Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 357-370.DOI: 10.13745/j.esf.sf.2023.11.63
Previous Articles Next Articles
ZHANG Xiaofei1,2(), TANG Xiangwei3,*(
), PANG Zhenshan1,2, XUE Jianling1,2, CHEN Hui1,2, WANG Junlu1,2, WEI Hantao1,2, LEI Xiaoli1,2
Received:
2023-09-12
Revised:
2023-11-07
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
ZHANG Xiaofei, TANG Xiangwei, PANG Zhenshan, XUE Jianling, CHEN Hui, WANG Junlu, WEI Hantao, LEI Xiaoli. Comprehensive information model construction and target area prediction for gold prospecting in the Weishancheng area, Tongbai County, Henan[J]. Earth Science Frontiers, 2025, 32(2): 357-370.
Fig.2 Geological sketch map of Weishancheng metallogenic belt (a) and ore bodies spatial distribution map of Yindongpo gold deposit(b-c). Modified after [18].
时代 | 岩体或矿床名称 | 测年方法 | 年龄/Ma | 资料来源 |
---|---|---|---|---|
成岩 时代 | 铜山岩体 | LA-ICP-MS锆石U-Pb年龄 | 131 | [ |
梁湾岩体 | LA-ICP-MS锆石U-Pb年龄 | 130 | [ | |
SHRIMP锆石U-Pb年龄 | 137 | [ | ||
SHRIMP锆石U-Pb年龄 | 133 | [ | ||
天目山岩体 | LA-ICP-MS锆石U-Pb年龄 | 133~132 | [ | |
LA-ICP-MS锆石U-Pb年龄 | 123 | [ | ||
老湾岩体 | LA-ICP-MS锆石U-Pb年龄 | 129 | [ | |
SHRIMP 锆石U-Pb | 133 | [ | ||
七尖峰岩体 | LA-ICP-MS锆石U-Pb年龄 | 139~135 | [ | |
银洞坡金矿深部含矿花岗斑岩 | LA-ICP-MS锆石U-Pb年龄 | 127 | [ | |
成矿 时代 | 银洞坡金矿 | LA-ICP-MS独居石U-Pb年龄 | 127 | [ |
40Ar/39Ar年龄(蚀变阶段绢云母) | 133 | [ | ||
40Ar/39Ar年龄(多金属硫化物阶段绢云母) | 131 | [ | ||
破山银矿 | K-Ar(碳质绢云石英片岩) | 104 | [ | |
老湾金矿 | LA-ICP-MS金红石 U-Pb年龄 | 128~124 | [ |
Table 1 Early Cretaceous diagenetic and metallogenic chronology data in Tongbai area, Henan
时代 | 岩体或矿床名称 | 测年方法 | 年龄/Ma | 资料来源 |
---|---|---|---|---|
成岩 时代 | 铜山岩体 | LA-ICP-MS锆石U-Pb年龄 | 131 | [ |
梁湾岩体 | LA-ICP-MS锆石U-Pb年龄 | 130 | [ | |
SHRIMP锆石U-Pb年龄 | 137 | [ | ||
SHRIMP锆石U-Pb年龄 | 133 | [ | ||
天目山岩体 | LA-ICP-MS锆石U-Pb年龄 | 133~132 | [ | |
LA-ICP-MS锆石U-Pb年龄 | 123 | [ | ||
老湾岩体 | LA-ICP-MS锆石U-Pb年龄 | 129 | [ | |
SHRIMP 锆石U-Pb | 133 | [ | ||
七尖峰岩体 | LA-ICP-MS锆石U-Pb年龄 | 139~135 | [ | |
银洞坡金矿深部含矿花岗斑岩 | LA-ICP-MS锆石U-Pb年龄 | 127 | [ | |
成矿 时代 | 银洞坡金矿 | LA-ICP-MS独居石U-Pb年龄 | 127 | [ |
40Ar/39Ar年龄(蚀变阶段绢云母) | 133 | [ | ||
40Ar/39Ar年龄(多金属硫化物阶段绢云母) | 131 | [ | ||
破山银矿 | K-Ar(碳质绢云石英片岩) | 104 | [ | |
老湾金矿 | LA-ICP-MS金红石 U-Pb年龄 | 128~124 | [ |
Fig.6 Plot of δ D H 2 O and δ18 O H 2 O calculated of quartz at different stages (a) and histogram of sulfur isotopic compositions of pyrite (b) from Yindongpo gold deposit. Data of the Yindongpo gold deposit are from [17,20,26,41].
