Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 183-195.DOI: 10.13745/j.esf.sf.2025.3.19
Previous Articles Next Articles
GONG Yaoqi1(), YUE Fujun1,2,3,*(
), LIU Xin1, GUO Tianli4, WANG Haoyang1, LI Siliang1,2,3
Received:
2024-12-30
Revised:
2025-02-25
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
GONG Yaoqi, YUE Fujun, LIU Xin, GUO Tianli, WANG Haoyang, LI Siliang. Research progress of coupled hydrological and water environment models in nitrogen cycle of watershed system[J]. Earth Science Frontiers, 2025, 32(3): 183-195.
模型名称 | 分类 | 模块组成 | 参考文献 |
---|---|---|---|
EFDC | 集总式 | 水动力模块、水质模块、泥沙-污染物模块 | [ |
WASP | 集总式 | 水动力模块、污染物运移模块 | [ |
HYPE | 分布式 | 水动力模块、土壤水文模块、水质模块 | [ |
SWAT | 半分布式 | 气象模块、地形模块、土壤模块、植被模块、水文模块、水质模块 | [ |
Table 1 Comparison of common models for nitrogen cycling in surface water of river basins
模型名称 | 分类 | 模块组成 | 参考文献 |
---|---|---|---|
EFDC | 集总式 | 水动力模块、水质模块、泥沙-污染物模块 | [ |
WASP | 集总式 | 水动力模块、污染物运移模块 | [ |
HYPE | 分布式 | 水动力模块、土壤水文模块、水质模块 | [ |
SWAT | 半分布式 | 气象模块、地形模块、土壤模块、植被模块、水文模块、水质模块 | [ |
[1] | ZHI W, SHI Y, WEN H, et al. BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale[J]. Geoscientific Model Development, 2022, 15(1): 315-333. |
[2] | 李新, 程国栋. 流域科学研究中的观测和模型系统建设[J]. 地球科学进展, 2008(7): 756-764. |
[3] | ZHANG S, HOU X, WU C, et al. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss[J]. Science of the Total Environment, 2020, 706: 134489. |
[4] | CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of earth’s nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. |
[5] | WANG J, BOUWMAN A F, VILMIN L, et al. Global inland-water nitrogen cycling has accelerated in the Anthropocene[J]. Nature Water, 2024, 2(8): 729-740. |
[6] | GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296. |
[7] | BAILEY R T, PARK S, BIEGER K, et al. Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines[J]. Environmental Modelling & Software, 2020, 126: 104660. |
[8] | PEIFFER S, KAPPLER A, HADERLEIN S B, et al. A biogeochemical-hydrological framework for the role of redox-active compounds in aquatic systems[J]. Nature Geoscience, 2021, 14(5): 264-272. |
[9] | FENN M E, ALLEN E B, WEISS S B, et al. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California[J]. Journal of Environmental Management, 2010, 91(12): 2404-2423. |
[10] | LIU X, YUE F J, WONG W W, et al. Unravelling nitrate transformation mechanisms in karst catchments through the coupling of high-frequency sensor data and machine learning[J]. Water Research, 2024, 267: 122507. |
[11] | MARGARITA N M, GIANLUIGI B, MICÒL M, et al. Modeling groundwater and surface water interaction: an overview of current status and future challenges[J]. Science of the Total Environment, 2022, 846: 157355. |
[12] | 张婷, 徐彬鑫, 康爱卿, 等. 流域水文、水动力、水质模型联合应用研究进展[J]. 水利水电科技进展, 2021, 41(3): 11-19. |
[13] | 郑循华, 李思琪, 张伟, 等. 陆地高分辨率水文-生物地球化学过程CNMM-DNDC三维模型的研发及应用进展[J]. 大气科学, 2024, 48(1): 92-107. |
[14] | SADAYAPPAN K, STEWART B, KERINS D, et al. BioRT-HBV 1.0: a biogeochemical reactive transport model at the watershed scale[J]. Journal of Advances in Modeling Earth Systems, 2024, 16(12): e2024MS004217. |
[15] | MAYORGA E, SEITZINGER S P, HARRISON J A, et al. Global nutrient export from watersheds 2 (NEWS 2): model development and implementation[J]. Environmental Modelling & Software, 2010, 25(7): 837-853. |
