Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 388-404.DOI: 10.13745/j.esf.sf.2024.11.81
Previous Articles Next Articles
WU Ke1(), YAN Xiangyu1, YANG Donghong2,*(
)
Received:
2024-03-01
Revised:
2024-12-03
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
WU Ke, YAN Xiangyu, YANG Donghong. Petrogenesis of the Early Cretaceous Jiguanshan granite porphyry in the Liaodong Peninsula: Constraints from geochemistry and single mineral U-Pb-Hf-Nd isotopes[J]. Earth Science Frontiers, 2025, 32(4): 388-404.
Fig.1 Tectonic location and geological sketch of the study area. (a) Simplified geological map of the northeastern China, (b) simplified geological map of the Liaodong Peninsula(adapted from [4,9-11,20-21]) and (c) simplified geological map of the Jiguanshan granite porphyry and sample locations (adapted from [14]).
Fig.2 Petrochemical characteristics of the Jiguanshan granite porphyry. (a) Field photos and (b) photomicrographs of the Jiguanshan granite porphyry. Mineral abbreviations: Q, quartz; Pl, plagioclase; Or, orthoclase; Ap, apatite.
Fig.3 Zircon geochronology results of the Jiguanshan granite porphyry. (a) Representative cathodoluminescence (CL) images of zircons from the Jiguanshan granite porphyry, (b) LA-ICP-MS zircon U-Pb concordia diagram and (c) weighted mean ages of the Jiguanshan granite porphyry.
测点号 | wB/10-6 | Th/ U | 同位素比值及误差 | 年龄及误差/Ma | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | ||||
21L03-1-1 | 420 | 903 | 0.47 | 0.048 97 | 0.002 55 | 0.130 95 | 0.006 72 | 0.019 27 | 0.000 20 | 146 | 98 | 125 | 6 | 123 | 1 | ||
21L03-1-2 | 584 | 1 097 | 0.53 | 0.049 49 | 0.002 03 | 0.138 36 | 0.005 67 | 0.020 16 | 0.000 22 | 171 | 76 | 132 | 5 | 129 | 1 | ||
21L03-1-3 | 682 | 946 | 0.72 | 0.048 89 | 0.001 75 | 0.135 04 | 0.004 73 | 0.019 99 | 0.000 25 | 143 | 58 | 129 | 4 | 128 | 2 | ||
21L03-1-4 | 472 | 522 | 0.90 | 0.049 73 | 0.002 87 | 0.128 63 | 0.007 27 | 0.018 76 | 0.000 28 | 182 | 102 | 123 | 7 | 120 | 2 | ||
21L03-1-5 | 907 | 808 | 1.12 | 0.053 08 | 0.003 31 | 0.146 59 | 0.008 70 | 0.020 07 | 0.000 42 | 332 | 97 | 139 | 8 | 128 | 3 | ||
21L03-1-6 | 261 | 253 | 1.03 | 0.058 25 | 0.004 75 | 0.155 15 | 0.012 13 | 0.019 63 | 0.000 36 | 539 | 140 | 146 | 11 | 125 | 2 | ||
21L03-1-8 | 313 | 671 | 0.47 | 0.048 99 | 0.003 01 | 0.134 32 | 0.008 35 | 0.019 76 | 0.000 26 | 147 | 116 | 128 | 7 | 126 | 2 | ||
21L03-1-10 | 457 | 1 134 | 0.40 | 0.049 62 | 0.001 77 | 0.136 20 | 0.004 87 | 0.019 83 | 0.000 18 | 177 | 66 | 130 | 4 | 127 | 1 | ||
21L03-1-11 | 247 | 494 | 0.50 | 0.050 51 | 0.002 07 | 0.135 59 | 0.005 38 | 0.019 58 | 0.000 20 | 219 | 73 | 129 | 5 | 125 | 1 | ||
21L03-1-12 | 385 | 737 | 0.52 | 0.050 87 | 0.003 55 | 0.138 77 | 0.010 22 | 0.019 66 | 0.000 27 | 235 | 142 | 132 | 9 | 125 | 2 | ||
21L03-1-13 | 745 | 1 136 | 0.66 | 0.049 29 | 0.002 42 | 0.135 40 | 0.006 53 | 0.019 91 | 0.000 22 | 162 | 90 | 129 | 6 | 127 | 1 | ||
21L03-1-14 | 88 | 322 | 0.27 | 0.052 02 | 0.004 05 | 0.139 97 | 0.010 57 | 0.01975 | 0.00037 | 286 | 138 | 133 | 9 | 126 | 2 | ||
21L03-1-15 | 235 | 233 | 1.01 | 0.058 72 | 0.003 58 | 0.158 00 | 0.008 76 | 0.019 83 | 0.000 32 | 557 | 93 | 149 | 8 | 127 | 2 |
Table 1 LA-ICP-MS zircon U-Pb isotopic analytic data of the Jiguanshan granite porphyry in the Liaodong Peninsula
测点号 | wB/10-6 | Th/ U | 同位素比值及误差 | 年龄及误差/Ma | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | ||||
21L03-1-1 | 420 | 903 | 0.47 | 0.048 97 | 0.002 55 | 0.130 95 | 0.006 72 | 0.019 27 | 0.000 20 | 146 | 98 | 125 | 6 | 123 | 1 | ||
21L03-1-2 | 584 | 1 097 | 0.53 | 0.049 49 | 0.002 03 | 0.138 36 | 0.005 67 | 0.020 16 | 0.000 22 | 171 | 76 | 132 | 5 | 129 | 1 | ||
21L03-1-3 | 682 | 946 | 0.72 | 0.048 89 | 0.001 75 | 0.135 04 | 0.004 73 | 0.019 99 | 0.000 25 | 143 | 58 | 129 | 4 | 128 | 2 | ||
21L03-1-4 | 472 | 522 | 0.90 | 0.049 73 | 0.002 87 | 0.128 63 | 0.007 27 | 0.018 76 | 0.000 28 | 182 | 102 | 123 | 7 | 120 | 2 | ||
