J]. 地学前缘, 2023, 30(2): 440-446.
ZHU Pingping, LIU Yue, CHENG Qiuming. Quantitative determinations of the dispersion pattern and geological significance of geochemical anomalies in Biguo area, Jiaodong Terrane[J]. Earth Science Frontiers, 2023, 30(2): 440-446.
图1 区域构造纲要图和研究区地质图(a据文献[1]补充修改;b引自文献[14])
Fig.1 Regional map of structural outline sketch and Geological map of the study area. a modified after[1]; b adapted from [14].
图2 勘查地球化学采样点和金矿床分布图(数据来源于文献[14],圆圈为金矿床或矿化点,以下同)
Fig.2 Exploration geochemical sampling sites and gold deposit distribution map. Modified after[14], the circles in gray were gold deposits or points.
图5 (a)金元素的局部奇异值与分位数的阈值与(b)阈值分割后的金元素局部奇异值空间分布
Fig.5 (a) QQ plot of local singularity versus standard normal quantiles; (b) Spatial distribution of local singularity of Au element after threshold partitioning.
图6 (a)基于分位数显示的金元素富集栅格空间分布与(b,c,d)不同尺度下金元素富集栅格的Fry空间分布结果
Fig.6 (a) Spatial distribution of Au-rich raster based on quantile classify method and (b,c,d) Fry spatial distribution of Au-rich raster at different scales.
图7 研究区及邻区晚古生代以来三期板块运动历史(据文献[38]修改)
Fig.7 History of geological events of plate movement since the Late Paleozoic in the study area and adjacent areas. Modified after[38].
[1] |
LI S R, SANTOSH M. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction[J]. Gondwana Research, 2017, 50: 267-292.
DOI URL |
[2] | 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236. |
[3] |
FAN H R, ZHAI M G, XIE Y H, et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China[J]. Mineralium Deposita, 2003, 38(6), 739-750.
DOI URL |
[4] |
GROVES D I, SANTOSH M, DENG J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55(2): 275-292.
DOI URL |
[5] |
DENG J, LIU X F, WANG Q F, et al. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686.
DOI URL |
[6] |
ZHU R X, FAN H R, LI J W, et al. Decratonic gold deposits[J]. Science China Earth Sciences, 2015, 58(9): 1523-1537.
DOI URL |
[7] |
MAO X C, REN J, LIU Z K, et al. Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, Eastern China: a case study of the Dayingezhuang deposit[J]. Journal of Geochemical Exploration, 2019, 203: 27-44.
DOI URL |
[8] |
DENG J, WANG Q F, SANTOSH M, et al. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold Province, Eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274.
DOI URL |
[9] |
GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 2014, 5(2): 139-153.
DOI URL |
[10] |
WANG J P, LIU Z J, LIU J. Exhumation of the Mesozoic guojialing granodiorite: implication for the preservation of gold deposits in the Jiaobei terrane, China[J]. Resource Geology, 2018, 68(1): 51-64.
DOI URL |
[11] |
YAO X F, CHENG Z Z, DU Z Z, et al. Petrology, geochemistry, and Sr-Nd-S isotopic compositions of the ore-hosting biotite monzodiorite in the luanjiahe gold deposit, Jiaodong peninsula, China[J]. Journal of Earth Science, 2021, 32(1): 51-67.
DOI URL |
[12] |
GROVES D I, SANTOSH M, ZHANG L. A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach[J]. Geoscience Frontiers, 2020, 11(3): 719-738.
DOI URL |
[13] | 底青云, 薛国强, 雷达, 等. 华北克拉通金矿综合地球物理探测研究进展: 以辽东地区为例[J]. 中国科学: 地球科学, 2021, 51(9): 1524-1535. |
[14] | 智云宝, 王增辉, 魏正宇, 等. 1∶50 000山东毕郭幅地球化学数据集[J]. 中国地质, 2019, 46(增刊1): 84-92. |
[15] |
CHENG Q M. The perimeter-area fractal model and its application to geology[J]. Mathematical Geology, 1995, 27(1): 69-82.
DOI URL |
[16] |
CHENG Q M. The gliding box method for multifractal modeling[J]. Computers and Geosciences, 1999, 25(9): 1073-1079.
DOI URL |
[17] |
WANG Z J, CHENG Q M, CAO L, et al. Fractal modelling of the microstructure property of quartz mylonite during deformation process[J]. Mathematical Geology, 2007, 39(1): 53-68.
DOI URL |
[18] |
CHENG Q M. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 2008, 40(5): 503-532.
DOI URL |
[19] |
ZUO R G, CHENG Q M, AGTERBERG F P, et al. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China[J]. Journal of Geochemical Exploration, 2009, 101(3): 225-235.
DOI URL |
[20] |
MALLARD C, COLTICE N, SETON M, et al. Subduction controls the distribution and fragmentation of Earth’s tectonic plates[J]. Nature, 2016, 535(7610): 140-143.
DOI URL |
[21] |
TURCOTTE D L. Fractals in petrology[J]. Lithos, 2002, 65(3/4): 261-271.
DOI URL |
[22] | VERMEESCH P. Tectonic discrimination diagrams revisited[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6): 1-55. |
[23] |
CHENG Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1/2): 314-324.
DOI URL |
[24] |
LIU Y, ZHOU K F, CHENG Q M. A new method for geochemical anomaly separation based on the distribution patterns of singularity indices[J]. Computers and Geosciences, 2017, 105: 139-147.