[16] | WANG Q, LI S, JIA P, et al. A review of surface water quality models[J]. The Scientific World Journal, 2013, 2013: 231768. |
[17] | TIM U S, JOLLY R. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model[J]. Journal of Environmental Quality, 1994, 23(1): 25-35. |
[18] | ESTERBY S R. Review of methods for the detection and estimation of trends with emphasis on water quality applications[J]. Hydrological Processes, 1996, 10(2): 127-149. |
[19] | 苟娇娇, 缪驰远, 徐宗学, 等. 大尺度水文模型参数不确定性分析的挑战与综合研究框架[J]. 水科学进展, 2022, 33(2): 327-335. |
[20] | 陈文君, 段伟利, 贺斌, 等. 基于WASP模型的太湖流域上游茅山地区典型乡村流域水质模拟[J]. 湖泊科学, 2017, 29(4): 836-847. |
[21] | KARMAKAR S, MUJUMDAR P P. Grey fuzzy optimization model for water quality management of a river system[J]. Advances in Water Resources, 2006, 29(7): 1088-1105. |
[22] | HAZRA U N, MAHATO A, DEB S, et al. Integration of GIS with RUSLE to estimate soil, organic matter and nutrient loss from a watershed of eastern Himalayan[J]. Environmental Earth Sciences, 2024, 83(24):668. |
[23] | REN J N, HANAN E J, GREENE A, et al. Simulating the role of biogeochemical hotspots in driving nitrogen export from dryland watersheds[J]. Water Resources Research, 2024, 60(3): e2023WR036008. |
[24] | GAO L and LI D. A review of hydrological/water-quality models[J]. Frontiers of Agricultural Science and Engineering, 2014, 1(4): 267-276. |
[25] | 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展[J]. 矿物岩石地球化学通报, 2024. DOI: 10.3724/j.issn.1007-2802.20240119. |
[26] | 李新, 程国栋, 康尔泗, 等. 数字黑河的思考与实践3:模型集成[J]. 地球科学进展, 2010, 25(8): 851-865. |
[27] | 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-163. |
[28] | 赵超. 基于MIKE模型的水华应急处理情景分析[J]. 水利水电技术, 2015, 46(4): 47-49. |
[29] | XUE B, ZHANG H, WANG Y, et al. Modeling water quantity and quality for a typical agricultural plain basin of northern China by a coupled model[J]. Science of The Total Environment, 2021, 790: 148139. |
[30] | CHEN X, LAO Y, WANG J, et al. Submarinegroundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 932-951. |
[31] | QU W J, LI H L, HUANG H, et al. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China[J]. Journal of Hydrology, 2017, 555: 185-197. |
[32] | SHEN M, WANG S, JIANG N, et al. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 633-651. |
[33] | CHEN H, JU P, ZHU Q, et al. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 701-716. |
[34] | LIU S, ZAMANIAN K, SCHLEUSS P-M, et al. Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles[J]. Agriculture, Ecosystems & Environment, 2018, 252: 93-104. |
[35] | ZHANG Z C, CHEN X, CHENG Q B, et al. Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone[J]. Science of the Total Environment, 2020, 732: 138902. |
[36] | LIN G, GAO D, YANG P, et al. Editorial: linking microbial-driven key processes with carbon and nitrogen cycling in estuarine, coastal, and the nearshore areas[J]. Frontiers in Microbiology, 2024, 15: 1382148. |
[37] | 骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10): 1133-1142. |
[38] | LIU M, HOU L J, YANG Y, et al. The case for a critical zone science approach to research on estuarine and coastal wetlands in the anthropocene[J]. Estuaries and Coasts, 2021, 44: 911-920. |