21L03-1-5 | 907 | 808 | 1.12 | 0.053 08 | 0.003 31 | 0.146 59 | 0.008 70 | 0.020 07 | 0.000 42 | 332 | 97 | 139 | 8 | 128 | 3 | ||
21L03-1-6 | 261 | 253 | 1.03 | 0.058 25 | 0.004 75 | 0.155 15 | 0.012 13 | 0.019 63 | 0.000 36 | 539 | 140 | 146 | 11 | 125 | 2 | ||
21L03-1-8 | 313 | 671 | 0.47 | 0.048 99 | 0.003 01 | 0.134 32 | 0.008 35 | 0.019 76 | 0.000 26 | 147 | 116 | 128 | 7 | 126 | 2 | ||
21L03-1-10 | 457 | 1 134 | 0.40 | 0.049 62 | 0.001 77 | 0.136 20 | 0.004 87 | 0.019 83 | 0.000 18 | 177 | 66 | 130 | 4 | 127 | 1 | ||
21L03-1-11 | 247 | 494 | 0.50 | 0.050 51 | 0.002 07 | 0.135 59 | 0.005 38 | 0.019 58 | 0.000 20 | 219 | 73 | 129 | 5 | 125 | 1 | ||
21L03-1-12 | 385 | 737 | 0.52 | 0.050 87 | 0.003 55 | 0.138 77 | 0.010 22 | 0.019 66 | 0.000 27 | 235 | 142 | 132 | 9 | 125 | 2 | ||
21L03-1-13 | 745 | 1 136 | 0.66 | 0.049 29 | 0.002 42 | 0.135 40 | 0.006 53 | 0.019 91 | 0.000 22 | 162 | 90 | 129 | 6 | 127 | 1 | ||
21L03-1-14 | 88 | 322 | 0.27 | 0.052 02 | 0.004 05 | 0.139 97 | 0.010 57 | 0.01975 | 0.00037 | 286 | 138 | 133 | 9 | 126 | 2 | ||
21L03-1-15 | 235 | 233 | 1.01 | 0.058 72 | 0.003 58 | 0.158 00 | 0.008 76 | 0.019 83 | 0.000 32 | 557 | 93 | 149 | 8 | 127 | 2 |
样品号 | 主量元素含量/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | TFe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Total | |
21L03-1 | 75.70 | 0.14 | 13.00 | 1.51 | 0.05 | 0.15 | 0.11 | 3.25 | 4.96 | 0.04 | 0.81 | 99.72 |
21L03-5 | 76.03 | 0.10 | 13.51 | 1.24 | 0.02 | 0.09 | 0.09 | 3.06 | 4.82 | 0.02 | 0.87 | 99.86 |
21L03-6 | 76.07 | 0.10 | 13.17 | 1.08 | 0.02 | 0.08 | 0.11 | 3.12 | 5.19 | 0.01 | 0.61 | 99.56 |
样品号 | 微量元素含量/10-6 | |||||||||||
Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | |
21L03-1 | 1.96 | 1.59 | 8.26 | 16.77 | 1.20 | 6.60 | 1.38 | 23.74 | 17.17 | 226.70 | 53.50 | 13.04 |
21L03-5 | 5.11 | 1.76 | 2.21 | 10.10 | 0.43 | 2.51 | 3.09 | 153.50 | 17.53 | 246.60 | 73.45 | 7.87 |
21L03-6 | 1.90 | 1.79 | 1.97 | 9.26 | 0.29 | 3.55 | 7.44 | 52.50 | 13.85 | 194.15 | 62.75 | 9.20 |
样品号 | 微量元素含量/10-6 | |||||||||||
Zr | Nb | Cs | Ba | Hf | Ta | Pb | Th | U | Ge | Li | Sn | |
21L03-1 | 135.60 | 16.80 | 1.08 | 306.35 | 5.37 | 3.14 | 24.05 | 18.88 | 3.84 | 2.38 | 8.71 | 2.01 |
21L03-5 | 92.00 | 13.59 | 2.32 | 427.90 | 3.91 | 2.89 | 34.00 | 21.92 | 4.63 | 2.17 | 9.38 | 7.25 |
21L03-6 | 72.35 | 11.98 | 1.63 | 328.95 | 3.30 | 2.58 | 29.74 | 23.35 | 5.27 | 1.89 | 5.80 | 3.13 |
样品号 | 微量元素含量/10-6 | |||||||||||
Tl | Ti | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | |
21L03-1 | 1.14 | 865.28 | 6.36 | 38.17 | 1.72 | 5.95 | 1.44 | 0.18 | 1.70 | 0.33 | 2.27 | 0.52 |
21L03-5 | 1.35 | 607.62 | 17.39 | 43.97 | 3.61 | 11.67 | 2.07 | 0.27 | 1.73 | 0.25 | 1.49 | 0.31 |
21L03-6 | 1.00 | 582.22 | 22.39 | 45.30 | 4.79 | 15.74 | 2.92 | 0.48 | 2.74 | 0.35 | 1.86 | 0.37 |
样品号 | 微量元素含量/10-6 | (La/Yb)N | Eu/Eu* | Rb/Sr | Sr/Y | Nb/Ta | ||||||
Er | Tm | Yb | Lu | ∑REE | ∑LREE | ∑HREE | ||||||
21L03-1 | 1.67 | 0.29 | 2.07 | 0.32 | 62.97 | 53.81 | 9.16 | 2.07 | 0.36 | 4.24 | 4.10 | 5.36 |
21L03-5 | 0.94 | 0.15 | 1.02 | 0.15 | 85.00 | 78.97 | 6.03 | 11.54 | 0.42 | 3.36 | 9.34 | 4.70 |
21L03-6 | 1.07 | 0.17 | 1.08 | 0.17 | 99.43 | 91.61 | 7.82 | 14.02 | 0.51 | 3.09 | 6.82 | 4.64 |
Table 2 Whole-rock major and trace elements analytic data of the Jiguanshan granite porphyry in the Liaodong Peninsula
样品号 | 主量元素含量/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | TFe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Total | |
21L03-1 | 75.70 | 0.14 | 13.00 | 1.51 | 0.05 | 0.15 | 0.11 | 3.25 | 4.96 | 0.04 | 0.81 | 99.72 |
21L03-5 | 76.03 | 0.10 | 13.51 | 1.24 | 0.02 | 0.09 | 0.09 | 3.06 | 4.82 | 0.02 | 0.87 | 99.86 |
21L03-6 | 76.07 | 0.10 | 13.17 | 1.08 | 0.02 | 0.08 | 0.11 | 3.12 | 5.19 | 0.01 | 0.61 | 99.56 |
样品号 | 微量元素含量/10-6 | |||||||||||
Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | |
