Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 1-12.DOI: 10.13745/j.esf.sf.2022.4.60
Previous Articles Next Articles
WU Lixin1,2(), JING Zhao1,2, CHEN Xianyao1,2, LI Caiwen2,3, ZHANG Guoliang2,3, WANG Shi1,2, DONG Bo1,2, ZHUANG Guangchao1,2
Received:
2022-03-15
Revised:
2022-04-16
Online:
2022-09-25
Published:
2022-08-24
CLC Number:
WU Lixin, JING Zhao, CHEN Xianyao, LI Caiwen, ZHANG Guoliang, WANG Shi, DONG Bo, ZHUANG Guangchao. Marine science in China: Current status and future outlooks[J]. Earth Science Frontiers, 2022, 29(5): 1-12.
Fig.4 Schematic representation of the basic structure and hydrological functions of the Arctic Ocean and the coupling of Arctic and subarctic marine and atmospheric systems under Arctic warming. Modified after [25].
[1] | Intergovernmental Oceanographic Commission of UNESCO. The United Nations decade of ocean science for sustainable development(2021-2030) implementation plan-summary[R/OL]. (2020-10-01)[2020-10-12]. http://www.oceandecade.org. |
[2] | DONALD K, COLIN N. Science 125th anniversary special issue[J]. Science, 2005, 309: 5731. |
[3] |
FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340.
DOI URL |
[4] | PORTNERH O, ROBERTS D C, DELMOTTE V M, et al. Summary for policymakers[R/OL]// IPCC special report on the Ocean and Cryosphere in a Changing Climate. (2019-10-11)[2019-11-03]. https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/. |
[5] |
MANNING C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1-16.
DOI URL |
[6] |
SOBOLEV S V, SOBOLEV A V, KUZMIN D V, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes[J]. Nature, 2011, 477(7364): 312-316.
DOI URL |
[7] |
RÜPKE L H, MORGAN J P, HORT M, et al. Serpentine and the subduction zone water cycle[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 17-34.
DOI URL |
[8] |
BACH W, FRUH-GREEN G L. Alteration of the oceanic lithosphere and implications for seafloor processes[J]. Elements, 2010, 6(3): 173-178.
DOI URL |
[9] | KOPPERS A A P, COGGON R, BURBERRY C, et al. Exploring earth by scientific ocean crilling: 2050 science framework[R/OL]. (2020-10-03)[2020-10-29]. https://doi org/10 6075/J0W66J9H. |
[10] |
MARTIN W, BAROSS J, KELLEY D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6(11): 805-814.
DOI URL |
[11] |
ZHANG X L, SHU D G. Current understanding on the Cambrianexplosion: questions and answers[J]. Paläontologische Zeitschrift, 2021, 95(4): 641-660.
DOI URL |
[12] | CONWAY M S. Darwin's dilemma: the realities of the Cambrian ‘explosion'[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2006, 361(1470): 1069-1083. |
[13] |
LEFFLER E M, BULLAUGHEY K, MATUTE D R, et al. Revisiting an old riddle: what determines genetic diversity levels within species?[J]. PLoS Biology, 2012, 10(9): e1001388.
DOI URL |
[14] |
ERWIN D H. The origin of animal body plans: a view from fossil evidence and the regulatory genome[J]. Development (Cambridge, England), 2020, 147(4): dev182899.
DOI URL |
[15] |
YANG Z H, ZHANG L L, HU J J, et al. The evo-devo of molluscs:insights from a genomic perspective[J]. Evolution and Development, 2020, 22(6): 409-424.
DOI URL |
[16] | United Nations. The future we want: outcome of the Conference on sustainable development, rio de janeiro: United Nations[R/OL]. (2012-06-19)[2012-08-13]. https://www.un.org/zh/sustainablefuture/ocean. |
[17] | WU H B. A conference to #save our ocean[C/OL]. New York: United Nations.(2017-05-16)[2017-06-05]. URL: https://oceanconference.un.org/. |
[18] |
SERREZE M C, BARRETT A P, SLATER A G, et al. The large-scale freshwater cycle of the Arctic[J]. Journal of Geophysical Research Atmospheres, 2006, 111(C11): C11010.
DOI URL |
[19] |
HAINE T W N, CURRY B, GERDES R, et al. Arctic freshwater export:status, mechanisms, and prospects[J]. Global and Planetary Change, 2015, 125: 13-35.
