Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (6): 300-312.DOI: 10.13745/j.esf.sf.2020.6.9
Previous Articles Next Articles
DONG Zhi1,2(), SHI Xuefa2,3,*(
), ZOU Xinqing1,3,**(
), ZOU Jianjun2,3, YANG Baoju2,3, LIU Jihua2,3, CHENG Zhenbo2
Received:
2020-03-24
Revised:
2020-05-07
Online:
2020-11-02
Published:
2020-11-02
Contact:
SHI Xuefa,ZOU Xinqing
CLC Number:
DONG Zhi, SHI Xuefa, ZOU Xinqing, ZOU Jianjun, YANG Baoju, LIU Jihua, CHENG Zhenbo. Spatial distribution characteristics of radiolarian species in surface sediments from the Okinawa Trough and the impact of environmental factors[J]. Earth Science Frontiers, 2020, 27(6): 300-312.
Fig.1 Map of the study region and the sample locations in the Okinawa Trough (The water depth data are available online (https://www.ncdc.noaa.gov/). The current system is modified after [4] and [5].)
区域 | 表层样站位 | 北纬/(°) | 东经/(°) | 水深/m | 采样方式 |
---|---|---|---|---|---|
冲绳海槽北部 | HOBAB1-S2 | 128.74 | 29.96 | 938 | 箱式取样器 |
HOBAB1-S3B | 128.44 | 30.24 | 874 | 箱式取样器 | |
HOBAB1-S12 | 127.88 | 29.61 | 847 | 箱式取样器 | |
HOBAB1-S13 | 127.74 | 29.75 | 490 | 箱式取样器 | |
HOBAB1-S17 | 127.69 | 29.35 | 994 | 箱式取样器 | |
HOBAB1-S15-2 | 128.11 | 29.37 | 1 063 | 箱式取样器 | |
HOBAB1-S6 | 128.04 | 30.24 | 399 | 箱式取样器 | |
HOBAB1-S5 | 127.99 | 30.52 | 416 | 箱式取样器 | |
HOBAB1-S16-1 | 128.06 | 29.10 | 1 039 | 箱式取样器 | |
HOBAB1-S1 | 128.63 | 30.28 | 838 | 箱式取样器 | |
HOBAB1-S11 | 128.04 | 29.56 | 972 | 箱式取样器 | |
HOBAB1-S16-2 | 128.13 | 29.15 | 1 134 | 箱式取样器 | |
HOBAB1-S15-1 | 128.08 | 29.35 | 1 069 | 箱式取样器 | |
HOBAB1-S7 | 128.03 | 29.97 | 439 | 箱式取样器 | |
HOBAB1-S4-2 | 128.33 | 30.32 | 598 | 箱式取样器 | |
HOBAB1-S14 | 127.62 | 29.83 | 288 | 箱式取样器 | |
冲绳海槽中部 | TVGC7 | 127.10 | 27.52 | 1 167 | 电视抓斗 |
TVG6-2 | 127.08 | 27.26 | 1 353 | 电视抓斗 | |
TVG6-1 | 127.06 | 27.24 | 1 615 | 电视抓斗 | |
HOBAB2-S5 | 126.98 | 27.67 | 1 527 | 电视抓斗 | |
HOBAB2-S7 | 126.93 | 27.56 | 1 589 | 箱式取样器 | |
HOBAB2-T6 | 126.90 | 27.81 | 1 190 | 箱式取样器 | |
HOBAB2-T4 | 126.89 | 27.79 | 1 028 | 箱式取样器 | |
HOBAB2-T3 | 126.89 | 27.79 | 1 039 | 箱式取样器 | |
HOBAB2-T1 | 126.97 | 27.55 | 1 387 | 箱式取样器 | |
冲绳海槽南部 | TVG-C4 | 123.20 | 24.94 | 1 748 | 电视抓斗 |
TVG-C5 | 124.36 | 25.25 | 2 207 | 电视抓斗 | |
TVG11-1 | 122.58 | 25.06 | 1 222 | 电视抓斗 | |
HOBAB3-T9' | 122.69 | 24.84 | 1 381 | 箱式取样器 | |
HOBAB3-T4 | 122.74 | 25.05 | 1 520 | 箱式取样器 | |
HOBAB3-T3'-2 | 122.57 | 25.07 | 1 206 | 箱式取样器 | |
HOBAB3-T3' | 122.58 | 25.07 | 1 200 | 箱式取样器 | |
HOBAB3-T2 | 122.58 | 25.07 | 1 368 | 箱式取样器 | |