[39] | 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. |
[40] | 姜德娟, 毕晓丽. 流域-河口-近海系统氮、磷营养盐输移研究综述[J]. 水科学进展, 2010, 21(3): 421-429. |
[41] | 曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水-地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166. |
[42] | 冯起, 尹振良, 席海洋. 流域生态水文模型研究和问题[J]. 第四纪研究, 2014, 34(5): 1082-1093. |
[43] | KELLER AA, GARNER K, RAO N, et al. Hydrological models for climate-based assessments at the watershed scale: a critical review of existing hydrologic and water quality models[J]. Science of the total environment, 2022, 867: 161209. |
[44] | 王凌河, 严登华, 龙爱华, 等. 流域生态水文过程模拟研究进展[J]. 地球科学进展, 2009, 24(8): 891-898. |
[45] | LIU Y, HEUVELINK G B M, BAI Z, et al. Uncertainty quantification of nitrogen use efficiency prediction in China using Monte Carlo simulation and quantile regression forests[J]. Computers and Electronics in Agriculture, 2023, 204: 107533. |
[46] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[47] | SUN Q, CHANG S, WANG J, et al. Assessing the impact of rainfall on water quality in a coastal urban river utilizing the environmental fluid dynamics code[J]. Urban Climate, 2024, 56: 102082. |
[48] | 宋轩宇, 许民, 康世昌, 等. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469. |
[49] | FUJITA Y, BODEGOM P M V, VENTERINK H O, et al. Towards a proper integration of hydrology in predicting soil nitrogen mineralization rates along natural moisture gradients[J]. Soil Biology and Biochemistry, 2013, 58: 302-312. |
[50] | STOCKER B D, PRENTICE I C, CORNELL S E, et al. Terrestrial nitrogen cycling in Earth system models revisited[J]. New Phytologist, 2016, 210(4): 1165-1168. |
[51] | DENG J, ZHOU Z, ZHU B, et al. Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements[J]. Biogeosciences, 2011, 8(97): 2999-3009. |
[52] | 张新宇, 方昭, 焦峰. 基于DNDC模型分析氮添加对内蒙古草甸和荒漠草地碳动态的影响[J]. 水土保持研究, 2024, 31(5): 84-92. |
[53] | 万佳静, 景元书, 吉梦宇, 等. DNDC模型在稻田水肥管理中的应用研究进展[J]. 生态学杂志, 2024, 43(7): 2198-2207. |
[54] | 贾晓楠, 张美玲, 朱美婷, 等. 基于CENTURY模型的甘南高寒草甸土壤氮动态模拟研究[J]. 草原与草坪, 2023, 43(3): 28-38. |
[55] | 刘夏明, 李俊清, 豆小敏, 等. EFDC模型在河口水环境模拟中的应用及进展[J]. 环境科学与技术, 2011, 34(S1): 136-140. |
[56] | GONG R, XU L, WANG D, et al. Water quality modeling for a typical urban lake based on the EFDC model[J]. Environmental Modeling & Assessment, 2016, 21(5): 643-655. |
[57] | HAN F, ZHENG Y, TIAN Y, et al. Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: strategies and relevance[J]. Journal of Hydrology, 2021, 595: 126045. |
[58] | 戴天骄. 桃林口水库水质评价与预测研究[D]. 天津: 天津大学, 2019. |
[59] | PHILLIPS A K, MANDAL S, MOHAMED M, et al. Is comprehensive event sampling necessary for constraining process models of water quality? A comparison of high and low frequency phosphorus sampling programs for constraining the HYPE water quality model[J]. Journal of Hydrology, 2024, 639: 131502. |
[60] | 杨雨潇, 李家科. 基于HYPE模型的汉江安康断面以上流域非点源污染模拟[J]. 水资源保护, 2024, 40(3): 140-148. |
[61] | 孙雪纯, 宁少尉, 宋凡, 等. HYPE水文模型在中国不同气候区域的应用研究[J]. 水文, 2021, 41(3): 57-62. |
[62] | DAI J, CUI Y, CAI X, et al. Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model[J]. Agricultural Water Management, 2016, 174: 52-60. |
[63] | WHITE K L and CHAUBEY I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model[J]. Journal of the American Water Resources Association, 2005, 41(5): 1077-1089. |