DOI URL |
[20] | STAMMERJOHN S, SCAMBOS T, et al. Antarctica and the Southern Ocean, in state of the climate in 2020[J]. Bulletin of the American Meteorological Society, 2021, 102(8): 317-355. |
[21] |
CAI W J, CHEN L Q, CHEN B S, et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin[J]. Science, 2010, 329(5991): 556-559.
DOI URL |
[22] |
TREMBLAY J É, ANDERSON L G, MATRAI P, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the Changing Arctic Ocean[J]. Progress in Oceanography, 2015, 139:171-196.
DOI URL |
[23] |
QI D, CHEN L Q, CHEN B S, et al. Increase in acidifying water in the western Arctic Ocean[J]. Nature Climate Change, 2017, 7(3): 195-199.
DOI URL |
[24] |
COHEN J, SCREEN J A, FURTADO J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9): 627-637.
DOI URL |
[25] |
WASSMANN P, CARMACK E C, BLUHM B A, et al. Towards a unifying pan-arctic perspective: a conceptual modelling toolkit[J]. Progress in Oceanography, 2020, 189: 102455.
DOI URL |
[26] |
YUAN D L, WANG J, XU T F, et al. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian throughflow[J]. Journal of Climate, 2011, 24(14): 3593-3608.
DOI URL |
[27] | 魏泽勋, 郑全安, 杨永增, 等. 中国物理海洋学研究70年: 发展历程、 学术成就概览[J]. 海洋学报, 2019, 41(10) : 23-64. |
[28] |
MA X H, JING Z, CHANG P, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere[J]. Nature, 2016, 535(7613): 533-537.
DOI URL |
[29] |
CAI W J, WU L X, LENGAIGNE M, et al. Pantropical climate interactions[J]. Science, 2019, 363 (6430): eaav4236.
DOI URL |
[30] |
HU D X, WU L X, CAI W J, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299-308.
DOI URL |
[31] |
ZHANG Z W, TIAN J W, QIU B, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016, 6: 24349.
DOI URL |
[32] |
DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5: 3294.
DOI URL |
[33] |
ZHANG Z G, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194): 322-324.
DOI URL |
[34] | CHEN D K, LIU W T, TANG W Q, et al. Air-sea interaction at an oceanic front: implications for frontogenesis and primary production[J]. Geophysical Research Letters, 2003, 30(14):1745. |
[35] |
WU L X, JING Z, RISER S, et al. Seasonal and spatial variations of southern ocean diapycnal mixing from Argo profiling floats[J]. Nature Geoscience, 2011, 4(6): 363-366.
DOI URL |
[36] | WANG Y G, QIAO F L, FANG G H, et al. Application of wave-induced vertical mixing to the K profile parameterization scheme[J]. Journal of Geophysical Research Atmospheres, 2010, 115(C9): C09014. |
[37] |
DAI M H, CAO Z M, GUO X H, et al. Why are some marginal seas sources of atmospheric CO2?[J]. Geophysical Research Letters, 2013, 40(10): 2154-2158.
DOI URL |
[38] |
JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
DOI URL |
[39] | LI C Y, WEI T D, ZHANG S H, et al. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(3): 1026-1031. |
[40] |
QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans[J]. Nature Communications, 2020, 11: 5051.
DOI URL |
[41] | ZHANG Y, QIN W, HOU L, et al. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(9): 4823-4830. |
[42] |
ZHENG Z Z, ZHENG L W, XU M N, et al. Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming[J]. Nature Communications, 2020, 11: 3511.
DOI URL |
[43] |
LI H, ARCULUS R J, ISHIZUKA O, et al. Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development[J]. Nature Communications, 2021, 12: 1723.
DOI URL |
[44] |
ZHANG G L, WANG S, ZHANG J, et al. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume[J]. Geochimica et Cosmochimica Acta, 2020, 290: 391-407.
DOI URL |
[45] |
XU W L, CHEN J H, WENG A H, et al. Stagnant slab front within the mantle transition zone controls the formation of Cenozoic intracontinental high-Mg andesites in Northeast Asia[J]. Geology, 2021, 49(1): 19-24.
DOI URL |
[46] |
WANG X, CHEN Q F, NIU F L, et al. Distinct slab interfaces imaged within the mantle transition zone[J]. Nature Geoscience, 2020, 13(12): 822-827.
DOI URL |
[47] |
LI CF, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.