台湾岛以东海域 | TVG12-1 | 122.93 | 22.85 | 3 443 | 电视抓斗 |
Table 1 Station information for all the surface sediment samples in this study
区域 | 表层样站位 | 北纬/(°) | 东经/(°) | 水深/m | 采样方式 |
---|---|---|---|---|---|
冲绳海槽北部 | HOBAB1-S2 | 128.74 | 29.96 | 938 | 箱式取样器 |
HOBAB1-S3B | 128.44 | 30.24 | 874 | 箱式取样器 | |
HOBAB1-S12 | 127.88 | 29.61 | 847 | 箱式取样器 | |
HOBAB1-S13 | 127.74 | 29.75 | 490 | 箱式取样器 | |
HOBAB1-S17 | 127.69 | 29.35 | 994 | 箱式取样器 | |
HOBAB1-S15-2 | 128.11 | 29.37 | 1 063 | 箱式取样器 | |
HOBAB1-S6 | 128.04 | 30.24 | 399 | 箱式取样器 | |
HOBAB1-S5 | 127.99 | 30.52 | 416 | 箱式取样器 | |
HOBAB1-S16-1 | 128.06 | 29.10 | 1 039 | 箱式取样器 | |
HOBAB1-S1 | 128.63 | 30.28 | 838 | 箱式取样器 | |
HOBAB1-S11 | 128.04 | 29.56 | 972 | 箱式取样器 | |
HOBAB1-S16-2 | 128.13 | 29.15 | 1 134 | 箱式取样器 | |
HOBAB1-S15-1 | 128.08 | 29.35 | 1 069 | 箱式取样器 | |
HOBAB1-S7 | 128.03 | 29.97 | 439 | 箱式取样器 | |
HOBAB1-S4-2 | 128.33 | 30.32 | 598 | 箱式取样器 | |
HOBAB1-S14 | 127.62 | 29.83 | 288 | 箱式取样器 | |
冲绳海槽中部 | TVGC7 | 127.10 | 27.52 | 1 167 | 电视抓斗 |
TVG6-2 | 127.08 | 27.26 | 1 353 | 电视抓斗 | |
TVG6-1 | 127.06 | 27.24 | 1 615 | 电视抓斗 | |
HOBAB2-S5 | 126.98 | 27.67 | 1 527 | 电视抓斗 | |
HOBAB2-S7 | 126.93 | 27.56 | 1 589 | 箱式取样器 | |
HOBAB2-T6 | 126.90 | 27.81 | 1 190 | 箱式取样器 | |
HOBAB2-T4 | 126.89 | 27.79 | 1 028 | 箱式取样器 | |
HOBAB2-T3 | 126.89 | 27.79 | 1 039 | 箱式取样器 | |
HOBAB2-T1 | 126.97 | 27.55 | 1 387 | 箱式取样器 | |
冲绳海槽南部 | TVG-C4 | 123.20 | 24.94 | 1 748 | 电视抓斗 |
TVG-C5 | 124.36 | 25.25 | 2 207 | 电视抓斗 | |
TVG11-1 | 122.58 | 25.06 | 1 222 | 电视抓斗 | |
HOBAB3-T9' | 122.69 | 24.84 | 1 381 | 箱式取样器 | |
HOBAB3-T4 | 122.74 | 25.05 | 1 520 | 箱式取样器 | |
HOBAB3-T3'-2 | 122.57 | 25.07 | 1 206 | 箱式取样器 | |
HOBAB3-T3' | 122.58 | 25.07 | 1 200 | 箱式取样器 | |
HOBAB3-T2 | 122.58 | 25.07 | 1 368 | 箱式取样器 | |
台湾岛以东海域 | TVG12-1 | 122.93 | 22.85 | 3 443 | 电视抓斗 |
Fig.3 Spatial distribution of radiolarian characteristics species (%) and radiolarian abundance (skeleton/g) in surface sediments of the Okinawa Trough
Fig.4 Scatter map of relative abundances of radiolarian species and species groups against water depth. The data of TVG12-1 sample located at the east of Taiwan Island are excluded from the figure.
[1] |
PISIAS N G, ROELOFS A, WEBER M. Radiolarian-based transfer functions for estimating mean surface ocean temperatures and seasonal range[J]. Paleoceanography, 1997, 12(3): 365-379.
DOI URL |
[2] |
MATSUZAKI K M, ITAKI T, KIMOTO K. Vertical distribution of polycystine radiolarians in the northern East China Sea[J]. Marine Micropaleontology, 2016, 125: 66-84.