21L03-1 | 1.96 | 1.59 | 8.26 | 16.77 | 1.20 | 6.60 | 1.38 | 23.74 | 17.17 | 226.70 | 53.50 | 13.04 |
21L03-5 | 5.11 | 1.76 | 2.21 | 10.10 | 0.43 | 2.51 | 3.09 | 153.50 | 17.53 | 246.60 | 73.45 | 7.87 |
21L03-6 | 1.90 | 1.79 | 1.97 | 9.26 | 0.29 | 3.55 | 7.44 | 52.50 | 13.85 | 194.15 | 62.75 | 9.20 |
样品号 | 微量元素含量/10-6 | |||||||||||
Zr | Nb | Cs | Ba | Hf | Ta | Pb | Th | U | Ge | Li | Sn | |
21L03-1 | 135.60 | 16.80 | 1.08 | 306.35 | 5.37 | 3.14 | 24.05 | 18.88 | 3.84 | 2.38 | 8.71 | 2.01 |
21L03-5 | 92.00 | 13.59 | 2.32 | 427.90 | 3.91 | 2.89 | 34.00 | 21.92 | 4.63 | 2.17 | 9.38 | 7.25 |
21L03-6 | 72.35 | 11.98 | 1.63 | 328.95 | 3.30 | 2.58 | 29.74 | 23.35 | 5.27 | 1.89 | 5.80 | 3.13 |
样品号 | 微量元素含量/10-6 | |||||||||||
Tl | Ti | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | |
21L03-1 | 1.14 | 865.28 | 6.36 | 38.17 | 1.72 | 5.95 | 1.44 | 0.18 | 1.70 | 0.33 | 2.27 | 0.52 |
21L03-5 | 1.35 | 607.62 | 17.39 | 43.97 | 3.61 | 11.67 | 2.07 | 0.27 | 1.73 | 0.25 | 1.49 | 0.31 |
21L03-6 | 1.00 | 582.22 | 22.39 | 45.30 | 4.79 | 15.74 | 2.92 | 0.48 | 2.74 | 0.35 | 1.86 | 0.37 |
样品号 | 微量元素含量/10-6 | (La/Yb)N | Eu/Eu* | Rb/Sr | Sr/Y | Nb/Ta | ||||||
Er | Tm | Yb | Lu | ∑REE | ∑LREE | ∑HREE | ||||||
21L03-1 | 1.67 | 0.29 | 2.07 | 0.32 | 62.97 | 53.81 | 9.16 | 2.07 | 0.36 | 4.24 | 4.10 | 5.36 |
21L03-5 | 0.94 | 0.15 | 1.02 | 0.15 | 85.00 | 78.97 | 6.03 | 11.54 | 0.42 | 3.36 | 9.34 | 4.70 |
21L03-6 | 1.07 | 0.17 | 1.08 | 0.17 | 99.43 | 91.61 | 7.82 | 14.02 | 0.51 | 3.09 | 6.82 | 4.64 |
Fig.4 Major element discrimination diagram of the Jiguanshan granite porphyry. (a) (K2O+Na2O) vs. SiO2 diagram (adapted from [31]) and (b) K2O vs. SiO2 diagram (adapted from [32]) of the Jiguanshan granite porphyry. Data of the Dandong I-type granite are from [9,20] and the Qianshan A-type granite from [21].
Fig.5 Trace element discrimination diagram of the Jiguanshan granitic porphyry. (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized trace element diagrams. The chondrite and PM values are from [33]. Literature data are the same as Fig.4.
Fig.6 Trace element composition of apatite from the Jiguanshan granite porphyry. (a) Representative CL images of apatites from the Jiguanshan granite porphyry, (b) chondrite-normalized REE patterns and (c) PM normalized trace element diagrams for the apatite grains and host granite. The chondrite and PM values are from [33]. The apatite’s data of I-type and S-type granites are from [35] and references therein.
样品号 | 微量元素含量/10-6 | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rb | Sr | Y | Zr | Nb | Cs | Ba | Hf | Pb | Th | U | La | Ce | Pr | |||||||||||||
21L3-1-01 | 0.24 | 338.06 | 1 163.58 | 1.88 | 0.01 | 0.00 | 1.38 | 0.02 | 3.89 | 36.64 | 9.33 | 1 502.72 | 4 052.83 | 468.91 | ||||||||||||
21L3-1-02 | 0.54 | 325.22 | 793.61 | 1.10 | 0.00 | 0.05 | 4.65 | 0.00 | 3.36 | 11.87 | 2.70 | 817.38 | 2 255.64 | 282.54 | ||||||||||||
21L3-1-03 | 0.00 | 341.69 | 826.02 | 2.29 | 0.02 | 0.03 | 1.53 | 0.01 | 3.49 | 23.24 | 5.73 | 1 265.17 | 3 269.44 | 366.28 | ||||||||||||
21L3-1-04 | 0.21 | 245.16 | 888.35 | 3.22 | 0.00 | 0.00 | 1.74 | 0.05 | 3.19 | 13.39 | 3.74 | 850.36 | 2 402.37 | 292.85 | ||||||||||||
21L3-1-05 | 0.00 | 372.97 | 796.39 | 2.07 | 0.01 | 0.07 | 1.86 | 0.01 | 3.56 | 22.76 | 5.05 | 1 151.19 | 2 996.50 | 342.71 | ||||||||||||
21L3-1-06 | 0.15 | 210.01 | 927.36 | 4.08 | 0.01 | 0.03 | 0.64 | 0.04 | 3.12 | 15.78 | 4.17 | 867.63 | 2 475.38 | 302.00 | ||||||||||||
21L3-1-07 | 0.44 | 238.52 | 1 277.60 | 2.30 | 0.02 | 0.13 | 0.35 | 0.02 | 3.96 | 34.72 | 8.08 | 1 067.82 | 3 179.90 | 394.85 | ||||||||||||
21L3-1-08 | 0.00 | 391.93 | 526.11 | 0.03 | 0.00 | 0.00 | 1.92 | 0.00 | 3.27 | 5.62 | 2.55 | 658.90 | 1 597.25 | 201.88 | ||||||||||||
21L3-1-09 | 1.72 | 408.13 | 900.73 | 0.89 | 0.05 | 0.00 | 2.32 | 0.02 | 2.80 | 14.88 | 3.87 | 441.52 | 1 303.10 | 190.51 | ||||||||||||
