Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (4): 199-218.DOI: 10.13745/j.esf.sf.2020.6.33
Previous Articles Next Articles
HAN Runsheng1(), ZHAO Dong1, WU Peng1, WANG Lei1, QIU Wenlong1,2, LONG Yunqing3, LIU Fengping3, DENG Anping3, ZONG Zhihong3
Received:
2019-08-26
Revised:
2019-10-11
Online:
2020-07-25
Published:
2020-07-25
CLC Number:
HAN Runsheng, ZHAO Dong, WU Peng, WANG Lei, QIU Wenlong, LONG Yunqing, LIU Fengping, DENG Anping, ZONG Zhihong. Mechanisms of rock- and ore-controlling structures and the implications for deep prospecting in the Huangshaping Cu-Sn polymetallic deposit, southern Hunan Province, China[J]. Earth Science Frontiers, 2020, 27(4): 199-218.
Fig.1 (a) Simplified geological map of the Qin-Hang and Nanling metallogenic belts showing ore deposit distribution (modified from [18,26]. (b) Geological outline of the Qianlishan-Qitianling area (modified from [27]). (c) Regional geological sketch map of the Huangshaping-Baoshan polymetallic ore field (modified from [28]). (d) Schematic diagram of spatial characteristics of the ‘twist flower’ structure. (e) Schematic diagram illustrating the mechanical properties contributing to the symmetry of the tectono-magma-metallogenic system of the ore field.
Fig.2 Geological sketch maps of the Huangshaping-Baoshan ore field (a) and the mine area (b), showing the 105 (c) and 109 (d) cross section of the Huangshaping copper-tin polymetallic deposit. Modified from [21].
Fig.4 Cross-section of the No.21 transverse drift at -136 m depth in the middle section of the Huangshaping Cu-Sn polymetallic deposit, showing tectonic alterations
Fig.5 Cross-section of the No.26 transverse drift at -136 m depth in the middle section of the Huangshaping Cu-Sn polymetallic deposit, showing tectonic alterations
序号 | 样号 | 断裂产状(走向-倾角-倾向) | 主要力学性质 | wB/10-6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W | Sn | Mo | Bi | Cu | Pb | Zn | Ag | |||||
1 | HHc-11 | NE45°∠76°NW | 扭性→压扭性 | 12.40 | 659 | 2.16 | 1.38 | 56.60 | 194 100 | 37 900 | 251 | |
2 | HHc-17 | NE65°∠75°NW | 右行压性 | 7.25 | 34.00 | 18.90 | 0.69 | 34.00 | 480 | 371 | 2.81 | |
3 | HHc-21-2 | NE76°∠61°NW | 右行压扭性 | 9.83 | 15.10 | 12.70 | 1.05 | 19.60 | 58.00 | 361 | 1.49 | |
4 | HHc-219 | NE30°∠75°SE | 张性→压性 | 578 | 201 | 661 | 164 | 7.34 | 19.90 | 253 | 0.51 | |
5 | HHc-227 | NE30°∠85°SE | 压扭→张扭性 | 3.50 | 6.53 | 1.24 | 1.87 | 54.40 | 46.50 | 103 | 0.36 | |
6 | HHc-234 | NE30°∠62°SE | 压扭性 | 20.30 | 1 400 | 0.53 | 18.60 | 408 | 152 | 115 000 | 7.84 | |
7 | HHc-237 | NE20°∠75°SE | 压扭性 | 14.70 | 22.80 | 0.63 | 1.99 | 24.70 | 53.60 | 143 | 0.64 | |
8 | HQc-34 | NE40°∠80°NW | 压扭性 | 7.05 | 8.66 | 4.79 | 0.43 | 16.90 | 118 | 171 | 0.67 | |
9 | HQc-36 | NE49°∠77°SE | 张性→右行扭性 | 70.80 | 19.80 | 3.50 | 1.25 | 17.40 | 202 | 371 | 1.31 | |
10 | HQc-39 | NE50°∠59°NW | 右行扭性 | 20.00 | 91.80 | 1.25 | 0.53 | 152 | 125 300 | 13 400 | 188 | |