[64] | 张展羽, 司涵, 孔莉莉. 基于SWAT模型的小流域非点源氮磷迁移规律研究[J]. 农业工程学报, 2013, 29(2): 93-100. |
[65] | SALIM AOUBID H and OPP C. Nitrogen and phosphorus discharge loads assessment using the SWAT model: a case study of the Shatt Al-Arab river basin[J]. Applied Sciences, 2023, 13(14): 8376. |
[66] | KIM N W, CHUNG I M, WON Y S, et al. Development and application of the integrated SWAT-MODFLOW model[J]. Journal of Hydrology, 2008, 356(1/2): 1-16. |
[67] | ZHI W, LI L. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses[J]. Environmental Science & Technology, 2020, 54(19): 11915-11928. |
[68] | GONZáLEZ A C, BEDOLLA J H, CINCO M A M, et al. Assessment of nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model[J]. Hydrology, 2023, 10(11): 209. |
[69] | 陈新明, 马腾, 蔡鹤生, 等. 地下水氮污染的区域性调控策略[J]. 地质科技情报, 2013, 32(6): 130-143. |
[70] | 张广禄, 刘海燕, 郭华明, 等. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[71] | 周妍, 白国营, 赵洪岩, 等. 分布式地表水-地下水耦合数值模型研究进展[J]. 南水北调与水利科技(中英文), 2023, 21(3): 435-446. |
[72] | 高志鹏, 郭华明, 屈吉鸿. 卫河流域河流-地下水流系统氮素运移的数值模拟[J]. 地学前缘, 2018, 25(3): 273-284. |
[73] | 王蕊, 王中根, 夏军. 地表水和地下水耦合模型研究进展[J]. 地理科学进展, 2008, (4): 37-41. |
[74] | POHLERT T, HUISMAN J A, BREUER L, et al. Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions: model development, sensitivity, and GLUE analysis[J]. Ecological Modelling, 2007, 203(3): 215-228. |
[75] | YANG Q, ZHANG X, ABRAHA M, et al. Enhancing the soil and water assessment tool model for simulating N2O emissions of three agricultural systems[J]. Ecosystem Health and Sustainability, 2017, 3(2): e01259. |
[76] | FENG H, YI Z, YONG T, et al. Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: strategies and relevance[J]. Journal of Hydrology, 2021, 595: 126045. |
[77] | BAO C, LI L, SHI Y, et al. Understanding watershed hydrogeochemistry: 1. development of RT-Flux-PIHM[J]. Water Resources Research, 2017, 53(3): 2328-2345. |
[78] | LI L, BAO C, SULLIVAN P L, et al. Understanding watershed hydrogeochemistry: 2. synchronized hydrological and geochemical processes drive stream chemostatic behavior[J]. Water Resources Research, 2017, 53(3): 2346-2367. |
[79] | JIANG J, ZHANG L, WANG Z, et al. Spatial consistency of co-exposure to air and surface water pollution and cancer in China[J]. Nature Communications, 2024, 15: 7813. |
[80] | WANG S, PENG H, LIANG S. Prediction of estuarine water quality using interpretable machine learning approach[J]. Journal of Hydrology, 2022, 605: 127320. |
[81] | 高志炜, 吴电明, 陈曦, 等. 机器学习在氮循环领域的应用研究进展[J]. 土壤, 2023, 55(4): 689-698. |
[82] | 余镒琦, 陈能汪, 余其彪, 等. 基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力[J]. 环境工程, 2024, 42(1): 223-234. |
[83] | CHEN Z, XU H, JIANG P, et al. A transfer Learning-Based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system[J]. Journal of Hydrology, 2021, 602: 126573. |
[84] | WANG K, ONODERA S-I, and SAITO M. Evaluation of nitrogen loading in the last 80 years in an urbanized Asian coastal catchment through the reconstruction of severe contamination period[J]. Environmental Research Letters, 2022, 17: 014010. |
[85] | DUMONT E, HARRISON J A, KROEZE C, et al. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4S02. |
[86] | CHEN S Y, HUANG J L, HUANG J C. Improving daily streamflow simulations for data-scarce watersheds using the coupled SWAT-LSTM approach[J]. Journal of Hydrology, 2023, 622: 129734. |