序号 | 名称 | 化探 | 重力 | 磁法 | 激电 | 验证情况 |
---|---|---|---|---|---|---|
1 | 张庄金矿A类找矿靶区 | 地表异常元素组合以Ag、Au、Zn、Pb和Cu主为;银洞坡深部钻孔(-704 m)Au、Ag、Pb、Zn、Sb、W和Mo异常发育。 | 位于剩余重力负异常内 | 位于负磁异常带上,磁异常一般在-50~150 nT之间 | 地表硅化、褐铁矿化发育,区内北部见大面积激电异常。极化率在0.4%~1.4%之间,电阻率相对低阻一般为400 Ω·m以下 | 钻孔验证,圈出多层矿体,平均金品位17.6×10-6,银品位133×10-6,矿体真厚度0.82~2.33 m |
2 | 郭老庄-栾家冲金矿A类找矿靶区 | 圈定出5个激电异常,极化率在8%~12%,具明显的低阻高极化率特征 | 地表圈出1条银矿体和3条铅矿体。钻探控制深部金银矿体1条,矿体厚度0.98~2.69 m,平均金品位4.46×10-6 | |||
3 | 银洞坡深部金铅锌矿A类找矿靶区(-1 050~-436 m) | 深部-800 m出现激电异常,为低阻高极化率特征 | 钻探验证,提交矿产地1处:累计新增获得工业矿+低品位矿矿石量573万t,金金属量22 520 kg,平均品位3.93×10-6 | |||
4 | 陈庄银铅锌矿B类找矿靶区 | 圈定出4个激电异常,具明显的低阻高极化特征。 | 地表圈出银矿体2条、铅锌矿体4条。矿体厚度0.80~4.38 m,银品位(47.9~497.0)×10-6,铅+锌品位0.96%~2.77% | |||
5 | 破山深部银铅锌矿A类找矿靶区 | 钻探验证,圈出银矿体11个,累计提交潜在银金属量456 t |
Table 2 A list of prospecting target areas for the Weishancheng area, Tongbai, Henan
序号 | 名称 | 化探 | 重力 | 磁法 | 激电 | 验证情况 |
---|---|---|---|---|---|---|
1 | 张庄金矿A类找矿靶区 | 地表异常元素组合以Ag、Au、Zn、Pb和Cu主为;银洞坡深部钻孔(-704 m)Au、Ag、Pb、Zn、Sb、W和Mo异常发育。 | 位于剩余重力负异常内 | 位于负磁异常带上,磁异常一般在-50~150 nT之间 | 地表硅化、褐铁矿化发育,区内北部见大面积激电异常。极化率在0.4%~1.4%之间,电阻率相对低阻一般为400 Ω·m以下 | 钻孔验证,圈出多层矿体,平均金品位17.6×10-6,银品位133×10-6,矿体真厚度0.82~2.33 m |
2 | 郭老庄-栾家冲金矿A类找矿靶区 | 圈定出5个激电异常,极化率在8%~12%,具明显的低阻高极化率特征 | 地表圈出1条银矿体和3条铅矿体。钻探控制深部金银矿体1条,矿体厚度0.98~2.69 m,平均金品位4.46×10-6 | |||
3 | 银洞坡深部金铅锌矿A类找矿靶区(-1 050~-436 m) | 深部-800 m出现激电异常,为低阻高极化率特征 | 钻探验证,提交矿产地1处:累计新增获得工业矿+低品位矿矿石量573万t,金金属量22 520 kg,平均品位3.93×10-6 | |||
4 | 陈庄银铅锌矿B类找矿靶区 | 圈定出4个激电异常,具明显的低阻高极化特征。 | 地表圈出银矿体2条、铅锌矿体4条。矿体厚度0.80~4.38 m,银品位(47.9~497.0)×10-6,铅+锌品位0.96%~2.77% | |||
5 | 破山深部银铅锌矿A类找矿靶区 | 钻探验证,圈出银矿体11个,累计提交潜在银金属量456 t |
[1] | 吕志成, 陈辉, 宓奎峰, 等. 勘查区找矿预测理论与方法及其应用案例[J]. 地质力学学报, 2022, 28(5): 842-865. |
[2] | 叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法: 总论[M]. 北京: 地质出版社, 2014. |
[3] | 叶天竺, 韦昌山, 王玉往, 等. 勘查区找矿预测理论与方法: 各论[M]. 北京: 地质出版社, 2017. |
[4] | 胡惠民, 赵鹏大, 李紫金. 大比例尺成矿预测方法[M]. 北京: 地质出版社, 1995. |
[5] | WHITE N C, HEDENQUIST J W. Epithermal gold deposits: styles, characteristics and exploration[J]. SEG Discovery, 1995(23): 1-13. |
[6] | 毛景文, 张作衡, 裴荣富. 中国矿床模型概论[M]. 北京: 地质出版社, 2012. |
[7] | 翟裕生, 邓军, 彭润民, 等. 成矿系统论[M]. 北京: 地质出版社, 2011. |
[8] | 陈毓川, 裴荣富, 王登红. 三论矿床的成矿系列问题[J]. 地质学报, 2006, 80(10): 1501-1508. |
[9] | 赵鹏大. “三联式”定量成矿预测[M]. 北京: 中国地质大学出版社, 2000. |
[10] | 赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5): 1-10. |
[11] | 庞振山, 薛建玲, 程志中, 等. 成矿地质体找矿预测理论与方法在矿产勘查中的应用[J]. 地质通报, 2023, 42(6): 883-894. |