11 | HQc-40 | NE59°∠61°NW | 右行扭压性 | 8.82 | 20.00 | 4.94 | 1.47 | 12.70 | 347 | 176 | 2.17 | |
12 | HHc-06 | NE10°∠65°~80°SE | 压性 | 74.50 | 95.30 | 3.47 | 2.33 | 34.10 | 8 135 | 7 424 | 36.20 | |
13 | HHc-08 | NW15°∠80°NE | 压性 | 17.50 | 432 | 4.66 | 0.37 | 53.90 | 10 300 | 47 000 | 40.90 | |
14 | HHc-236 | SN∠65°E | 压性 | 3.04 | 6.65 | 0.68 | 1.13 | 33.60 | 67.70 | 172 | 0.45 | |
15 | HHc-240 | SN∠70°E | 压性 | 9.00 | 31.30 | 2.21 | 47.70 | 29.70 | 306 | 246 | 2.34 | |
16 | HQc-12 | NW60°∠80°NE | 张性→压性为主兼左行 | 56.10 | 155 | 1.90 | 251 | 1 000 | 39.40 | 1 500 | 13.70 | |
17 | HQc-2 | NW30°∠75°SW | 右行压性 | 6.50 | 3.40 | 2.67 | 5.29 | 217 | 7.71 | 139 | 0.56 | |
18 | HFc-12 | SN∠55°W | 张性 | 12.20 | 97.60 | 2.76 | 0.91 | 169 | 39 800 | 2 248 | 52.20 | |
19 | HTKc04-1 | NW20°∠80°SW | 右行压扭性 | 4.08 | 3.56 | 4.48 | 1.06 | 32.30 | 88.50 | 118 | 0.08 | |
20 | HTKc04-2 | NW20°∠80°SW | 右行压扭性 | 1.12 | 2.11 | 1.89 | 0.53 | 12.50 | 41.70 | 153 | 0.16 |
Table 1 Metallogenic elemental contents of different trend tectonites in the Huangshaping Cu-Sn polymetallic deposit
序号 | 样号 | 断裂产状(走向-倾角-倾向) | 主要力学性质 | wB/10-6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W | Sn | Mo | Bi | Cu | Pb | Zn | Ag | |||||
1 | HHc-11 | NE45°∠76°NW | 扭性→压扭性 | 12.40 | 659 | 2.16 | 1.38 | 56.60 | 194 100 | 37 900 | 251 | |
2 | HHc-17 | NE65°∠75°NW | 右行压性 | 7.25 | 34.00 | 18.90 | 0.69 | 34.00 | 480 | 371 | 2.81 | |
3 | HHc-21-2 | NE76°∠61°NW | 右行压扭性 | 9.83 | 15.10 | 12.70 | 1.05 | 19.60 | 58.00 | 361 | 1.49 | |
4 | HHc-219 | NE30°∠75°SE | 张性→压性 | 578 | 201 | 661 | 164 | 7.34 | 19.90 | 253 | 0.51 | |
5 | HHc-227 | NE30°∠85°SE | 压扭→张扭性 | 3.50 | 6.53 | 1.24 | 1.87 | 54.40 | 46.50 | 103 | 0.36 | |
6 | HHc-234 | NE30°∠62°SE | 压扭性 | 20.30 | 1 400 | 0.53 | 18.60 | 408 | 152 | 115 000 | 7.84 | |
7 | HHc-237 | NE20°∠75°SE | 压扭性 | 14.70 | 22.80 | 0.63 | 1.99 | 24.70 | 53.60 | 143 | 0.64 | |
8 | HQc-34 | NE40°∠80°NW | 压扭性 | 7.05 | 8.66 | 4.79 | 0.43 | 16.90 | 118 | 171 | 0.67 | |
9 | HQc-36 | NE49°∠77°SE | 张性→右行扭性 | 70.80 | 19.80 | 3.50 | 1.25 | 17.40 | 202 | 371 | 1.31 | |
10 | HQc-39 | NE50°∠59°NW | 右行扭性 | 20.00 | 91.80 | 1.25 | 0.53 | 152 | 125 300 | 13 400 | 188 | |
11 | HQc-40 | NE59°∠61°NW | 右行扭压性 | 8.82 | 20.00 | 4.94 | 1.47 | 12.70 | 347 | 176 | 2.17 | |
12 | HHc-06 | NE10°∠65°~80°SE | 压性 | 74.50 | 95.30 | 3.47 | 2.33 | 34.10 | 8 135 | 7 424 | 36.20 | |
13 | HHc-08 | NW15°∠80°NE | 压性 | 17.50 | 432 | 4.66 | 0.37 | 53.90 | 10 300 | 47 000 | 40.90 | |
14 | HHc-236 | SN∠65°E | 压性 | 3.04 | 6.65 | 0.68 | 1.13 | 33.60 | 67.70 | 172 | 0.45 | |
15 | HHc-240 | SN∠70°E | 压性 | 9.00 | 31.30 | 2.21 | 47.70 | 29.70 | 306 | 246 | 2.34 | |
16 | HQc-12 | NW60°∠80°NE | 张性→压性为主兼左行 | 56.10 | 155 | 1.90 | 251 | 1 000 | 39.40 | 1 500 | 13.70 | |
17 | HQc-2 | NW30°∠75°SW | 右行压性 | 6.50 | 3.40 | 2.67 | 5.29 | 217 | 7.71 | 139 | 0.56 | |