21L3-1-10 | 0.00 | 278.68 | 655.17 | 0.87 | 0.01 | 0.05 | 1.40 | 0.02 | 3.56 | 13.56 | 4.07 | 1 075.99 | 2 864.07 | 324.45 | ||||||||||||
样品号 | 微量元素含量/10-6 | Eu/Eu* | Nd/Nd* | |||||||||||||||||||||||
Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ∑REE | |||||||||||||||
21L3-1-01 | 2 080.56 | 389.99 | 26.82 | 316.37 | 42.14 | 223.42 | 41.56 | 100.65 | 12.44 | 68.84 | 8.94 | 10 500.09 | 0.23 | 1.19 | ||||||||||||
21L3-1-02 | 1 244.49 | 249.96 | 15.20 | 220.03 | 27.20 | 148.65 | 27.86 | 68.47 | 7.34 | 44.94 | 6.17 | 6 209.48 | 0.19 | 1.16 | ||||||||||||
21L3-1-03 | 1 597.69 | 289.81 | 20.30 | 225.46 | 29.04 | 153.30 | 28.05 | 67.90 | 8.51 | 48.18 | 6.14 | 8 201.44 | 0.23 | 1.19 | ||||||||||||
21L3-1-04 | 1 376.71 | 293.48 | 10.26 | 256.96 | 33.34 | 174.35 | 32.61 | 74.98 | 9.11 | 50.64 | 6.08 | 6 752.51 | 0.11 | 1.18 | ||||||||||||
21L3-1-05 | 1 530.73 | 277.99 | 20.42 | 219.23 | 28.29 | 150.60 | 27.64 | 65.03 | 7.83 | 45.10 | 5.58 | 7 665.34 | 0.24 | 1.21 | ||||||||||||
21L3-1-06 | 1 400.57 | 293.53 | 10.29 | 256.64 | 33.89 | 182.48 | 33.23 | 76.93 | 8.98 | 50.10 | 6.36 | 6 925.49 | 0.11 | 1.18 | ||||||||||||
21L3-1-07 | 1 863.54 | 399.28 | 20.10 | 336.44 | 45.59 | 245.18 | 45.75 | 109.59 | 13.26 | 76.61 | 9.60 | 9 085.29 | 0.16 | 1.18 | ||||||||||||
21L3-1-08 | 908.83 | 180.52 | 10.49 | 155.74 | 19.82 | 100.29 | 18.93 | 43.88 | 5.39 | 29.51 | 3.73 | 4 461.55 | 0.19 | 1.18 | ||||||||||||
21L3-1-09 | 952.64 | 250.14 | 11.12 | 240.04 | 33.02 | 178.59 | 33.02 | 75.46 | 9.33 | 48.08 | 5.90 | 4 673.54 | 0.14 | 1.12 | ||||||||||||
21L3-1-10 | 1 422.63 | 248.29 | 16.64 | 190.50 | 23.30 | 125.55 | 23.53 | 58.45 | 7.81 | 45.24 | 5.66 | 7 087.38 | 0.23 | 1.21 |
Table 3 Apatite trace elements analytic data of Jiguanshan granite porphyry in Liaodong Peninsula
样品号 | 微量元素含量/10-6 | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rb | Sr | Y | Zr | Nb | Cs | Ba | Hf | Pb | Th | U | La | Ce | Pr | |||||||||||||
21L3-1-01 | 0.24 | 338.06 | 1 163.58 | 1.88 | 0.01 | 0.00 | 1.38 | 0.02 | 3.89 | 36.64 | 9.33 | 1 502.72 | 4 052.83 | 468.91 | ||||||||||||
21L3-1-02 | 0.54 | 325.22 | 793.61 | 1.10 | 0.00 | 0.05 | 4.65 | 0.00 | 3.36 | 11.87 | 2.70 | 817.38 | 2 255.64 | 282.54 | ||||||||||||
21L3-1-03 | 0.00 | 341.69 | 826.02 | 2.29 | 0.02 | 0.03 | 1.53 | 0.01 | 3.49 | 23.24 | 5.73 | 1 265.17 | 3 269.44 | 366.28 | ||||||||||||
21L3-1-04 | 0.21 | 245.16 | 888.35 | 3.22 | 0.00 | 0.00 | 1.74 | 0.05 | 3.19 | 13.39 | 3.74 | 850.36 | 2 402.37 | 292.85 | ||||||||||||
21L3-1-05 | 0.00 | 372.97 | 796.39 | 2.07 | 0.01 | 0.07 | 1.86 | 0.01 | 3.56 | 22.76 | 5.05 | 1 151.19 | 2 996.50 | 342.71 | ||||||||||||
21L3-1-06 | 0.15 | 210.01 | 927.36 | 4.08 | 0.01 | 0.03 | 0.64 | 0.04 | 3.12 | 15.78 | 4.17 | 867.63 | 2 475.38 | 302.00 | ||||||||||||
21L3-1-07 | 0.44 | 238.52 | 1 277.60 | 2.30 | 0.02 | 0.13 | 0.35 | 0.02 | 3.96 | 34.72 | 8.08 | 1 067.82 | 3 179.90 | 394.85 | ||||||||||||
21L3-1-08 | 0.00 | 391.93 | 526.11 | 0.03 | 0.00 | 0.00 | 1.92 | 0.00 | 3.27 | 5.62 | 2.55 | 658.90 | 1 597.25 | 201.88 | ||||||||||||
21L3-1-09 | 1.72 | 408.13 | 900.73 | 0.89 | 0.05 | 0.00 | 2.32 | 0.02 | 2.80 | 14.88 | 3.87 | 441.52 | 1 303.10 | 190.51 | ||||||||||||
21L3-1-10 | 0.00 | 278.68 | 655.17 | 0.87 | 0.01 | 0.05 | 1.40 | 0.02 | 3.56 | 13.56 | 4.07 | 1 075.99 | 2 864.07 | 324.45 | ||||||||||||
样品号 | 微量元素含量/10-6 | Eu/Eu* | Nd/Nd* | |||||||||||||||||||||||
Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ∑REE | |||||||||||||||
21L3-1-01 | 2 080.56 | 389.99 | 26.82 | 316.37 | 42.14 | 223.42 | 41.56 | 100.65 | 12.44 | 68.84 | 8.94 | 10 500.09 | 0.23 | 1.19 | ||||||||||||
21L3-1-02 | 1 244.49 | 249.96 | 15.20 | 220.03 | 27.20 | 148.65 | 27.86 | 68.47 | 7.34 | 44.94 | 6.17 | 6 209.48 | 0.19 | 1.16 | ||||||||||||
21L3-1-03 | 1 597.69 | 289.81 | 20.30 | 225.46 | 29.04 | 153.30 | 28.05 | 67.90 | 8.51 | 48.18 | 6.14 | 8 201.44 | 0.23 | 1.19 | ||||||||||||
