Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 13-22.DOI: 10.13745/j.esf.sf.2021.3.16
Previous Articles Next Articles
CHEN Zhaohui1,2(), LIN Xiaopei1,2, MA Xin1,2, GUAN Yanfeng1, ZHOU Chun1,2, ZHANG Yueqi1, MA Ke1
Received:
2021-03-10
Revised:
2021-03-29
Online:
2022-09-25
Published:
2022-08-24
CLC Number:
CHEN Zhaohui, LIN Xiaopei, MA Xin, GUAN Yanfeng, ZHOU Chun, ZHANG Yueqi, MA Ke. Observational studies in the Kuroshio Extension region, Northwest Pacific—a review and outlook[J]. Earth Science Frontiers, 2022, 29(5): 13-22.
[1] |
WUNSCH C, FERRARI R. Vertical mixing, energy, and the general circulation of the oceans[J]. Annual Review of Fluid Mechanics, 2004, 36: 281-314.
DOI URL |
[2] |
FERRARI R, WUNSCH C. Ocean circulation kinetic energy: reservoirs, sources, and sinks[J]. Annual Review of Fluid Mechanics, 2009, 41: 253-282.
DOI URL |
[3] |
KWON Y O, ALEXANDER M A, BOND N A, et al. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review[J]. Journal of Climate, 2010, 23(12): 3249-3281.
DOI URL |
[4] |
DICKEY T. The role of new technology in advancing ocean biogeochemical research[J]. Oceanography, 2001, 14(4): 108-120.
DOI URL |
[5] |
CARPENTER L J, ARCHER S D, BEALE R. Ocean-atmosphere trace gas exchange[J]. Chemical Society Reviews, 2012, 41(19): 6473-6506.
DOI URL |
[6] | LANA A, BELL T G, SIMÓ R, et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean[J]. Global Biogeochemical Cycles, 2011, 25(1): GB1004. |
[7] | SIMÓ R. The role of marine microbiota in short-term climate regulation[M]//DUARTE C M. The role of marine biota in the functioning of the biosphere. Bilbao: Fundación BBVA, 2011: 107-130. |
[8] |
TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/9/10): 554-577.
DOI URL |
[9] |
MARTIN J H, COALE K H, JOHNSON K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6493): 123-129.
DOI URL |
[10] |
KIM T W, LEE K, NAJJAR R G, et al. Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition[J]. Science, 2011, 334(6055): 505-509.
DOI URL |
[11] | QIU B. Kuroshio and Oyashio Currents[M]// COCHRANJ K, BOKUNIEWICZH, YAGERP. Encyclopedia of ocean sciences. Oxford: Academic Press, 2019: 384-394. |
[12] |
POLOVINA J J, HOWELL E, KOBAYASHI D R, et al. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources[J]. Progress in Oceanography, 2001, 49(1/2/3/4): 469-483.
DOI URL |
[13] | Food and Agriculture Organization of the United Nations (FAO). FAO Yearbook. Fishery and aquaculture statistics 2018[M]. Rome: FAO, 2020. |
[14] |
MCPHADEN M J. The tropical atmosphere ocean array is completed[J]. Bulletin of the American Meteorological Society, 1995, 76(5): 739-744.
DOI URL |
[15] |
SERVAIN J, BUSALACCHI A J, MCPHADEN M J, et al. A pilot research moored array in the tropical Atlantic (PIRATA)[J]. Bulletin of the American Meteorological Society, 1998, 79(10): 2019-2031.
DOI URL |
[16] |
MCPHADEN M J, MEYERS G, ANDO K, et al. RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction[J]. Bulletin of the American Meteorological Society, 2009, 90(4): 459-480.
DOI URL |
[17] | DONOHUE K, WATTS D R, TRACEY K, et al. Program studies the Kuroshio Extension[J]. Eos, Transactions American Geophysical Union, 2008, 89(17): 161-162. |
[18] |
DONOHUE K, WATTS D R, TRACEY K, et al. Mapping circulation in the Kuroshio Extension with an array of Current and Pressure recording Inverted Echo Sounders[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 507-527.
DOI URL |
[19] |
HOWE P J, DONOHUE K A, WATTS D R. Stream-coordinate structure and variability of the Kuroshio Extension[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(7): 1093-1116.
DOI URL |
[20] |
TRACEY K L, WATTS D R, DONOHUE K A, et al. Propagation of Kuroshio Extension Meanders between 143° and 149°E[J]. Journal of Physical Oceanography, 2012, 42(4): 581-601.
DOI URL |
[21] |
JAYNE S R, HOGG N G, WATERMAN S N, et al. The Kuroshio Extension and its recirculation gyres[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(12): 2088-2099.
DOI URL |
[22] |
BISHOP S P, WATTS D R, PARK J H, et al. Evidence of bottom-trapped currents in the Kuroshio Extension region[J]. Journal of Physical Oceanography, 2012, 42(2): 321-328.
DOI URL |
[23] |
GREENE A D, SUTYRIN G G, WATTS D R. Deep cyclogenesis by synoptic eddies interacting with a seamount[J]. Journal of Marine Research, 2009, 67(3): 305-322.
DOI URL |
[24] |
QIU B, CHEN S M, HACKER P, et al. The Kuroshio Extension northern recirculation gyre: profiling float measurements and forcing mechanism[J]. Journal of Physical Oceanography, 2008, 38(8): 1764-1779.
DOI URL |
[25] |
QIU B, CHEN S M. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2090-2103.