18 | HFc-12 | SN∠55°W | 张性 | 12.20 | 97.60 | 2.76 | 0.91 | 169 | 39 800 | 2 248 | 52.20 | |
19 | HTKc04-1 | NW20°∠80°SW | 右行压扭性 | 4.08 | 3.56 | 4.48 | 1.06 | 32.30 | 88.50 | 118 | 0.08 | |
20 | HTKc04-2 | NW20°∠80°SW | 右行压扭性 | 1.12 | 2.11 | 1.89 | 0.53 | 12.50 | 41.70 | 153 | 0.16 |
构造等级 | 矿田构造* | 矿床构造 | 矿体构造 | 矿脉构造 |
---|---|---|---|---|
构造类型 | NNE-NEE-SN-NE向“S”型断褶带 NWW-EW向断裂带 | 岩浆侵入构造 NNE压扭性断裂 NWW张性断裂 上银山倒转背斜 | “多字型”断裂 接触带构造 侵入角砾岩构造NNE向 倒转褶皱 | 层间断裂 节理裂隙 |
构造组合 | 矿田“井字型”构造 | “棋盘格式”构造 断褶构造组合 复合构造组合 | “入字型”构造 “多字型”构造 热液角砾岩构造 岩浆侵入角砾岩构造 | |
控矿作用 | 控制岩浆侵入与流体运移通 道(导矿构造)及聚矿作用 | 配矿、容矿之作用 |
Table 2 The scales, types, assemblages and ore-controlling effect of geological structures in the Huangshaping Cu-Sn polymetallic deposit
构造等级 | 矿田构造* | 矿床构造 | 矿体构造 | 矿脉构造 |
---|---|---|---|---|
构造类型 | NNE-NEE-SN-NE向“S”型断褶带 NWW-EW向断裂带 | 岩浆侵入构造 NNE压扭性断裂 NWW张性断裂 上银山倒转背斜 | “多字型”断裂 接触带构造 侵入角砾岩构造NNE向 倒转褶皱 | 层间断裂 节理裂隙 |
构造组合 | 矿田“井字型”构造 | “棋盘格式”构造 断褶构造组合 复合构造组合 | “入字型”构造 “多字型”构造 热液角砾岩构造 岩浆侵入角砾岩构造 | |
控矿作用 | 控制岩浆侵入与流体运移通 道(导矿构造)及聚矿作用 | 配矿、容矿之作用 |
[1] | 童潜明. 湘南黄沙坪铅-锌矿床的成矿作用特征[J]. 地质论评, 1986, 32(6):565-577. |
[2] | 邓圣富. 黄沙坪矿床矿物组合分带规律研究[J]. 矿产与地质, 1997, 11(5):314-318. |
[3] | 许以明, 龚述清, 江元成, 等. 湖南黄沙坪铅锌矿深边部找矿前景分析[J]. 地质与勘探, 2007, 43(1):38-43. |
[4] | 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10):2329-2338. |
[5] | YAO J M, HUA R M, QU W J, et al. Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance[J]. Science in China, 2007, 50(4):519-526. |
[6] | JIANG W C, LI H, WU J H, et al. A newly found biotite syenogranite in the Huangshaping polymetallic deposit, South China: insights into Cu mineralization[J]. Journal of Earth Science, 2018(3):1-19. |
[7] | 姚军明, 华仁民, 屈文俊, 等. 湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义[J]. 中国科学, 2007, 37(4):471-477. |
[8] | 马丽艳, 路远发, 屈文俊, 等. 湖南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及其地质意义[J]. 矿床地质, 2007, 26(4):425-431. |
[9] | 路远发, 马丽艳, 屈文俊, 等. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究[J]. 岩石学报, 2006, 22(10):2483-2492. |
[10] | 李裕祖. 湖南桂阳黄沙坪铅锌矿床矿物流体包裹体研究及矿床成因讨论[J]. 矿物学报, 1986(1):79-87. |
[11] | 黄诚, 李晓峰, 王立发, 等. 湖南黄沙坪多金属矿床流体包裹体研究[J]. 岩石学报, 2013, 29(12):4232-4244. |
[12] | 息朝庄, 戴塔根, 刘悟辉. 湖南黄沙坪铅锌多金属矿床铅、 硫同位素地球化学特征[J]. 地球学报, 2009, 30(1):88-94. |
[13] | 祝新友, 王京彬, 王艳丽, 等. 湖南黄沙坪W-Mo-Bi-Pb-Zn多金属矿床的硫铅同位素地球化学研究[J]. 岩石学报, 2012, 28(12):3809-3822. |
[14] | 全铁军, 孔华, 王高, 等. 黄沙坪矿区花岗岩岩石地球化学、 U-Pb年代学及Hf同位素制约[J]. 大地构造与成矿学, 2012, 36(4):597-606. |
[15] | 柏道远, 马铁球, 王先辉, 等. 南岭中段中生代构造-岩浆活动与成矿作用研究进展[J]. 中国地质, 2008, 35(3):436-455. |
[16] | 李金冬. 湘东南地区中生代构造-岩浆-成矿动力学研究[D]. 北京: 中国地质大学(北京), 2005: 1-145. |
[17] | 胡肇荣, 邓国辉. 钦-杭接合带之构造特征[J]. 东华理工大学学报(自然科学版), 2009, 32(2):114-122. |
[18] | 周永章, 李兴远, 郑义, 等. 钦杭结合带成矿地质背景及成矿规律[J]. 岩石学报, 2017, 33(3):667-681. |
[19] |
LI Z X, LI X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2):179-182.