21L3-1-04 | 1 376.71 | 293.48 | 10.26 | 256.96 | 33.34 | 174.35 | 32.61 | 74.98 | 9.11 | 50.64 | 6.08 | 6 752.51 | 0.11 | 1.18 | ||||||||||||
21L3-1-05 | 1 530.73 | 277.99 | 20.42 | 219.23 | 28.29 | 150.60 | 27.64 | 65.03 | 7.83 | 45.10 | 5.58 | 7 665.34 | 0.24 | 1.21 | ||||||||||||
21L3-1-06 | 1 400.57 | 293.53 | 10.29 | 256.64 | 33.89 | 182.48 | 33.23 | 76.93 | 8.98 | 50.10 | 6.36 | 6 925.49 | 0.11 | 1.18 | ||||||||||||
21L3-1-07 | 1 863.54 | 399.28 | 20.10 | 336.44 | 45.59 | 245.18 | 45.75 | 109.59 | 13.26 | 76.61 | 9.60 | 9 085.29 | 0.16 | 1.18 | ||||||||||||
21L3-1-08 | 908.83 | 180.52 | 10.49 | 155.74 | 19.82 | 100.29 | 18.93 | 43.88 | 5.39 | 29.51 | 3.73 | 4 461.55 | 0.19 | 1.18 | ||||||||||||
21L3-1-09 | 952.64 | 250.14 | 11.12 | 240.04 | 33.02 | 178.59 | 33.02 | 75.46 | 9.33 | 48.08 | 5.90 | 4 673.54 | 0.14 | 1.12 | ||||||||||||
21L3-1-10 | 1 422.63 | 248.29 | 16.64 | 190.50 | 23.30 | 125.55 | 23.53 | 58.45 | 7.81 | 45.24 | 5.66 | 7 087.38 | 0.23 | 1.21 |
样品号 | 147Sm/144Nd | 143Nd/144Nd | 2σ | εNd(0) | εNd(t) | fSm/Nd | TDM1/Ma | TDM2/Ma |
---|---|---|---|---|---|---|---|---|
21L03-1-01 | 0.109 249 | 0.511 782 | 0.000 023 | -16.7 | -15.3 | -0.44 | 1 990 | 2 161 |
21L03-1-02 | 0.129 093 | 0.511 737 | 0.000 038 | -17.6 | -16.5 | -0.34 | 2 532 | 2 253 |
21L03-1-03 | 0.118 893 | 0.511 751 | 0.000 025 | -17.3 | -16.1 | -0.40 | 2 240 | 2 221 |
21L03-1-04 | 0.122 794 | 0.511 744 | 0.000 028 | -17.4 | -16.3 | -0.38 | 2 346 | 2 235 |
21L03-1-05 | 0.115 211 | 0.511 745 | 0.000 030 | -17.4 | -16.1 | -0.41 | 2 166 | 2 226 |
21L03-1-06 | 0.132 856 | 0.511 778 | 0.000 025 | -16.8 | -15.8 | -0.32 | 2 574 | 2 194 |
21L03-1-07 | 0.127 898 | 0.511 812 | 0.000 036 | -16.1 | -15.0 | -0.35 | 2 366 | 2 135 |
21L03-1-08 | 0.110 641 | 0.511 724 | 0.000 035 | -17.8 | -16.4 | -0.44 | 2 101 | 2 253 |
21L03-1-09 | 0.141 462 | 0.511 737 | 0.000 051 | -17.6 | -16.7 | -0.28 | 2 963 | 2 267 |
21L03-1-10 | 0.104 815 | 0.511 782 | 0.000 029 | -16.7 | -15.2 | -0.47 | 1 909 | 2 155 |
Table 4 LA-MC-ICP-MS apatite Nd isotope analytic data of the Jiguanshan granite porphyry in the Liaodong Peninsula
样品号 | 147Sm/144Nd | 143Nd/144Nd | 2σ | εNd(0) | εNd(t) | fSm/Nd | TDM1/Ma | TDM2/Ma |
---|---|---|---|---|---|---|---|---|
21L03-1-01 | 0.109 249 | 0.511 782 | 0.000 023 | -16.7 | -15.3 | -0.44 | 1 990 | 2 161 |
21L03-1-02 | 0.129 093 | 0.511 737 | 0.000 038 | -17.6 | -16.5 | -0.34 | 2 532 | 2 253 |
21L03-1-03 | 0.118 893 | 0.511 751 | 0.000 025 | -17.3 | -16.1 | -0.40 | 2 240 | 2 221 |
21L03-1-04 | 0.122 794 | 0.511 744 | 0.000 028 | -17.4 | -16.3 | -0.38 | 2 346 | 2 235 |
21L03-1-05 | 0.115 211 | 0.511 745 | 0.000 030 | -17.4 | -16.1 | -0.41 | 2 166 | 2 226 |
21L03-1-06 | 0.132 856 | 0.511 778 | 0.000 025 | -16.8 | -15.8 | -0.32 | 2 574 | 2 194 |
21L03-1-07 | 0.127 898 | 0.511 812 | 0.000 036 | -16.1 | -15.0 | -0.35 | 2 366 | 2 135 |
21L03-1-08 | 0.110 641 | 0.511 724 | 0.000 035 | -17.8 | -16.4 | -0.44 | 2 101 | 2 253 |
21L03-1-09 | 0.141 462 | 0.511 737 | 0.000 051 | -17.6 | -16.7 | -0.28 | 2 963 | 2 267 |
21L03-1-10 | 0.104 815 | 0.511 782 | 0.000 029 | -16.7 | -15.2 | -0.47 | 1 909 | 2 155 |
测点号 | 176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | TDM1(Hf)/Ma | TDM2(Hf)/Ma | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|
21L03-01 | 0.074 905 | 0.001 798 | 0.282 130 | 0.000 035 | -22.7 | -20.1 | 1 614 | 2 454 | -0.95 |
21L03-05 | 0.052 331 | 0.001 272 | 0.282 145 | 0.000 031 | -22.2 | -19.5 | 1 571 | 2 419 | -0.96 |
21L03-06 | 0.044 290 | 0.001 142 | 0.282 177 | 0.000 030 | -21.0 | -18.4 | 1 521 | 2 347 | -0.97 |
21L03-08 | 0.109 883 | 0.002 564 | 0.282 155 | 0.000 034 | -21.8 | -19.3 | 1 612 | 2 401 | -0.92 |
21L03-10 | 0.042 837 | 0.001 103 | 0.282 195 | 0.000 026 | -20.4 | -17.7 | 1 494 | 2 307 | -0.97 |
21L03-11 | 0.076 286 | 0.001 817 | 0.282 183 | 0.000 030 | -20.8 | -18.2 | 1 540 | 2 336 | -0.95 |