DOI URL |
[3] |
MATSUZAKI K M, ITAKI T, SUGISAKI S. Polycystine radiolarians vertical distribution in the subtropical northwest Pacific during spring 2015(KS15-4)[J]. Paleontological Research, 2020, 24(2): 113-133.
DOI URL |
[4] |
GALLAGHER S J, KITAMURA A, IRYU Y, et al. The Pliocene to recent history of the Kuroshio and Tsushima currents: a multi-proxy approach[J]. Progress in Earth and Planetary Science, 2015, 2: 17.
DOI URL |
[5] | ANDRES M, WIMBUSH M, PARK J H, et al. Observations of Kuroshio flow variations in the East China Sea[J]. Journal of Geophysical Research Atmospheres, 2008, 113(C5): C05013. |
[6] | YAN Q S, SHI X F. Petrologic perspectives on tectonic evolution of a nascent basin(Okinawa Trough)behind Ryukyu Arc: a review[J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. |
[7] | 金翔龙, 喻普之. 冲绳海槽的构造特征与演化[J]. 中国科学: B辑, 1987, 17(2): 196-203. |
[8] | 曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造, 岩浆作用与热液活动[J]. 海洋科学集刊, 2016, 51: 3-36. |
[9] | 地质矿产部海洋地质综合研究大队. 冲绳海槽第四纪微体生物群及其地质意义[M]. 北京: 地质出版社, 1988. |
[10] |
KIM R A, LEE K E, BAE S W. Sea surface temperature proxies(alkenones, foraminiferal Mg/Ca, and planktonic foraminiferal assemblage)and their implications in the Okinawa Trough[J]. Progress in Earth and Planetary Science, 2015, 2(1): 1-16.
DOI URL |
[11] |
JIAN Z M, WANG P X, SAITO Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319.
DOI URL |
[12] |
LI T G, LIU Z X, HALL M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1/2/3/4): 133-146.
DOI URL |
[13] |
SHI X, WU Y, ZOU J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1(~88 ka)[J]. Climate of the Past, 2014, 10(5): 1735-1750.
DOI URL |
[14] | HAECKEL E H P A, EXPEDITION C, HAECKEL E H P A, EXPEDITION C. Report on the radiolaria collected by HMS. challenger during the years 1873-1876[M]. Edinburgh: Eyre & Spottiswoode, 1887. |
[15] | TAKAHASHI K. Radiolaria: flux, ecology, and taxonomy in the Pacific and Atlantic[M]. Woods Hole, America: Woods Hole Oceanographic Institution, 1991. |
[16] | 陈木宏, 谭智源. 南海中、北部沉积物中的放射虫[M]. 北京: 科学出版社, 1996. |
[17] | 张兰兰, 陈木宏, 胡维芬, 等. 现生放射虫的水深分布及其环境指示意义[J]. 热带海洋学报, 2013, 32(6): 101-107. |
[18] | 王汝建, 陈荣华. 冲绳海槽南部表层沉积物中放射虫的初步研究[J]. 同济大学学报(自然科学版), 1996, 24(6): 670-676. |
[19] | 程振波, 鞠小华. 冲绳海槽中部表层沉积物中的放射虫[J]. 海洋与湖沼, 1998, 29(6): 656-662. |
[20] | 常凤鸣, 庄丽华, 李铁刚, 等. 冲绳海槽北部表层沉积物中的放射虫组合[J]. 海洋与湖沼, 2003, 34(2): 208-216. |
[21] | WANG R J, JIAN Z M, LI B H, et al. Paleoceanographic implications of radiolaria in the southern Okinawa Trough over the last 20000 years[J]. Science in China:Series D, 1998, 41(1): 21-27. |
[22] |
CHANG F M, LI T G, ZHUANG L H, et al. A Holocene paleotemperature record based on radiolaria from the northern Okinawa Trough(East China Sea)[J]. Quaternary International, 2008, 183(1): 115-122.
DOI URL |
[23] | 杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25-37. |
[24] |
TADA R, ZHENG H B, CLIFT P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau[J]. Progress in Earth and Planetary Science, 2016, 3: 4.
DOI URL |
[25] | WANG P, LI Q, LI C F. Paleoceanography and sea-level changes[J]. Developments in Marine Geology. 2014, 6: 469-570. |
[26] | 邹建军, 石学法. 末次冰期以来北太平洋中层水演化:研究进展与展望[J]. 地学前缘, 2017, 24(4): 141-151. |
[27] |
NISHINA A, NAKAMURA H, PARK J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6092-6102.