DOI URL |
[20] | 地质矿产部“南岭项目”构造专题组. 中华人民共和国地质矿产部地质专报: 五、 构造地质地质力学: 南岭区域构造特征及控岩控矿构造作用研究[M]. 北京: 地质出版社, 1988: 1-91. |
[21] | 龚述清, 许以明, 张怡军, 等. 湖南黄沙坪铅锌多金属矿成矿规律及深部找矿远景研究[M]. 北京: 地质出版社, 2015: 1-119. |
[22] | 韦德贵, 贺灵, 庞保成, 等. 湖南桂阳县黄沙坪铅锌矿区岩石节理特征及其地质意义[J]. 矿产与地质, 2007, 21(5):555-559. |
[23] | 李石锦. 湖南黄沙坪铅锌矿多金属矿床构造控矿特征及成矿浅析[J]. 大地构造与成矿学, 1997, 21(4):339-346. |
[24] | 祝新友, 王京彬, 张志, 等. 湖南黄沙坪铅锌矿NNW向构造的识别及其找矿意义[J]. 地质与勘探, 2010, 46(4):609-615. |
[25] | 舒良树, 周新民, 邓平, 等. 南岭构造带的基本地质特征[J]. 地质论评, 2006, 52(2):251-265. |
[26] | 毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5):636-658. |
[27] | 王登红, 李建康, 李建国, 等. 南岭成矿带深部探测的理论与实践[M]. 北京: 地质出版社, 2017: 1-265. |
[28] | 湖南省湘南地质勘察院. 湖南省桂阳县黄沙坪-宝山矿田1∶50000区域地质图[CM]. 郴州: 湘南地质勘察院, 2018. |
[29] | GILDER S, COURTILLOT V. Timing of the North-South China collision from new Middle to Late Mesozoic paleomagnetic data from the North China Block[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8):17713-17727. |
[30] |
LIN W, FAURE M, SUN Y, et al. Compression to extension switch during the Middle Triassic orogeny of Eastern China: the case study of the Jiulingshan massif in the southern foreland of the Dabieshan[J]. Journal of Asian Earth Sciences, 2002, 20(1):31-43.
DOI URL |
[31] | WANG Y J, FAN W M, CAWOOD P A, et al. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China: kinematics and 40Ar/39Ar geochronological constraints[J]. Tectonics, 2007, 26(6):1-21. |
[32] | XU J W, ZHU G, TONG W X, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean[J]. Tectonophysics, 1987, 134(4):273-310. |
[33] | ZHU G, WANG Y S, LIU G S, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 2005, 27(8):1379-1398. |
[34] | 朱光, 谢成龙, 王勇生, 等. 郯庐高压走滑韧性剪切带特征及其40Ar/39Ar定年[J]. 岩石学报, 2005, 21(6):1687-1702. |
[35] |
LIANG X Q, LI X H. Late Permian to Middle Triassic sedimentary records in Shiwandashan Basin: implication for the Indosinian Yunkai Orogenic Belt, South China[J]. Sedimentary Geology, 2005, 177(3):297-320.
DOI URL |
[36] |
LIANG X Q, LI X H, QIU Y X. Intracontinental collisional orogeny during Late Permian-Middle Triassic in South China: sedimentary records of the Shiwandashan Basin[J]. Acta Geologica Sinica, 2004, 78(3):756-762.