21L03-12 | 0.043 803 | 0.001 082 | 0.282 201 | 0.000 033 | -20.2 | -17.5 | 1 485 | 2 294 | -0.97 |
21L03-13 | 0.071 787 | 0.001 706 | 0.282 193 | 0.000 025 | -20.5 | -17.8 | 1 521 | 2 313 | -0.95 |
21L03-14 | 0.023 320 | 0.000 614 | 0.282 248 | 0.000 027 | -18.5 | -15.8 | 1 402 | 2 187 | -0.98 |
21L03-15 | 0.115 297 | 0.002 759 | 0.282 262 | 0.000 033 | -18.1 | -15.5 | 1 465 | 2 166 | -0.92 |
Table 5 LA-MC-ICP-MS zircon Hf isotope analytic data of the Jiguanshan granite porphyry in the Liaodong Peninsula
测点号 | 176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | TDM1(Hf)/Ma | TDM2(Hf)/Ma | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|
21L03-01 | 0.074 905 | 0.001 798 | 0.282 130 | 0.000 035 | -22.7 | -20.1 | 1 614 | 2 454 | -0.95 |
21L03-05 | 0.052 331 | 0.001 272 | 0.282 145 | 0.000 031 | -22.2 | -19.5 | 1 571 | 2 419 | -0.96 |
21L03-06 | 0.044 290 | 0.001 142 | 0.282 177 | 0.000 030 | -21.0 | -18.4 | 1 521 | 2 347 | -0.97 |
21L03-08 | 0.109 883 | 0.002 564 | 0.282 155 | 0.000 034 | -21.8 | -19.3 | 1 612 | 2 401 | -0.92 |
21L03-10 | 0.042 837 | 0.001 103 | 0.282 195 | 0.000 026 | -20.4 | -17.7 | 1 494 | 2 307 | -0.97 |
21L03-11 | 0.076 286 | 0.001 817 | 0.282 183 | 0.000 030 | -20.8 | -18.2 | 1 540 | 2 336 | -0.95 |
21L03-12 | 0.043 803 | 0.001 082 | 0.282 201 | 0.000 033 | -20.2 | -17.5 | 1 485 | 2 294 | -0.97 |
21L03-13 | 0.071 787 | 0.001 706 | 0.282 193 | 0.000 025 | -20.5 | -17.8 | 1 521 | 2 313 | -0.95 |
21L03-14 | 0.023 320 | 0.000 614 | 0.282 248 | 0.000 027 | -18.5 | -15.8 | 1 402 | 2 187 | -0.98 |
21L03-15 | 0.115 297 | 0.002 759 | 0.282 262 | 0.000 033 | -18.1 | -15.5 | 1 465 | 2 166 | -0.92 |
Fig.7 Discrimination diagram of genetic types of the Jiguanshan granite porphyry. (a) TFeO/MgO vs. (Zr + Nb + Ce + Y), (b) Nb vs. 10000Ga/Al, (c) Ce vs. 10000Ga/Al and (d) Zr vs. 10000Ga/Al discrimination diagrams (adapted from [40]). Literature data are the same as Fig.4. Abbreviations: FG, fractionated felsic granites; OGT, unfractionated I, S and M-type granites.
Fig.8 Genetic discrimination diagram of apatite in the Jiguanshan granite porphyry. (a) Nd/Nd* vs. Sr diagram (adapted from [45]; data from [35]) and (b) Sr/Y vs. LREE diagram (LREE: defined here as La-Nd; after [35]) for apatite in the Jiguanshan granite porphyry. Abbreviations: ALK, alkali-rich igneous rocks; HM, leucosomes/high-grade metamorphic rocks; IM, mafic I-type granitoids and mafic igneous rocks; LM, low- and medium-grade metamorphic and metasomatic rocks; S, S-type granitoids; UM, ultramafic rocks.
Fig.9 Source characteristics discrimination diagram of the Jiguanshan granite porphyry. (a) Mg#[Mg# = Mg2+/(Mg2+ + Fe2+); mole fraction] vs. SiO2 and (b) K2O/Na2O (mass fraction) vs. ASI[ASI = Al2O3/(CaO + K2O + Na2O); mass fraction] diagrams (adapted from [49]) of source characteristics for the Jiguanshan granite porphyry. Literature data are the same as Fig.4.
Fig.10 Isotopic composition diagram of the Jiguanshan granite porphyry. (a) Zircon εHf(t) vs. zircon U-Pb age (adapted from [21]) and (b) apatite εNd(t) vs. zircon U-Pb age (adapted from [50]) diagrams for the Jiguanshan granite porphyry. Zircon Hf isotopic data for the Archean gneisses and Paleoproterozoic South Liaohe Group are from [48]. Zircon Hf isotopic data and apatite Nd isotopic data for the Early Cretaceous granitoids in Liaodong Peninsula are from [9] and [50], respectively.
Fig.11 Co-variation diagrams of trace elements in apatite from Jiguanshan granite porphyry. (a) Nd/Tb, (b) Th, (c) U, and (d) Th/U vs. total REE contents diagrams showing variations in the chemistry of apatite in the Jiguanshan granite porphyry.
Fig.12 Tectonic settings discrimination diagram of trace elements for the Jiguanshan granite porphyry. (a) Rb vs.(Y+Nb) and (b) Nb vs. Y discrimination diagrams (adapted from [59]) of tectonic settings for the Jiguanshan granite porphyry. Literature data are the same as Fig.4.