DOI URL |
[26] |
NAKAMURA H, ISOBE A, MINOBE S, et al. “Hot Spots” in the climate system: new developments in the extratropical ocean-atmosphere interaction research: a short review and an introduction[J]. Journal of Oceanography, 2015, 71(5): 463-467.
DOI URL |
[27] |
CRONIN M F, MEINIG C, SABINE C L, et al. Surface mooring network in the Kuroshio Extension[J]. IEEE Systems Journal, 2008, 2(3): 424-430.
DOI URL |
[28] |
KONDA M, ICHIKAWA H, TOMITA H, et al. Surface heat flux variations across the Kuroshio Extension as observed by surface flux buoys[J]. Journal of Climate, 2010, 23(19): 5206-5221.
DOI URL |
[29] |
BOND N A, CRONIN M F. Regional weather patterns during anomalous air-sea fluxes at the Kuroshio Extension Observatory (KEO)[J]. Journal of Climate, 2008, 21(8): 1680-1697.
DOI URL |
[30] | TOMITA H, KAKO S, CRONIN M F, et al. Preconditioning of the wintertime mixed layer at the Kuroshio Extension Observatory[J]. Journal of Geophysical Research, 2010, 115(C12): C12053. |
[31] | BOND N A, CRONIN M F, SABINE C, et al. Upper Ocean response to Typhoon Choi-Wan as measured by the Kuroshio Extension Observatory mooring[J]. Journal of Geophysical Research, 2011, 116(C2): C02031. |
[32] |
FASSBENDER A J, SABINE C L, CRONIN M F, et al. Mixed-layer carbon cycling at the Kuroshio Extension Observatory[J]. Global Biogeochemical Cycles, 2017, 31(2): 272-288.
DOI URL |
[33] | 吴立新, 陈朝晖, 林霄沛, 等. “透明海洋”立体观测网构建[J]. 科学通报, 2020, 65(25): 2654-2661. |
[34] |
XU L, LI P, XIE S P, et al. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific[J]. Nature Communications, 2016, 7: 10505.
DOI URL |
[35] |
XU L X, XIE S P, MCCLEAN J L, et al. Mesoscale eddy effects on the subduction of North Pacific mode waters[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 4867-4886.
DOI URL |
[36] | XU L X, XIE S P, JING Z, et al. Observing subsurface changes of two anticyclonic eddies passing over the Izu-Ogasawara Ridge[J]. Geophysical Research Letters, 2017: 44(4): 1857-1865. |
[37] |
MEN W, HE J, WANG F, et al. Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident[J]. Scientific Reports, 2015, 5: 7757.
DOI URL |
[38] | 王辉, 王兆毅, 朱学明, 等. 日本福岛放射性污染物在北太平洋海水中的输运模拟与预测[J]. 科学通报, 2012, 57(22): 2111-2118. |
[39] | 胡海波. 北太平洋低位势涡度水的潜沉和向台湾以东的输运[D]. 青岛: 中国海洋大学, 2008. |
[40] | OKA E, TOYAMA K, SUGA T. Subduction of North Pacific central mode water associated with subsurface mesoscale eddy[J]. Geophysical Research Letters, 2009, 36(8): L08607. |
[41] |
MCWILLIAMS J C. Submesoscale, coherent vortices in the ocean[J]. Reviews of Geophysics, 1985, 23(2): 165.
DOI URL |
[42] |
MAXIMENKO N, YAMAGATA T. Submesoscale anomalies in the north Pacific subarctic front[J]. Journal of Geophysical Research, 1995, 100(C9): 18459.
DOI URL |
[43] |
ZHANG Z W, LI P L, XU L X, et al. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014[J]. Geophysical Research Letters, 2015, 42(15): 6438-6445.
DOI URL |
[44] |
LI C, ZHANG Z W, ZHAO W, et al. A statistical study on the subthermocline submesoscale eddies in the northwestern Pacific Ocean based on Argo data[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 3586-3598.
DOI URL |
[45] |
ZHU R C, CHEN Z H, ZHANG Z W, et al. Subthermocline eddies in the Kuroshio Extension region observed by mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(2): 439-455.
DOI URL |
[1] | ZHENG Cheng, SUN Chengjun, JIN Hong, HUANG Yuhuan, YUE Xin'an, YANG Guipeng, DING Haibing. Compositions, sources and formation processes of abyssal and hadal sediments in the northern Yap Trench [J]. Earth Science Frontiers, 2022, 29(5): 73-87. |
[2] | JI Chunsheng, JIA Yonggang, ZHU Junjiang, HU Naili, FAN Zhihan, HU Cong, FENG Xuezhi, YU Heyu, LIU Bo. R&D and application of the Abyssal Bottom Boundary Layer Observation System (ABBLOS) [J]. Earth Science Frontiers, 2022, 29(5): 265-274. |
[3] | ZHU Junjiang, OU Xiaolin, YANG Yue, CHEN Ruixue, ZHANG Shaoyu, JIA Zhongjia, ZHANG Shengsheng, WANG Pengcheng, LI Sanzhong, LIU Yongjiang, JIA Yonggang. Seafloor visualization and graphic user interface design [J]. Earth Science Frontiers, 2022, 29(5): 255-264. |
[4] | SUN Zhiwen, JIA Yonggang, QUAN Yongzheng, GUO Xiujun, LIU Tao, MENG Qingsheng, SUN Zhongqiang, LI Kai, FAN Zhihan, CHEN Tian, TANG Haoru. Development and application of long-term in situ monitoring system for complex deep-sea engineering geology [J]. Earth Science Frontiers, 2022, 29(5): 216-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||