DOI URL |
[28] |
ZHANG Q, CHEN M H, ZHANG L L, et al. Variations in the radiolarian assemblages in the Bering Sea since Pliocene and their implications for paleoceanography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 337-350.
DOI URL |
[29] | 谭智源, 陈木宏. 中国近海的放射虫[M]. 北京: 科学出版社, 1999. |
[30] | ITAKI T. Last Glacial to Holocene polycystine radiolarians from the Japan Sea[J]. News of Osaka Micropaleontologist Society, Special Publication, 2009, 14: 43-89. |
[31] | MATSUZAKI K M, SUZUKI N, NISHI H. Middle to upper Pleistocenepolycystine radiolarians from Hole 902-C9001C, northwestern Pacific[J]. Paleontological Research, 2015, 19(Suppl 1): 1-77. |
[32] | ZHANG L, SUZUKI N. Taxonomy and species diversity of Holocene pylonioid radiolarians from surface sediments of the northeastern Indian Ocean[J]. Palaeontologia Electronica, 2017, 20(3): 1-68. |
[33] |
NIMMERGUT A, ABELMANN A. Spatial and seasonal changes of radiolarian standing stocks in the Sea of Okhotsk[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(3): 463-493.
DOI URL |
[34] |
ISHITANI Y, TAKAHASHI K. The vertical distribution ofradiolaria in the waters surrounding Japan[J]. Marine Micropaleontology, 2007, 65(3/4): 113-136.
DOI URL |
[35] | ISHITANI Y, TAKAHASHI K, OKAZAKI Y, et al. Vertical and geographic distribution of selected radiolarian species in the North Pacific[J]. Micropaleontology, 2008: 27-39. |
[36] |
ZHANG LL, SUZUKI N, NAKAMURA Y, et al. Modern shallow water radiolarians with photosynthetic microbiota in the western North Pacific[J]. Marine Micropaleontology, 2018, 139: 1-27.
DOI URL |
[37] |
HU W F, ZHANG LL, CHEN M H, et al. Distribution of living radiolarians in spring in the South China Sea and its responses to environmental factors[J]. Science China: Earth Sciences, 2015, 58(2): 270-285.
DOI URL |
[38] | YAMASHITA H, TAKAHASHI K, FUJITANI N. Zonal and vertical distribution of radiolarians in the western and central equatorial Pacific in January 1999[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2002, 49(13/14): 2823-2862. |
[39] |
ZHANG L L, CHEN M H, XIANG R, et al. Distribution of polycystine radiolarians in the northern South China Sea in September 2005[J]. Marine Micropaleontology, 2009, 70(1/2): 20-38.
DOI URL |
[40] |
QU H X, WANG J B, XU Y, et al. Radiolarian assemblage as an indicator of environmental conditions in the marginal seas of the western North Pacific[J]. Marine Micropaleontology, 2020, 157: 101859.
DOI URL |
[41] |
ITAKI T, MINOSHIMA K, KAWAHATA H. Radiolarian flux at an images site at the western margin of the subarctic Pacific and its seasonal relationship to the Oyashio cold and Tsugaru warm currents[J]. Marine Geology, 2008, 255(3/4): 131-148.
DOI URL |
[42] |
KAMIKURI S I, MOTOYAMA I, NISHIMURA A. Radiolarian assemblages in surface sediments along Longitude 175°E in the Pacific Ocean[J]. Marine Micropaleontology, 2008, 69(2): 151-172.
DOI URL |
[43] |
MATSUZAKI K M, ITAKI T. New northwest Pacific radiolarian data as a tool to estimate past sea surface and intermediate water temperatures[J]. Paleoceanography, 2017, 32(3): 218-245.
DOI URL |
[44] |
LIU L, ZHANG Q, CHEN M H, et al. Radiolarian biogeography in surface sediments of the northwest Pacific marginal seas[J]. Science China: Earth Sciences, 2017, 60(3): 517-530.
DOI URL |
[45] |
CHANG F M, ZHUANG L H, LI T G, et al. Radiolarian fauna in surface sediments of the northeastern East China Sea[J]. Marine Micropaleontology, 2003, 48(3/4): 169-204.
DOI URL |
[46] |
BJØRKLUND K R, CORTESE G, SWANBERG N, et al. Radiolarian faunal provinces in surface sediments of the Greenland, Iceland and Norwegian(GIN)Seas[J]. Marine Micropaleontology, 1998, 35(1/2): 105-140.