[1] | WU F Y, YANG J H, XU Y G, et al. Destruction of the North China Craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 173-195. |
[2] | YANG J H, WU F Y, WILDE S A, et al. Mesozoic decratonization of the North China Block[J]. Geology, 2008, 36(6): 467. |
[3] | 吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3): 305-317. |
[4] | WU F Y, LIN J Q, WILDE S, et al. Nature and significance of the Early Cretaceous giant igneous event in Eastern China[J]. Earth and Planetary Science Letters, 2005, 233: 103-119. |
[5] | WU F Y, YANG J H, WILDE S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221(1/2): 127-156. |
[6] | 路孝平, 吴福元, 林景仟, 等. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J]. 地质科学, 2004, 39(1): 123-138. |
[7] | QUAN Y K, YANG D B, YANG H T, et al. Petrogenesis of Jurassic granitic plutons in Liaodong Peninsula, NE China: insights into the subduction of Paleo-Pacific plate[J]. Journal of Asian Earth Sciences, 2022, 236:105310. |
[8] | QUAN Y K, YANG D B, MU M S, et al. Tectonic evolution of the northeastern North China Craton: constraints from geochronology and Sr-Nd-Hf-O isotopic data from Late Triassic intrusive rocks on Liaodong Peninsula, NE China[J]. Lithos, 2020, 362: 105489. |
[9] | QUAN Y K, YANG D B, YANG H T, et al. Reworking of continental crust on northeastern North China Craton: evidence from geochronology and geochemistry of Early Cretaceous granitic rocks[J]. Tectonophysics, 2022, 829: 229306. |
[10] | JI Z, GE W C, HE Y, et al. Mixing of cognate magmas as a process for producing high-silica granites: insights from Guanmenshan Complex in Liaodong Peninsula, China[J]. Lithos, 2021, 406: 106495. |
[11] | LIU Y, WEI J H, ZHANG D H, et al. Mesozoic crustal reworking at different depths in the North China Craton: insight from the coexisting Early Cretaceous high and low Sr/Y granitoids[J]. Lithos, 2023, 462/463:107402. |
[12] | 李三忠, 郝德峰, 赵国春, 等. 丹东花岗岩的地球化学特征及其成因[J]. 岩石学报, 2004, 20(6): 1417-23 |
[13] | 孟恩, 刘福来, 施建荣, 等. 丹东地区前震旦纪花岗岩年代学[J]. 岩石学报, 2012, 29(2): 421-436. |
[14] | 辽宁省地质矿产局. 辽林省区域地质志[M]. 北京: 地质出版社, 2001. |
[15] | ZHAO G C, CAWOOD P A, WILDE S A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan complex, North China Craton: petrology and tectonic implications[J]. Journal of Petrology, 2001, 42(6): 1141-1170. |
[16] | ZHU R X, XU Y G. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62(9): 1340-1350. |
[17] | MU M S, YANG D B, YANG H T, et al. Petrogenesis and tectonic implications of the Paleoproterozoic gaoliduntai plagiogranites in the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2022, 368: 106465. |
[18] | MU M S, YANG D B, YANG H T, et al. Petrogenesis of late Paleoproterozoic post-collisional magmatism in southern North China Craton: insights from geochemistry and Nd-Hf isotopic compositions of A-type granites[J]. Precambrian Research, 2022, 383: 106887. |
[19] | QUAN Y K, MU M S, YANG D B, et al. Geochronology and in situ apatite geochemistry of late Paleoproterozoic A-type granites in the Jiao-Liao-Ji Belt, North China Craton: implications for petrogenesis and tectonic evolution[J]. Geochemistry, 2023, 83(4): 126009. |
[20] | 崔维龙, 刘正宏, 杜洋, 等. 辽东地区大兴岩体LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义[J]. 地球科学与环境学报, 2016, 38(5): 623-637. |
[21] | YANG J H, WU F Y, CHUNG S L, et al. A hybrid origin for the Qianshan A-type granite, Northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106. |
[22] | 刘杰勋. 华北克拉通北缘东段辽东地区中生代构造演化[D]. 长春: 吉林大学, 2019. |
[23] | ZONG K Q, KLEMD R, YUAN Y, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. |
[24] | WIEDENBECK M, ALLÉ P, CORFU F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and ree analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. |
[25] | MA Q, ZHENG J P, GRIFFIN W L, et al. Triassic “adakitic” rocks in an extensional setting (North China): melts from the cratonic lower crust[J]. Lithos, 2012, 149: 159-173. |
[26] | HU Z C, LIU Y S, GAO S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399. |
[27] | GRIFFIN W L, PEARSON N J, BELOUSOVA E A, et al. Comment: Hf-isotope heterogeneity in zircon 91500[J]. Chemical Geology, 2006, 233(3/4): 358-363. |
[28] | QIAN S P, ZHANG L. Simultaneous in situ determination of rare earth element concentrations and Nd isotope ratio in apatite by laser ablation ICP-MS[J]. Geochemical Journal, 2019, 53(5): 319-328. |
[29] | YANG Y H, WU F Y, YANG J H, et al. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology[J]. Chemical Geology, 2014, 385: 35-55. |
[30] | BELOUSOVA E, GRIFFIN W, O’REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. |
[31] | MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. |
[32] | PECCERILLO A, TAYLOR S. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. |
[33] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[34] | BELOUSOVA E A, GRIFFIN W L, O’REILLY S Y, et al. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 2002, 76(1): 45-69. |
[35] | O’SULLIVAN G, CHEW D, KENNY G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044. |
[36] | 郭春丽, 吴福元, 杨进辉, 等. 中国东部早白垩世岩浆作用的伸展构造性质: 以辽东半岛南部饮马湾山岩体为例[J]. 岩石学报, 2004, 20(5): 204-215. |
[37] | WU F Y, LIU X C, JI W Q, et al. Highly fractionated granites: recognition and research[J]. Science China Earth Sciences, 2017, 60(7): 1201-1219. |
[38] | GREEN T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4): 347-359. |
[39] | MichaelBau. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333. |
[40] | WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. |
[41] | CHAPPELL B W, WHITE A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8(2): 173-174. |
[42] | WATSON E B, HARRISON T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2): 295-304. |
[43] | CHAPPELL B W, WHITE A J R. I- and S-type granites in the Lachlan fold belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1/2): 1-26. |
[44] | HSIEH P S, CHEN C H, YANG H J, et al. Petrogenesis of the Nanling Mountains granites from South China: constraints from systematic apatite geochemistry and whole-rock geochemical and Sr-Nd isotope compositions[J]. Journal of Asian Earth Sciences, 2008, 33(5/6): 428-451. |