[12] | 于晓飞, 吕志成, 孙海瑞, 等. 全国整装勘查区成矿系统研究与矿产勘查新进展[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1261-1288. |
[13] |
陈辉, 林鲁军, 庞振山, 等. 四川会理拉拉铜矿找矿预测模型构建与找矿示范[J]. 地学前缘, 2021, 28(3): 309-327.
DOI |
[14] | YANG M Z, FU J J, REN A Q. Recognition of Yanshanian magmatic-hydrothermal gold and polymetallic gold mineralization in the Laowan gold metallogenic belt, Tongbai Mountains: new evidence from structural controls, geochronology and geochemistry[J]. Ore Geology Reviews, 2015, 69: 58-72. |
[15] | 柴明春, 胡浩, 李建威, 等. 桐柏地区火神庙矽卡岩型铁矿床的成矿时代、矿床成因及其与古生代构造-岩浆活动的关系[J]. 中国科学: 地球科学, 2021, 51(12): 2163-2183. |
[16] | 唐相伟, 李运冬, 杨泽强, 等. 河南省围山城矿集区深部找矿预测成果报告. 河南省地质矿产勘查开发局第三地质矿产调查院, 2021: 1-257. |
[17] | 杨艳. 河南围山城金银多金属成矿带成矿流体研究[D]. 北京: 中国地质大学(北京), 2008. |
[18] | ZHANG J, CHEN Y J, PIRAJNO F, et al. Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, Central China: implication for ore genesis[J]. Ore Geology Reviews, 2013, 53: 343-356. |
[19] | 刘晓春, 李三忠, 江博明. 桐柏-红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 2015, 45(8): 1088-1108. |
[20] | 金伟衎. 豫西西峡-桐柏金矿床地质与地球化学特征及找矿意义[D]. 武汉: 中国地质大学(武汉), 2021. |
[21] | LI Z K, ZHOU J J, ZHAO S R, et al. Superimposed mineralization in the Tongbai composite orogen, Central China: revealed from geological and geochronological data of the Yindongpo gold deposit[J]. Ore Geology Reviews, 2023, 152: 105246. |
[22] | RATSCHBACHER L, HACKER B R, CALVERT A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1/2): 1-53. |
[23] | 江思宏, 聂凤军, 方东会, 等. 河南桐柏围山城地区侵入岩年代学与地球化学特征[J]. 地质学报, 2009, 83(7): 1011-1029. |
[24] | ZHENG F, DAI L Q, ZHAO Z F, et al. Recycling of paleo-oceanic crust: geochemical evidence from Early Paleozoic mafic igneous rocks in the Tongbai Orogen, Central China[J]. Lithos, 2019, 328: 312-327. |
[25] | 刘翼飞, 江思宏, 方东会, 等. 河南桐柏老湾花岗岩体锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石矿物学杂志, 2008, 27(6): 519-523. |
[26] | 张静, 陈衍景, 陈华勇, 等. 河南桐柏围山城层控金银成矿带同位素地球化学[J]. 地学前缘, 2008, 15(4): 108-124. |
[27] | 柴明春. 桐柏地区古-中生代多金属矿床成矿作用研究[D]. 武汉: 中国地质大学(武汉), 2021. |
[28] | JIN W K, CHEN S Y, CHEN J D, et al. Mineralogy and geochemistry of tellurides and pyrite from the Laowan Au-Ag-Te deposit, Qinling-Dabie orogenic belt, Central China: implications for ore genesis[J]. Ore Geology Reviews, 2021, 139: 104519. |
[29] | 梁涛, 卢仁. 豫南伏牛山余脉铜山岩体锆石U-Pb定年、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 400-415. |
