Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 119-132.DOI: 10.13745/j.esf.sf.2021.5.2
Previous Articles Next Articles
ZHOU Shang1,2(), XU Jishang1,2,3, LIU Yong1,2,*(
), LI Guangxue1,2,3, LI Anlong1,2,3, CAO Lihua1,2,3, ZHAI Ke4, XU Jizheng3, QUAN Yongzheng1,2
Received:
2021-02-17
Revised:
2021-04-22
Online:
2022-09-25
Published:
2022-08-24
Contact:
LIU Yong
CLC Number:
ZHOU Shang, XU Jishang, LIU Yong, LI Guangxue, LI Anlong, CAO Lihua, ZHAI Ke, XU Jizheng, QUAN Yongzheng. Effects of biocomponent on the geotechnical properties of seafloor surface sediments in the Western Pacific Warm Pool[J]. Earth Science Frontiers, 2022, 29(5): 119-132.
沉积物类型 | 天然含水率/% | 天然密度/(g·cm-3) | 十字板剪切强度/kPa | 贯入阻力/kPa | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | |||||||||||
含硅质的黏土 | 146.7~208.5 | 179.7 | 1.11~1.24 | 1.17 | 0 | 0 | 0 | 0 | ||||||||||
含硅质和钙质的黏土 | 156.2~198.0 | 178.4 | 1.28~1.34 | 1.30 | 3.0~3.6 | 2.2 | 20~30 | 17 | ||||||||||
钙质黏土 | 183.6~226.6 | 203.2 | 1.23~1.33 | 1.27 | 0~4.6 | 1.5 | 0~30 | 10 | ||||||||||
硅质黏土 | 224.5~289.3 | 260.0 | 1.04~1.22 | 1.16 | 0 | 0 | 0 | 0 | ||||||||||
含硅质的钙质黏土 | 143.8~277.9 | 226.2 | 1.18~1.32 | 1.25 | 0.8~3.2 | 2.2 | 0~20 | 4 | ||||||||||
含钙质的硅质黏土 | 230.5~343.8 | 279.9 | 1.15~1.26 | 1.20 | 0~1.6 | 0.8 | 0 | 0 | ||||||||||
钙质软泥 | 61.1~117.1 | 92.7 | 1.10~1.60 | 1.45 | 0~6.4 | 5.0 | 40~90 | 69 | ||||||||||
含硅质的钙质软泥 | 99.9~114.6 | 106.7 | 1.51~1.54 | 1.53 | 0~6.4 | 4.9 | 40~90 | 80 | ||||||||||
含黏土的钙质软泥 | 88.9~180.5 | 109.1 | 1.36~1.76 | 1.50 | 0~8.6 | 4.8 | 28~100 | 68 | ||||||||||
含黏土和硅质的钙质软泥 | 86.9~212.8 | 122.2 | 1.27~1.51 | 1.39 | 0~7.2 | 3.8 | 0~80 | 41 | ||||||||||
黏土钙质软泥 | 123.7~214.6 | 153.7 | 1.11~1.47 | 1.27 | 0~4 | 2 | 0~40 | 18 | ||||||||||
含黏土的硅质钙质软泥 | 184.7~333.7 | 239.2 | 1.08~1.28 | 1.21 | 0~2.2 | 1.5 | 0~20 | 7 | ||||||||||
含硅质的黏土钙质软泥 | 110.7~228.8 | 161.3 | 1.16~1.43 | 1.34 | 0~4.8 | 2.5 | 0~50 | 20 | ||||||||||
黏土硅质钙质软泥 | 115.4~254.7 | 186.1 | 1.10~1.43 | 1.28 | 0~3.4 | 1.1 | 0~30 | 10 | ||||||||||
硅质软泥 | 375.2~435.1 | 400.9 | 1.05~1.11 | 1.08 | 0 | 0 | 0 | 0 | ||||||||||
黏土硅质软泥 | 338.9~406.2 | 362.8 | 1.09~1.16 | 1.13 | 0~1.2 | 0.4 | 0 | 0 | ||||||||||
含黏土的钙质硅质软泥 | 208.6 | 208.6 | 1.24 | 1.24 | 1.2 | 1.2 | 0 | 0 | ||||||||||
黏土钙质硅质软泥 | 110.0~294.6 | 202.3 | 1.14~1.32 | 1.23 | 0~2.4 | 1.2 | 0 | 0 |
Table 1 Main parameters of geotechnical properties of surface sediments in study area
沉积物类型 | 天然含水率/% | 天然密度/(g·cm-3) | 十字板剪切强度/kPa | 贯入阻力/kPa | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | |||||||||||
含硅质的黏土 | 146.7~208.5 | 179.7 | 1.11~1.24 | 1.17 | 0 | 0 | 0 | 0 | ||||||||||
含硅质和钙质的黏土 | 156.2~198.0 | 178.4 | 1.28~1.34 | 1.30 | 3.0~3.6 | 2.2 | 20~30 | 17 | ||||||||||