[45] | BELOUSOVA E A, WALTERS S, GRIFFIN W L, et al. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland[J]. Australian Journal of Earth Sciences, 2001, 48(4): 603-619. |
[46] | GAO S, LUO T C, ZHANG B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959-1975. |
[47] | GAO L E, ZENG L S, ASIMOW P D. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites[J]. Geology, 2017, 45(1): 39-42. |
[48] | 孟恩, 王朝阳, 刘超辉, 等. 辽东半岛东南部南辽河群变质火山岩的时代、成因及其对区域构造演化的制约[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1589-1619. |
[49] | ALTHERR R, SIEBEL W. I-type plutonism in a continental back-arc setting: miocene granitoids and monzonites from the central Aegean Sea, Greece[J]. Contributions to Mineralogy and Petrology, 2002, 143(4): 397-415. |
[50] | QUAN Y K, YANG D B, YAN X Y, et al. Petrogenesis of Mesozoic granitoids in the northeastern North China Craton: constraints from apatite trace elements and in situ Nd isotopic data[J]. Lithos, 2023, 450: 107190. |
[51] | HOSKIN P W O, KINNY P D, WYBORN D, et al. Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach[J]. Journal of Petrology, 2000, 41(9): 1365-1396. |
[52] | PICCOLI P M, CANDELA P A. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 255-292. |
[53] | PROWATKE S, KLEMME S. Trace element partitioning between apatite and silicate melts[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4513-4527. |
[54] | MILES A J, GRAHAM C M, HAWKESWORTH C J, et al. Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon[J]. Contributions to Mineralogy and Petrology, 2013, 166(1): 1-19. |
[55] | YAN X Y, YANG D B, XU W L, et al. Apatite geochemistry from mafic rocks in the northeastern North China Craton: new insights into petrogenesis[J]. Lithos, 2023, 436: 106942. |
[56] | SUN J F, YANG J H, ZHANG J H, et al. Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology, 2021, 566: 120104. |
[57] | STEPANOV A S, HERMANN J, RUBATTO D, et al. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks[J]. Chemical Geology, 2012, 300: 200-220. |
[58] | BARTH S, OBERLI F, MEIER M. Th-Pb versus U-Pb isotope systematics in allanite from co-genetic rhyolite and granodiorite: implications for geochronology[J]. Earth and Planetary Science Letters, 1994, 124(1/2/3/4): 149-159. |
[59] | PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. |
[60] | LIN W, WANG Q C, WANG J, et al. Late Mesozoic extensional tectonics of the Liaodong Peninsula massif: response of crust to continental lithosphere destruction of the North China Craton[J]. Science China Earth Sciences, 2011, 54(6): 843-857. |
[61] | MA Q, XU Y G. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 2021, 213: 103473. |
[62] | YAN X Y, YANG D B, XU W L, et al. Identification of metasomatic components in lithospheric mantle under multiple tectonic regimes: insights from Early Cretaceous mafic rocks in the northeastern North China Craton[J]. Lithos, 2023, 454: 107262. |
[1] | WANG Shuai, DONG Tao, LI Yanan, XU Xiaotao, GAO Lianfeng, ZHANG Zhenguo. Early Cretaceous wildfire events in NE China and implications on deep-time ecosystems [J]. Earth Science Frontiers, 2025, 32(4): 497-509. |
[2] | LIU Meiyu, SU Shangguo, LIU Xinran, GUO Xudong, LI Yiming. Magmatic conduit metallogenic system of Jinchuan Cu-Ni (PGE) sulfide deposit: Evidence from mineralogy [J]. Earth Science Frontiers, 2025, 32(2): 390-411. |
[3] | LIU Xiaohui, LIU Yimin, DING Lin, GUO Xiaoyu, HUANG Xingfu, LI Huilin, GAO Rui. Crustal thickness evolution of the Central Lhasa Terrane inferred from trace elements in zircon of Tangra Yumco [J]. Earth Science Frontiers, 2025, 32(1): 343-366. |
[4] | HUANG Yu, ZHONG Shihua, LI Sanzhong, ZHAO Hong, XUE Zimeng, GUO Guanghui, LIU Jiaqing, NIU Jinghui. Effects of accessory mineral inclusions and signal acquisition time on zircon U-Pb dating and trace element analysis results [J]. Earth Science Frontiers, 2025, 32(1): 388-400. |
[5] | JIAO Shoutao, LIU Dongna, ZHANG Qi, JIN Zhibin, ZHANG Yusheng, YUAN Jie, ZHOU Ligang, LIU Tieyi, XIE Tuanjie, FAN Zongsheng, YAN Tongtong, ZHOU Xinpeng, ZHANG Shuangkui, WEI Qianqian, YAN Tao, ZHANG Kun, YIN Bihan. Geological map of the lower crust in the Early Cretaceous of Shanxi Province: Based on vitrinite reflectance evidence [J]. Earth Science Frontiers, 2025, 32(1): 418-431. |
[6] | LIU Jinping, WANG Gaiyun, JIAN Xiaoling, ZHU Chuanqing, HU Xiaoqiang, YUAN Xiaoqiang, WANG Chao. Tectono-thermal mechanism and hydrocarbon generation action in the North Yellow Sea Eastern Sub-basin [J]. Earth Science Frontiers, 2024, 31(4): 206-218. |
[7] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[8] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[9] | CHUAN Maoshan, HU Le, LIN Ruxi, MAO Chongzhen, LI Shizhong, LI Suoming, YUAN Yongsheng. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U-Pb age, trace element and Hf isotope constraints [J]. Earth Science Frontiers, 2024, 31(2): 204-223. |
[10] | ZHOU Yuxi, SHI Yu, HUANG Chunwen, LIU Xijun, LAN Yuanchun, TANG Yuanyuan, WENG Boyin. Petrogenesis and tectonic significance of Caledonian I-Type granitoids in the Gulong and Liandong plutons in southeastern Guangxi [J]. Earth Science Frontiers, 2024, 31(2): 224-248. |
[11] | NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China [J]. Earth Science Frontiers, 2023, 30(5): 115-133. |
[12] | SUN Wenbo, LI Huan. Research progress on zircon from pegmatites and insights into rare-metal mineralization—a review [J]. Earth Science Frontiers, 2023, 30(5): 171-184. |
[13] | CHEN Lei, NIE Xiao, LIU Kai, PANG Xuyong, ZHANG Yingli. Mineralogical and chronological characteristics of the Huoyangou pegmatite Sn(Nb-Ta) deposit in Guanpo, eastern Qinling [J]. Earth Science Frontiers, 2023, 30(5): 40-58. |
[14] | XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes [J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[15] | ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance [J]. Earth Science Frontiers, 2023, 30(2): 163-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||