Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 80-94.DOI: 10.13745/j.esf.sf.2023.2.32
Previous Articles Next Articles
LI Yingtao1,2(), DENG Shang1,2,*(
), ZHANG Jibiao1, LIN Huixi1, LIU Yuqing1, QIU Huabiao1, HUANG Cheng2, LIU Dawei1, YAO Yili1
Received:
2023-01-21
Revised:
2023-02-22
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
LI Yingtao, DENG Shang, ZHANG Jibiao, LIN Huixi, LIU Yuqing, QIU Huabiao, HUANG Cheng, LIU Dawei, YAO Yili. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei[J]. Earth Science Frontiers, 2023, 30(6): 80-94.
Fig.1 Differences in deformation characteristics and porosity-permeability structures of high-porosity and tight carbonate fault zones. Modified after [19].
[1] |
CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025.
DOI URL |
[2] |
SIBSON R H. Brecciation processes in fault zones: inferences from earthquake rupturing[J]. Pure and Applied Geophysics, 1986, 124(1/2): 159-175.
DOI URL |
[3] |
SHIPTON Z, COWIE P. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah[J]. Journal of Structural Geology, 2001, 23(12): 1825-1844.
DOI URL |
[4] | FLODIN E, GERDES M, AYDIN A, et al. Petrophysical properties and sealing capacity of fault rock, Aztec sandstone, Nevada[J]. AAPG Bulletin, 2005, Memoir (85): 197-217. |
[5] | 吴智平, 陈伟, 薛雁, 等. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报, 2010, 84(4): 570-578. |
[6] |
云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52.
DOI |
[7] |
杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(3): 399-414.
DOI |
[8] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
DOI |
[9] | 周立宏, 陈长伟, 韩国猛, 等. 陆相致密油与页岩油藏特征差异性及勘探实践意义: 以渤海湾盆地黄骅坳陷为例[J]. 地球科学, 2021, 46(2): 555-571. |
[10] | 郑和荣, 刘忠群, 徐士林, 等. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2021, 42(4): 765-783. |
[11] |
漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
DOI |
[12] | 罗群, 庞雄奇, 姜振学. 一种有效追踪油气运移轨迹的新方法: 断面优势运移通道的提出及其应用[J]. 地质论评, 2005, 51(2): 156-162. |
[13] | 何发岐, 梁承春, 陆骋, 等. 鄂尔多斯盆地南缘过渡带致密-低渗油藏断缝体的识别与描述[J]. 石油与天然气地质, 2020, 41(4): 710-718. |
[14] | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. |
[15] |
WONG T F, BAUD P. The brittle-ductile transition in porous rock: a review[J]. Journal of Structural Geology, 2012, 44: 25-53.
DOI URL |
[16] |
贾茹, 付晓飞, 孟令东, 等. 断裂及其伴生微构造对不同类型储层的改造机理[J]. 石油学报, 2017, 38(3): 286-296.
DOI |
[17] |
WOODCOCK N H, DICKSON J A D, TARASEWICZ J P T. Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures[J]. Geological Society, London, Special Publications, 2007, 270(1): 43-53.
DOI URL |
[18] |
AYDIN A. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 2000, 17(7): 797-814.
DOI URL |
[19] | CILONA A, SOLUM J G, LUCCA A, et al. Evolution of pore types and petrophysical properties of fault rocks in low-porosity carbonates[M]//Carbonate pore systems: new developments and case studies. Tulsa: Society for Sedimentary Geology, 2019: 94-107. |
[20] | 漆立新, 云露, 曹自成, 等. 顺北油气田地质储量评估与油气勘探方向[J]. 新疆石油地质, 2021, 42(2): 127-135. |
[21] |
韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11): 1296-1310.
DOI |
[22] |
马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
DOI |
[23] |
DENG S, ZHAO R, KONG Q F, et al. Two distinct strike-slip fault networks in the Shunbei area and its surroundings, Tarim Basin: hydrocarbon accumulation, distribution, and controlling factors[J]. AAPG Bulletin, 2022, 106(1): 77-102.
DOI URL |
[24] |
云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787.
DOI |
[25] |
GUO Z J, YIN A, ROBINSON A, et al. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim Basin[J]. Journal of Asian Earth Sciences, 2005, 25(1): 45-56.
DOI URL |
[26] |
XU Z Q, HE B Z, ZHANG C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162.
DOI URL |
[27] |
Li S Z, Zhao S j, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75.
DOI URL |
[28] | 陈永权, 严威, 韩长伟, 等. 塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定: 基于地震证据的新认识[J]. 天然气地球科学, 2015, 26(10): 1831-1843. |
[29] |
LIN C S, YANG H J, LIU J Y, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46: 1-19.
DOI URL |
[30] |
QIU H B, DENG S, CAO Z C, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113.
DOI URL |
[31] |
李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中-下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484.
DOI |
[32] | 刘雨晴, 邓尚. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例[J]. 中国矿业大学学报, 2022, 51(1): 124-136. |
[33] | 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8-13. |
[34] |
WIBBERLEY C A J, PETIT J P, RIVES T. Micromechanics of shear rupture and the control of normal stress[J]. Journal of Structural Geology, 2000, 22(4): 411-427.
DOI URL |
[35] | WIBBERLEY C A J, PETIT J P, RIVES T. Mechanics of cataclastic ‘deformation band’ faulting in high-porosity sandstone, Provence[J]. Comptes Rendus De L’Académie Des Sciences - Series IIA - Earth and Planetary Science, 2000, 331(6): 419-425. |
[36] |
MITCHELL T M, FAULKNER D R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile[J]. Journal of Structural Geology, 2009, 31(8): 802-816.
DOI URL |
[37] |
CHOI J H, EDWARDS P, KO K, et al. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87.
DOI URL |
[38] |
ANTONELLINI M, TONDI E, AGOSTA F, et al. Failure modes in deep-water carbonates and their impact for fault development: Majella Mountain, Central Apennines, Italy[J]. Marine and Petroleum Geology, 2008, 25(10): 1074-1096.
DOI URL |
[39] | DE JOUSSINEAU G, AYDIN A. The evolution of the damage zone with fault growth in sandstone and its multiscale characteristics[J]. Journal of Geophysical Research, 2007, 112(B12): B12401. |
[40] |
BILLI A, SALVINI F, STORTI F. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability[J]. Journal of Structural Geology, 2003, 25(11): 1779-1794.
DOI URL |
[41] |
刘宝增, 漆立新, 李宗杰, 等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4): 412-420.
DOI |
[42] |
李海英, 刘军, 龚伟, 等. 顺北地区走滑断裂与断溶体圈闭识别描述技术[J]. 中国石油勘探, 2020, 25(3): 107-120.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||