钙质黏土 | 183.6~226.6 | 203.2 | 1.23~1.33 | 1.27 | 0~4.6 | 1.5 | 0~30 | 10 | ||||||||||
硅质黏土 | 224.5~289.3 | 260.0 | 1.04~1.22 | 1.16 | 0 | 0 | 0 | 0 | ||||||||||
含硅质的钙质黏土 | 143.8~277.9 | 226.2 | 1.18~1.32 | 1.25 | 0.8~3.2 | 2.2 | 0~20 | 4 | ||||||||||
含钙质的硅质黏土 | 230.5~343.8 | 279.9 | 1.15~1.26 | 1.20 | 0~1.6 | 0.8 | 0 | 0 | ||||||||||
钙质软泥 | 61.1~117.1 | 92.7 | 1.10~1.60 | 1.45 | 0~6.4 | 5.0 | 40~90 | 69 | ||||||||||
含硅质的钙质软泥 | 99.9~114.6 | 106.7 | 1.51~1.54 | 1.53 | 0~6.4 | 4.9 | 40~90 | 80 | ||||||||||
含黏土的钙质软泥 | 88.9~180.5 | 109.1 | 1.36~1.76 | 1.50 | 0~8.6 | 4.8 | 28~100 | 68 | ||||||||||
含黏土和硅质的钙质软泥 | 86.9~212.8 | 122.2 | 1.27~1.51 | 1.39 | 0~7.2 | 3.8 | 0~80 | 41 | ||||||||||
黏土钙质软泥 | 123.7~214.6 | 153.7 | 1.11~1.47 | 1.27 | 0~4 | 2 | 0~40 | 18 | ||||||||||
含黏土的硅质钙质软泥 | 184.7~333.7 | 239.2 | 1.08~1.28 | 1.21 | 0~2.2 | 1.5 | 0~20 | 7 | ||||||||||
含硅质的黏土钙质软泥 | 110.7~228.8 | 161.3 | 1.16~1.43 | 1.34 | 0~4.8 | 2.5 | 0~50 | 20 | ||||||||||
黏土硅质钙质软泥 | 115.4~254.7 | 186.1 | 1.10~1.43 | 1.28 | 0~3.4 | 1.1 | 0~30 | 10 | ||||||||||
硅质软泥 | 375.2~435.1 | 400.9 | 1.05~1.11 | 1.08 | 0 | 0 | 0 | 0 | ||||||||||
黏土硅质软泥 | 338.9~406.2 | 362.8 | 1.09~1.16 | 1.13 | 0~1.2 | 0.4 | 0 | 0 | ||||||||||
含黏土的钙质硅质软泥 | 208.6 | 208.6 | 1.24 | 1.24 | 1.2 | 1.2 | 0 | 0 | ||||||||||
黏土钙质硅质软泥 | 110.0~294.6 | 202.3 | 1.14~1.32 | 1.23 | 0~2.4 | 1.2 | 0 | 0 |
r(Pearson 相关性) | 天然密度/(g·cm-3) | 天然含水率/% | 十字板剪切强度/kPa | 贯入阻力/kPa |
---|---|---|---|---|
钙质生物组分 | 0.74 | -0.83 | 0.68 | 0.68 |
硅质生物组分 | -0.63 | 0.81 | -0.58 | -0.51 |
Table 2 Correlation analysis between biological components and geotechnical properties of surface sediments
r(Pearson 相关性) | 天然密度/(g·cm-3) | 天然含水率/% | 十字板剪切强度/kPa | 贯入阻力/kPa |
---|---|---|---|---|
钙质生物组分 | 0.74 | -0.83 | 0.68 | 0.68 |
硅质生物组分 | -0.63 | 0.81 | -0.58 | -0.51 |
[1] | 于彦江, 段隆臣, 王海峰, 等. 西太平洋深海沉积物的物理力学性质初探[J]. 矿冶工程, 2016, 36(5): 1-4, 9. |
[2] | 朱坤杰, 王金莲, 邓希光. 中-西太平洋海盆浅层沉积物的物理力学性质初探[J]. 土工基础, 2015, 29(3): 149-152. |
[3] | 冯秀丽, 沈渭铨. 海洋工程地质专论[M]. 青岛: 中国海洋大学出版社, 2006. |
[4] |
WIEMER G, KOPF A. Influence of diatom microfossils on sediment shear strength and slope stability[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1): 333-345.
DOI URL |
[5] |
WIEMER G, DZIADEK R, KOPF A. The enigmatic consolidation of diatomaceous sediment[J]. Marine Geology, 2017, 385: 173-184.
DOI URL |
[6] | RACK F R, BRYANT W R, JULSON A P. Microfabric and physical properties of deep-sea high latitude carbonate oozes[M]// REZAKR, LAVOIED L. Carbonate microfabrics. New York: Springer, 1993: 129-147. |
[7] | 朱坤杰, 何树平, 陈芳, 等. 马里亚纳海沟南部海域沉积物的工程地质特性及其成因[J]. 地质学刊, 2015, 39(2): 251-257. |
[8] |
DAVIES R J, CLARK I R. Submarine slope failure primed and triggered by silica and its diagenesis[J]. Basin Research, 2006, 18(3): 339-350.