DOI URL |
[25] |
FRY N. Random point distributions and strain measurement in rocks[J]. Tectonophysics, 1979, 60(1/2): 89-105.
DOI URL |
[26] |
成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25.
DOI |
[27] |
陈永清, 莫宣学. 超大型矿床成矿背景-过程-勘查三位一体的找矿理念[J]. 地学前缘, 2021, 28(3): 26-48.
DOI |
[28] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、 人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573. |
[29] | 王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480. |
[30] | 王学求, 张必敏, 刘雪敏. 纳米地球化学: 穿透覆盖层的地球化学勘查[J]. 地学前缘, 2012, 19(3): 101-112. |
[31] |
CHENG Q M, AGTERBERG F P, BALLANTYNE S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2): 109-130.
DOI URL |
[32] | 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8): 1153-1168. |
[33] | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356. |
[34] |
ZHANG L M, WANG C S, CAO K, et al. High elevation of Jiaolai Basin during the Late Cretaceous: implication for the coastal mountains along the East Asian margin[J]. Earth and Planetary Science Letters, 2016, 456: 112-123.
DOI URL |
[35] |
DENG J, YANG L Q, LI R H, et al. Regional structural control on the distribution of world-class gold deposits: an overview from the Giant Jiaodong Gold Province, China[J]. Geological Journal, 2019, 54(1): 378-391.
DOI URL |
[36] |
FENG K, FAN H R, GROVES D I, et al. Geochronological and sulfur isotopic evidence for the genesis of the post-magmatic, deeply sourced, and anomalously gold-rich Daliuhang orogenic deposit, Jiaodong, China[J]. Mineralium Deposita, 2020, 55(2): 293-308.
DOI URL |
[37] |
梁光河. 从东海和南海北部盆地群演化探讨日本大陆板块的形成过程[J]. 地学前缘, 2020, 27(1): 244-259.
DOI |
[38] | 梁光河. 郯庐断裂带的几个关键问题探讨[J]. 黄金科学技术, 2018, 26(5): 543-558. |
[1] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[2] | 谢桂青, 毛景文, 张长青, 李伟, 宋世伟, 章荣清. 华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J]. 地学前缘, 2021, 28(3): 252-270. |
[3] | 欧阳鑫, 章永梅, 顾雪祥, 刘丽, 王路智, 高丽晔. 内蒙古撰山子金矿床流体包裹体特征与矿床成因[J]. 地学前缘, 2021, 28(2): 320-332. |
[4] | 李成禄, 李胜荣, 袁茂文, 杜兵盈, 李文龙, Masroor ALAM, 刘东园, 刘浩. 黑龙江省嫩江—黑河构造混杂岩带科洛金矿床成因:来自黄铁矿化学成分及He-Ar、S、Pb同位素证据[J]. 地学前缘, 2020, 27(5): 99-115. |
[5] | 杨富成, 李文昌, 祝向平, 江小均, 刘俊, 廖忠礼, 刘鸿飞, 杨后斌, 李勇. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究[J]. 地学前缘, 2020, 27(4): 232-243. |
[6] | 梁培, 陈华勇, 赵联党, Kendrick MARK, 江宏君, 张维峰, 吴超, 谢玉玲. 新疆北部弧-盆转化体系下铁氧化物-铜-金矿床的流体演化特征:来自卤族元素和稀有气体同位素的证据[J]. 地学前缘, 2020, 27(3): 239-253. |
[7] | 刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. Au-(Ag)-Te-Se成矿系统与成矿作用[J]. 地学前缘, 2020, 27(2): 79-98. |
[8] | 顾雪祥, 章永梅, 葛战林, 陈伟志, 徐劲驰, 黄岗, 陶威. 新疆东准噶尔卡拉麦里造山型金成矿系统与区域构造演化[J]. 地学前缘, 2020, 27(2): 254-275. |
[9] | 薛春纪, 赵晓波, 赵伟策, 赵云, 张国震, Bakhtiar NURTAEV, Nikolay PAK, 莫宣学. 中-哈-吉-乌天山变形带容矿金矿床:成矿环境和控矿要素与找矿标志[J]. 地学前缘, 2020, 27(2): 294-319. |
[10] | 王大钊, 刘家军, 翟德高, 甄世民, 王江. 河北东坪碲金矿床辉钼矿Re-Os及锆石U-Pb年龄研究[J]. 地学前缘, 2020, 27(2): 405-419. |
[11] | 李声浩,朱赖民,丁乐乐,熊潇,刘凯. 南秦岭夏家店金矿床赋矿黑色岩系元素地球化学及其成矿意义[J]. 地学前缘, 2019, 26(5): 129-145. |
[12] | 左仁广. 勘查地球化学数据挖掘与弱异常识别[J]. 地学前缘, 2019, 26(4): 67-75. |
[13] | 毛先成,王迷军,刘占坤,陈进,邓浩. 基于勘查数据的胶东大尹格庄金矿床控矿地质因素定量分析[J]. 地学前缘, 2019, 26(4): 84-93. |
[14] | 李洪梁,李光明. 不同类型热液金矿床主成矿期黄铁矿成分标型特征[J]. 地学前缘, 2019, 26(3): 202-210. |
[15] | 梁培,陈华勇,吴超,刘振江. 东准噶尔北缘老山口铁铜金矿床古生代岩浆岩锆石U-Pb年代学、氧逸度特征及地质意义[J]. 地学前缘, 2018, 25(5): 96-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||