[30] | ZHOU J J, LI Z K, HU H, et al. Multiple magmatic-hydrothermal processes recorded by titanite from the Early Cretaceous Liangwan pluton, Tongbai Orogen[J]. Lithos, 2022, 428: 106845. |
[31] | 江思宏, 聂凤军, 方东会, 等. 河南桐柏围山城地区主要金银矿床的成矿年代学研究[J]. 矿床地质, 2009, 28(1): 63-72. |
[32] | YANG Y F, WANG P, CHEN Y J, et al. Geochronology and geochemistry of the Tianmugou Mo deposit, Dabie Shan, Eastern China: implications for ore genesis and tectonic setting[J]. Ore Geology Reviews, 2017, 81: 484-503. |
[33] | YANG M Z, JIANG S Y, ZHAO K D, et al. Two episodic Au-Mo mineralization in the Laowan district from the Tongbai orogenic belt of China: constraints from U-Pb dating of zircon, rutile, and REE phosphate, and Re-Os dating of molybdenite[J]. Gondwana Research, 2021, 96: 142-162. |
[34] | 张静, 杨艳, 鲁颖怀, 等. 河南破山银矿床地质地球化学特征及成因研究[J]. 中国地质, 2008, 35(6): 1220-1229. |
[35] | CANDELA P. A review of shallow, ore-related granites: textures, volatiles, and ore metals[J]. Journal of Petrology, 38(12): 1619-1633. |
[36] | ŠTEMPROK M, DOLEJŠ D, MÜLLER A, et al. Textural evidence of magma decompression, devolatilization and disequilibrium quenching: an example from the Western Krušné hory/Erzgebirge granite pluton[J]. Contributions to Mineralogy and Petrology, 2008, 155(1): 93-109. |
[37] | 杨梅珍, 陆建培, 付静静, 等. 桐柏山老湾金矿带与燕山期岩浆作用有关的岩浆热液金多金属矿床成矿作用: 来自地球化学、年代学证据及控矿构造地质约束[J]. 矿床地质, 2014, 33(3): 651-666. |
[38] | 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8): 1153-1168, 1-4. |
[39] | LARGE R, THOMAS H, CRAW D, et al. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(2): 137-149. |
[40] | 张静, 陈衍景, 陈华勇, 等. 河南省桐柏县银洞坡金矿床同位素地球化学[J]. 岩石学报, 2006, 22(10): 2551-2560. |
[41] | 曾威, 段明, 万多, 等. 河南银洞坡金矿成矿流体与矿床成因研究[J]. 现代地质, 2016, 30(4): 781-791. |
[42] | 包峻帆. 河南省桐柏围山城金银矿带成矿规律与成矿预测[D]. 北京: 中国地质大学(北京), 2018. |
[43] | 李红梅, 魏俊浩, 黄祥芝. 河南桐柏县破山银矿和银洞坡金矿的硫同位素研究[J]. 现代地质, 2008, 22(1): 18-23. |
[44] | 李红梅, 魏俊浩, 王洪黎, 等. 河南桐柏围山城金银成矿带成矿物质来源: 铅同位素证据[J]. 地质与勘探, 2009, 45(4): 374-384. |
[45] | 张静, 杨艳, 鲁颖淮. 河南围山城金银成矿带铅同位素地球化学及矿床成因[J]. 岩石学报, 2009, 25(2): 444-454. |
[46] | 葛天兴. 银洞坡金矿地球物理和地球化学特征及找矿标志[J]. 科技视界, 2014(21): 264-268. |
[47] | 刘奎松, 陈华, 王文博. 围山城金银矿区物探异常特征及深部找矿效果[J]. 华南地质与矿产, 2018, 34(2): 126-133. |
[48] | 韩存强, 张宁恒, 万守全. 河南省桐柏县银洞坡金矿综合找矿标志及找矿模型[J]. 物探与化探, 1996, 20(2): 87-98. |
[49] | 简新玲. 河南省桐柏县银洞坡金矿床地质地球化学特征[J]. 地质与勘探, 2004, 40(2): 41-45. |
[50] | 张冠. 河南省桐柏县银洞坡金矿床(西段)地球化学找矿标志及预测评价[J]. 物探与化探, 2005, 29(4): 304-307. |