DOI URL |
[9] |
VOLPI V, CAMERLENGHI A, HILLENBRAND C D, et al. Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula[J]. Basin Research, 2003, 15(3): 339-363.
DOI URL |
[10] |
KENTER J A M, SCHLAGER W. A comparison of shear strength in calcareous and siliciclastic marine sediments[J]. Marine Geology, 1989, 88(1/2): 145-152.
DOI URL |
[11] | 朱超祁, 贾永刚, 张民生, 等. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 2016, 24(5): 863-870. |
[12] |
常凤鸣, 李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
DOI |
[13] | 董冬冬, 张广旭, 钱进, 等. 西太平洋雅浦俯冲带的地貌及地层结构特征[J]. 海洋地质与第四纪地质, 2017, 37(1): 23-29. |
[14] |
KOBAYASHI K. Origin of the Palau and Yap trench-arc systems[J]. Geophysical Journal International, 2004, 157(3): 1303-1315.
DOI URL |
[15] |
FUJIWARA T, TAMURA C, NISHIZAWA A, et al. Morphology and tectonics of the Yap trench[J]. Marine Geophysical Researches, 2000, 21(1/2): 69-86.
DOI URL |
[16] | LUKAS R, YAMAGATA T, MCCREARY J P. Pacific low-latitude western boundary currents and the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12209-12216. |
[17] |
HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299-308.
DOI URL |
[18] | 王海霞. 360ka以来西太平洋暖池核心区古环境演化[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011. |
[19] |
XIONG Z F, LI T G, CHANG F M, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation[J]. Quaternary Science Reviews, 2018, 197: 288-306.
DOI URL |
[20] |
JIANG F Q, ZHOU Y, NAN Q Y, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research: Oceans, 2016, 121(9): 6911-6928.
DOI URL |
[21] | 陈康, 徐继尚, 李广雪, 等. 雅浦海沟南缘海底表层矿物碎屑粒度特征及其物源指示[J]. 海洋地质与第四纪地质, 2020, 40(5): 46-57. |
[22] | 中华人民共和国国家质量监督检疫总局. 海洋调查规范第8部分: 海洋地质地球物理调查: GB/T 12763.8-2007[S]. 北京: 中国标准出版社, 2008. |
[23] | DEAN W, LEINEN M, STOW D. Classification of deep-sea, fine-grained sediments[J]. Journal of Sedimentary Petrology, 1985, 55(2): 250-256. |
[24] | 党靖, 胡李俐, 南帅. 含水量及天然密度对土体抗剪强度参数的影响研究[J]. 中国西部科技(学术), 2007, 6(5): 14-15. |
[25] | 王晓峰. 十字板抗剪强度的影响因素分析[J]. 勘察科学技术, 2014(5): 5-7. |
[26] | 魏巍. 南海中沙天然气水合物资源远景区海底沉积物的物理力学性质研究[J]. 海岸工程, 2006, 25(3): 33-38. |
[27] | 王树仁, 阳宁, 王贵满. 太平洋C-C区中国矿区深海沉积物的强度特性研究[J]. 矿冶工程, 2000, 20(3): 21-24. |
[28] | 周知进, 王贵满. 海底沉积物剪切强度的试验研究[J]. 湖南科技大学学报(自然科学版), 2005, 20(2): 15-18. |
[29] | 宋连清. 大洋多金属结核矿区沉积物土工性质[J]. 海洋学报(中文版), 1999, 21(6): 47-54. |
[30] | 吴鸿云, 陈新明, 高宇清. 海底沉积物贯入阻力原位测试方法研究[J]. 矿业研究与开发, 2005, 25(2): 65-67, 71. |
[31] | 陈小玲. 大洋多金属结核矿区表层沉积物的物理性质[J]. 东海海洋, 2004, 22(1): 28-33. |
[32] |
KELLER G H. Organic matter and the geotechnical properties of submarine sediments[J]. Geo-Marine Letters, 1982, 2(3/4): 191-198.
DOI URL |
[33] | 马雯波, 饶秋华, 吴鸿云, 等. 深海稀软底质土宏观性能与显微结构分析[J]. 岩土力学, 2014, 35(6): 1641-1646. |
[34] |
JOHNSON T C, HAMILTON E L, BERGER W H. Physical properties of calcareous ooze: control by dissolution at depth[J]. Marine Geology, 1977, 24(4): 259-277.
DOI URL |
[35] | 张红, 贾永刚, 刘晓磊, 等. 全海深海底沉积物力学特性原位测试技术[J]. 海洋地质前沿, 2019, 35(2): 1-9. |
[36] |
HAMM C E, MERKEL R, SPRINGER O, et al. Architecture and material properties of diatom shells provide effective mechanical protection[J]. Nature, 2003, 421(6925): 841-843.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||