[87] | 赵良杰, 王莹, 周妍, 等. 基于SWAT模型的珠江流域地下水资源评价[J]. 地球科学, 2024, 49(5): 1876-1890. |
[88] | 梁文翔, 骆震, 陈伏龙, 等. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[89] | GALAL U M, STEPHEN N, AZIZUR R, et al. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment[J]. Water research, 2022, 219: 118532. |
[1] | ZHU Jialei, DONG Jianzhi, ZHANG Yonggen, SUN Shaobo, JIANG Zhe, ZHOU Haoran, ZHAO Xi, LI Pan, CHEN Wei, WANG Lichun, LI Xin, Liu Cong-Qiang. Progress and scientific frontiers in numerical simulation of the Earth system [J]. Earth Science Frontiers, 2025, 32(3): 118-136. |
[2] | WU Libin, BAI Jingqi, ZHAO Qingzi, FU Pingqing. Research progress and prospects of amino acids in the atmosphere [J]. Earth Science Frontiers, 2025, 32(3): 196-206. |
[3] | ZHANG Yanli, RAN Haofan, ZENG Jianqiang, LU Yuting, PANG Weihua, GUO Hao, WANG Xinming. Advances and perspectives of biogenic reactive trace volatile organic compounds in the context of global change [J]. Earth Science Frontiers, 2025, 32(3): 288-310. |
[4] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
[5] | FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change [J]. Earth Science Frontiers, 2025, 32(3): 92-104. |
[6] | ZHANG Xiaofei, TANG Xiangwei, PANG Zhenshan, XUE Jianling, CHEN Hui, WANG Junlu, WEI Hantao, LEI Xiaoli. Comprehensive information model construction and target area prediction for gold prospecting in the Weishancheng area, Tongbai County, Henan [J]. Earth Science Frontiers, 2025, 32(2): 357-370. |
[7] | ZHANG Jing, LI Tianhu, WANG Zhihua, Naghmah HAIDER, HONG Jun, ZHANG Huishan, LIANG Nan. Geochemical characteristics and metallogenic potential analysis of porphyry copper deposits in Pakistan [J]. Earth Science Frontiers, 2025, 32(1): 91-104. |
[8] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[9] | XU Tianwu, ZHANG Hong’an. Analysis of oil and gas distribution and exploration potential in oil-rich depression: Taking Dongpu Depression as an example [J]. Earth Science Frontiers, 2024, 31(6): 368-380. |
[10] | KANG Fengxin, ZHENG Tingting, SHI Meng, SUI Haibo, XU Meng, JIANG Haiyang, ZHONG Zhennan, QIN Peng, ZHANG Baojian, ZHAO Jichu, MA Zhemin, CUI Yang, LI Jialong, DUAN Xiaofei, BAI Tong, ZHANG Pingping, YAO Song, LIU Xiao, SHI Qipeng, WANG Xuepeng, YANG Haitao, CHEN Jingpeng, LIU Beibei. Occurrence rules and enrichment mechanism of geothermal resources in Shandong Province [J]. Earth Science Frontiers, 2024, 31(6): 67-94. |
[11] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[12] | XU Ke, LIU Jingshou, ZHANG Hui, ZHANG Guanjie, ZHANG Binxin, WANG Haiying, ZHANG Yu, LAI Shujun, QIAN Ziwei, QIANG Jianli. Geological and engineering applications of full-stratum geomechanical modeling in complex structural areas [J]. Earth Science Frontiers, 2024, 31(5): 195-208. |
[13] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[14] | GONG Lei, QIN Xinnan, GAO Shuai, FU Xiaofei, SU Xiaocen, WANG Jie. Multi-scale fracture development characteristics and fracture network patterns of buried-hill in metamorphic rocks: A case study of the Bozhong Z metamorphic buried-hill [J]. Earth Science Frontiers, 2024, 31(5): 332-343. |
[15] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||