[1] | NIU Lujia, SHI Chengyue, WANG Zhangang, ZHOU Yongzhang. InterfaceGrid: Gridding representation of 3D geological models for complex geological structures [J]. Earth Science Frontiers, 2024, 31(4): 129-138. |
[2] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[3] | LIAO Zhou, LI Mei. Research on the 3D implicit potential field modeling method for urban underground space based on the open-source GemPy [J]. Earth Science Frontiers, 2024, 31(3): 482-497. |
[4] | GU Hao, YANG Zeqiang, GAO Meng, TANG Xiangwei, WANG Dongxiao, LIU Kuisong, YANG Shuren, GUO Yueshan, WANG Yun, WANG Gongwen. Three-dimensional geological modeling and mineral prospectivity mapping in the Weishancheng gold-silver district, Henan, China [J]. Earth Science Frontiers, 2024, 31(3): 245-259. |
[5] | XUE Tao, BAO Xunshuan, ZHU Xiaodi, HUANG Xiao. Attribute modeling constrained by multi-source data-based 3D geological structural model: A case study in Tongzhou District, Beijing [J]. Earth Science Frontiers, 2023, 30(3): 529-536. |
[6] | JIA Ran, WANG Haoran, WANG Gongwen, WANG Hao, XU Rongda, FENG Zhankui, SONG Yaowu, WANG Xiaoling, PANG Zong. Three-dimensional geological modeling and deep prospectivity of the Xigou Pb-Zn-Ag-Au deposit, Henan Province [J]. Earth Science Frontiers, 2021, 28(3): 156-169. |
[7] | HAN Runsheng, ZHAO Dong, WU Peng, WANG Lei, QIU Wenlong, LONG Yunqing, LIU Fengping, DENG Anping, ZONG Zhihong. Mechanisms of rock- and ore-controlling structures and the implications for deep prospecting in the Huangshaping Cu-Sn polymetallic deposit, southern Hunan Province, China [J]. Earth Science Frontiers, 2020, 27(4): 199-218. |
[8] | JIANG Beng, XU Xin-He, HUANG Ru-Yin, CHENG Chao, LI Mao, LIU Li-Hui. Application of reservoir characterization techniques in DF11 Gas Field. [J]. Earth Science Frontiers, 2012, 19(2): 87-94. |
[9] | . Geophysicalgeological prospecting models for positioning prognosis of hidden metal deposits. [J]. Earth Science Frontiers, 2011, 18(3): 284-292. |
[10] | SHU Liang-Feng TUN Shen-Cai BO Shen. Theory of accuracy assessment and methods for error correction in 3D geological structure models. [J]. Earth Science Frontiers, 2009, 16(4): 363-371. |
[11] |
.
Genesis of underwater shrinkage cracks and geological models of their filling [J]. Earth Science Frontiers, 2007, 14(6): 215-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||