DOI URL |
[37] |
WANG Y, ZHANG Y, FAN W, et al. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block[J]. Journal of Structural Geology, 2005, 27(6):985-998.
DOI URL |
[38] | 姚军明, 华仁民, 林锦富. 湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征[J]. 岩石学报, 2005, 21(3):688-696. |
[39] | 艾昊. 湖南黄沙坪多金属矿床成矿斑岩锆石U-Pb年代学及Hf同位素制约[J]. 矿床地质, 2013, 32(3):545-563. |
[40] | 王康遥. 黄沙坪铅锌矿控矿构造及储量增长因素分析研究[J]. 湖南有色金属, 1989, 5(4):1-5. |
[41] | 李建国, 李建康, 王登红, 等. 湘南骑田岭矿集区的深部构造特征及其对区域成矿的制约[J]. 地质学报, 2014, 88(4):695-703. |
[42] | 叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 2014: 1-343. |
[43] | 谢银财, 陆建军, 杨平, 等. 湘南宝山铅锌矿床硫、 铅、 碳、 氧同位素特征及成矿物质来源[J]. 矿床地质, 2015, 34(2):333-351. |
[44] | 唐朝永. 湖南宝山多金属矿田构造控矿特征[J]. 矿产与地质, 2005, 19(1):43-47. |
[1] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[2] | HAN Runsheng, ZHAO Dong. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits—a preliminary study [J]. Earth Science Frontiers, 2022, 29(5): 420-437. |
[3] | LÜ Chengxun, ZHANG Da, XU Yaqing, GUO Tao, WANG Zongyong, HUO Qinglong, YUAN Yuelei. Calculation of metallogenic depth in the Jiaodong gold deposits: Tectonic correction method and metallogenic prediction [J]. Earth Science Frontiers, 2022, 29(1): 427-438. |
[4] | . [J]. Earth Science Frontiers, 2017, 24(6): 208-224. |
[5] | . [J]. Earth Science Frontiers, 2017, 24(2): 73-84. |
[6] | . [J]. Earth Science Frontiers, 2017, 24(2): 140-150. |
[7] | YANG Xin-Ke, HAN Ke, TUN Xu, WANG Bei-Ying, WANG Xin. The structural deformation and tectonic evolution of intra continental orogeny in South Qinling orogen: Structural deformation analysis of the northern part of ShiquanHanyin belt in the late IndosinianYanshanian period. [J]. Earth Science Frontiers, 2016, 23(4): 72-80. |
[8] | HAN Yi-Xiao, LIU Yun-Hua, LIU Chu-Wen, LEI Mo-Sha, LI Zhen, LI Yun-Chao, LI Xin. Origin of the breccia and metallogenic geological background of Mayuan Pb Zn deposit. [J]. Earth Science Frontiers, 2016, 23(4): 94-101. |
[9] | YANG Meng-Gui, XU Mei-Gui, HU Jing-Hua, WANG Guang-Hui, CHU Beng-Dun. The structural composite metallogenic characteristics of Hubei Anhui Jiangxi giant ore concentration area. [J]. Earth Science Frontiers, 2016, 23(4): 129-136. |
[10] | LIU Zhan-Qiang, LIU Shan-Bao, LIANG Ting, WANG De-Gong, FEI Rong-Fu, LIANG Li-Jie, ZHANG Shu-De. Structural analysis of Jiulongnao orefield in Nanling area: A case study on Taoxikeng tungsten deposit. [J]. Earth Science Frontiers, 2016, 23(4): 148-165. |
[11] | LV Gu-Xian. [J]. Earth Science Frontiers, 2015, 22(4): 1-12. |
[12] | LV Gu-Xian. [J]. Earth Science Frontiers, 2015, 22(4): 13-21. |
[13] | WANG Zong-Yong, LV Gu-Xian, HU Pu-Lin, YANG Ren-Yi, LUO Yi-Tian, LIU Rong-Xia, XUE Chang-Jun, HUANG Cha-Di. [J]. Earth Science Frontiers, 2015, 22(4): 37-45. |
[14] | ZHANG Bao-Lin, LV Gu-Xian, SU Cha, CHEN Xiao-Li, LIU Rui-Lin, LIU Jun-Gang, HAI Lian-Fu, ZHANG Guo-Liang. [J]. Earth Science Frontiers, 2015, 22(4): 78-87. |
[15] | YANG Xin-Ke, LIU Wei, HE Hu-Jun, JUE Cui-Xia, CHAO Hui-Xia, JIANG Mo, FAN Yue, XU Heng-Ban. [J]. Earth Science Frontiers, 2015, 22(4): 104-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||