DOI URL |
[48] | 刘峰, 刘予, 宋成兵, 等. 中国深海大洋事业跨越发展的三十年[J]. 中国有色金属学报, 2021, 31(10): 2613-2623. |
[49] |
ZHANG G L, ZHANG J, WANG S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540: 119566.
DOI URL |
[50] |
ZHANG Z Y, DONG D D, SUN W D, et al. The Caroline Ridge fault system and implications for the bending-related faulting of incoming oceanic plateaus[J]. Gondwana Research, 2021, 92: 133-148.
DOI URL |
[51] | 唐启升, 苏纪兰. 海洋生态系统动力学研究与海洋生物资源可持续利用[J]. 地球科学进展, 2001, 16(1): 5-11. |
[52] | 李永祺, 唐学玺. 中国海洋生态学的发展和展望[J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 1-9. |
[53] | 刘永新, 李梦龙, 方辉, 等. 南极磷虾的资源概况与生态系统功能[J]. 水产学杂志, 2019, 32(1): 55-60. |
[54] |
ZHAO L, GAO F, GAO S, et al. Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms[J]. Science China Life Sciences, 2021, 64(8): 1236-1280.
DOI URL |
[55] |
ZHANG G F, FANG X D, GUO X M, et al. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature, 2012, 490(7418): 49-54.
DOI URL |
[56] |
LIN Q, FAN S H, ZHANG Y H, et al. The seahorse genome and the evolution of its specialized morphology[J]. Nature, 2016, 540(7633): 395-399.
DOI URL |
[57] |
WANG J, ZHANG L L, LIAN S S, et al. Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae[J]. Nature Ecology and Evolution, 2020, 4(5): 725-736.
DOI URL |
[58] |
HUANG S F, TAO X, YUAN S C, et al. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination[J]. Cell, 2016, 166(1): 102-114.
DOI URL |
[59] |
CURSON A R J, LIU J, BERMEJO M A, et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process[J]. Nature Microbiology, 2017, 2: 17009.
DOI URL |
[60] |
JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
DOI URL |
[61] |
WANG S, MEYER E, MCKAY J K, et al. 2b-RAD: a simple and flexible method for genome-wide genotyping[J]. Nature Methods, 2012, 9(8): 808-810.
DOI URL |
[62] |
YU Z M, SONG X X, CAO X H, et al. Mitigation of harmful algal blooms using modified clays: theory, mechanisms, and applications[J]. Harmful Algae, 2017, 69: 48-64.
DOI URL |
[63] | 陈吉余. 中国河口海岸研究与实践[M]. 北京: 高等教育出版社, 2007. |
[64] | 黄大吉, 苏纪兰. 黄河三角洲岸线变迁对莱州湾流场和对虾早期栖息地的影响[J]. 海洋学报, 2002, 24(6): 104-111. |
[65] | 丁平兴, 王厚杰, 孟宪伟, 等. 气候变化影响下我国典型海岸带演变趋势与脆弱性评估[M]. 北京: 科学出版社, 2016. |
[66] |
唐启升, 苏纪兰, 孙松, 等. 中国近海生态系统动力学研究进展[J]. 地球科学进展, 2005, 20(12): 1288-1299.
DOI |
[67] |
周名江, 朱明远. “我国近海有害赤潮发生的生态学、 海洋学机制及预测防治”研究进展[J]. 地球科学进展, 2006, 21(7): 673-679, 764.
DOI |
[68] | 孙松, 于志刚, 李超伦, 等. 黄、 东海水母暴发机理及其生态环境效应研究进展[J]. 海洋与湖沼, 2012, 43(3): 401-405. |
[69] | 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40 (2): 1-13. |
[1] | ZHANG Mengwei, GAO Liang, ZHAO Yue, PEI Junling, YANG Zhenyu, GUO Xiaoqian, HU Xinwei. The interaction between the opening of the Drake Passage and global paleoceanographic-paleoclimatic change [J]. Earth Science Frontiers, 2024, 31(6): 415-435. |
[2] | LI Shengrong, SHEN Junfeng, LI Lin, ZHANG Huafeng. Considerations on big data-based genetic mineralogical research [J]. Earth Science Frontiers, 2021, 28(3): 76-86. |
[3] | CHENG Qiuming. What are Mathematical Geosciences and its frontiers? [J]. Earth Science Frontiers, 2021, 28(3): 6-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||