DOI URL |
[47] |
MOTOYAMA I, YAMADA Y, HOSHIBA M, et al. Radiolarian assemblages in surface sediments of the Japan Sea[J]. Paleontological Research, 2016, 20(3): 176-206.
DOI URL |
[48] |
OKAZAKI Y, TAKAHASHI K, ITAKI T, et al. Comparison of radiolarian vertical distributions in the Okhotsk Sea near the Kuril Islands and in the northwestern North Pacific off Hokkaido Island[J]. Marine Micropaleontology, 2004, 51(3/4): 257-284.
DOI URL |
[49] |
WANG R J, XIAO W S, LI Q Y, et al. Polycystine radiolarians in surface sediments from the Bering Sea Green Belt area and their ecological implication for paleoenvironmental reconstructions[J]. Marine Micropaleontology, 2006, 59(3/4): 135-152.
DOI URL |
[50] | CHEN C T A, WANG S L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20675-20686. |
[51] |
MATSUZAKI K M, ITAKI T, TADA R. Paleoceanographic changes in the northern East China Sea during the last 400 kyr as inferred from radiolarian assemblages(IODP site U1429)[J]. Progress in Earth and Planetary Science, 2019, 6: 22.
DOI URL |
[52] |
ITAKI T. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea[J]. Marine Micropaleontology, 2003, 47(3/4): 253-270.
DOI URL |
[1] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[2] | WENG Wei, WU Shuo, HE Yunchao, LIN Wenjing, FENG Meigui, GAN Haonan, LI Xiaodong. New technologies, methodology and application in directional high-temperature hard rock drilling—a critical review [J]. Earth Science Frontiers, 2024, 31(6): 120-129. |
[3] | LONG Xiting, LI Shuheng, XIE Heping, SUN Licheng, GAO Tianyi, XIA Entong, LI Biao, WANG Jun, LI Cunbao, MO Zhengyu, DU Min. System design and performance analysis of a modular thermoelectric generator for low- and medium-temperature geothermal resource [J]. Earth Science Frontiers, 2024, 31(6): 215-223. |
[4] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[5] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[6] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[7] | LIU Hai, WEI Wei, SONG Yang, PAN Yang, LI Yingchun. Pollution characteristics, potential ecological risks and sources of heavy metal pollution in lake sediments in Huoqiu County [J]. Earth Science Frontiers, 2024, 31(3): 420-431. |
[8] | LI Keran, YANG Di, SONG Jinmin, LI Zhiwu, JIN Xin, LIU Fang, YANG Xiong, LIU Shugen, YE Yuehao, FAN Jianping, REN Jiaxin, ZHAO Lingli, XIA Shun, CHEN Wei. Dolomitization in the Lower Cambrian Longwangmiao Formation in northeastern Yunnan: Insights from a simulation study [J]. Earth Science Frontiers, 2024, 31(2): 313-326. |
[9] | HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China [J]. Earth Science Frontiers, 2024, 31(1): 226-238. |
[10] | LI Dan, CHANG Jian, QIU Nansheng, XIONG Yujie. Thermal analysis of ultra-deep layers and its influence on reservoir utilization in platform area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 135-149. |
[11] | BI Wenjun, ZHANG Jiawei, LI Yalin, DENG Yuzhen. The uplift and exhumation processes in the Qiangtang terrane of Central Tibet since the Cretaceous [J]. Earth Science Frontiers, 2023, 30(2): 18-34. |
[12] | ZHANG Jian, FANG Gui, HE Yubei. High-temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China [J]. Earth Science Frontiers, 2023, 30(2): 316-332. |
[13] | ZHOU Shang, XU Jishang, LIU Yong, LI Guangxue, LI Anlong, CAO Lihua, ZHAI Ke, XU Jizheng, QUAN Yongzheng. Effects of biocomponent on the geotechnical properties of seafloor surface sediments in the Western Pacific Warm Pool [J]. Earth Science Frontiers, 2022, 29(5): 119-132. |
[14] | CHEN Zhaohui, LIN Xiaopei, MA Xin, GUAN Yanfeng, ZHOU Chun, ZHANG Yueqi, MA Ke. Observational studies in the Kuroshio Extension region, Northwest Pacific—a review and outlook [J]. Earth Science Frontiers, 2022, 29(5): 13-22. |
[15] | TAN Ning, ZHANG Zhongshi, GUO Zhengtang, WANG Huijun. Modeling study of the impact of tropical seaway changes on East Asian climate [J]. Earth Science Frontiers, 2022, 29(5): 310-321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||